
Vietnam J Comput Sci (2017) 4:261–277
DOI 10.1007/s40595-017-0096-2

REGULAR PAPER

Efficiently mining association rules based on maximum single
constraints

Anh Tran1 · Tin Truong1 · Bac Le2

Received: 26 August 2016 / Accepted: 29 April 2017 / Published online: 31 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract A serious problem encountered during the min-
ing of association rules is the exponential growth of their
cardinality. Unfortunately, the known algorithms for min-
ing association rules typically generate scores of redundant
and duplicate rules. Thus, we not only waste CPU but also
encounter difficulties saving, managing and using the results
of these algorithms. The present paper focuses on the dis-
covery of association rules in which the left-handed and
right-handed sides contain in two user-supplied maximum
single constraints. If the constraints appear on or differ from a
lattice of closed itemsets (together with their typically under-
sized generators and supports) that have been mined and
saved once, we quickly extract the corresponding frequent
sub one.Using an equivalence relation based on the closure of
the two rule sides, the association rule set withmaximum sin-
gle constraints is partitioned into disjoint equivalence classes.
Without loss of generality, it is necessary to consider min-
ing each class independently. This helps avoid the wasteful
generation of numerous candidates, reduces the burden of
storing the support and confidence of rules in the same class
and establishes a foundation for mining algorithms in par-
allel and distributed environments. In each class, the rules
are represented as unique and explicit via the corresponding
closed itemsets and generators. Due to the low cardinality

B Anh Tran
anhtn@dlu.edu.vn

Tin Truong
tintc@dlu.edu.vn

Bac Le
lhbac@fit.hcmus.edu.vn

1 Department of Mathematics and Computer Science,
University of Dalat, Dalat, Vietnam

2 Department of Computer Science, University of Science,
VNU-HCMC, Ho Chi Minh, Vietnam

and size of the generators, mining based on these represen-
tations, which does not generate duplicates, is very efficient.
In the present paper, all these theoretical results are proven
mathematically and used to construct the M AR_Max SC
algorithm. The efficiency of M AR_Max SC compared with
post-processing methods for mining association rules with
maximum single constraints is then verified on several char-
acteristic databases.

Keywords Association rules · Frequent itemsets · Closed
frequent itemsets · Closed lattice · Generators · Constraints

1 Introduction

Mining association rules is useful for applications that exam-
ine how often two or more items of interest co-occur. For
example, in market basket analysis, we find that the set of
milk, bread and eggs occur in 80% of all transactions. This
customer behavior gives us clues regarding the store place-
ment of milk, bread and eggs. Further, we can discover rules
such as “the proportion of customers who buy eggs among
those who bought milk and bread is 90%”. This rule can be
applied towardmarketing strategies; for example, the promo-
tion of milk and bread to increase the sale of eggs. Formally,
the problem of mining association rules [2] is stated as fol-
lows: Given database T = (O,A,R),m = |A| (where |A|
is the cardinality of A), n = |O| and minimum support and
confidence thresholds s0, c0 ∈ (0; 1], the task is to mine
association rules satisfying s0, c0. This problemcanbe solved
in two steps: (1) extracting the frequent itemsets with s0 and
(2) generating association rules from these sets for c0.

The method used to solve the above second step is sim-
ple. We first enumerate all the nonempty, proper subsets of
Z: ∅ ⊂ X ⊂ Z. Then, we obtain association rules of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-017-0096-2&domain=pdf

262 Vietnam J Comput Sci (2017) 4:261–277

form X → Z\X, compute their confidences and filter out
those satisfying c0. Hence, most researchers concentrate on
mining frequent itemsets (step 1). The Apriori method pro-
posed in [1] and a similar independently developed approach
[27] were the first algorithms proposed for mining frequent
itemsets. Apriori and its variants (Apriori-Hybrid [1], DHP
[30]) show reliable performance on sparse databases with
simple itemsets such as market databases; however, on com-
plex databases such as those consisting of bio-sequences and
telecommunication networks, they typically generate numer-
ous candidates or require several database passes. Recently,
algorithms based on frequent pattern trees (FP trees) have
been developed [15,20], wherein the original database is
compressed into an FP-Tree or similar tree structure. Using
the divide-and-conquer and depth-first search methods, all
the large itemsets are mined from the frequent 1-itemsets
without requiring a second database pass. However, in inter-
active or incremental mining systems, where users often
change the minimum support required as well as insert
new transactions into the original database, FP-Tree-inspired
structures are unsuitable because the treesmust be rebuilt. All
these algorithms work with horizontal formatted databases.
In addition, the Eclat algorithm proposed by [39] executes
a transaction identification set (tidset) intersection approach
using a vertical data format. A modification of Eclat with
“diffsets” called Declat [40] is often applied to solve fre-
quent itemset mining tasks. For an experimental comparison
between several of the frequent itemset mining algorithms,
see [18].

The search space of frequent itemsets is frequently vast
and grows exponentially with the number of items. In addi-
tion, the generation of frequent itemsets produces significant
duplication. In particular, a low minimum support thresh-
old can generate a huge number of frequent itemsets. For
example, a frequent itemset with m items might produce
2m−1 subsets. Hence, mining databases that produce several
long, frequent itemsets is an impossible task due to its associ-
ated computational and storage requirements. An alternative
approach is to utilize condensed, lossless representations of
frequent itemsets. These representations both reduce CPU
and memory requirements and enable the efficient manage-
ment and storage of the results generated. Two types of
condensed representations are maximal and closed itemsets
(and their generators). The GenMax algorithm described
in [19] mines maximal itemsets using a tidset intersec-
tion approach. An Apriori-based alternative algorithm called
MaxMiner [10] uses extremely effective itemset pruningwith
a support lower bound. Other examples can be found in
[11,17]. Having low cardinality, maximal itemsets can be
used to reproduce all the frequent itemsets. Unfortunately,
we only know their lower support bounds. In addition, the
generation of frequent itemsets from maximal itemsets may
result in an intractable number of duplicates. Thus, maxi-

mal itemsets are unsuitable for association rule mining from
frequent itemsets. Hence, it is necessary to find an objec-
tive solution. Indeed, the mining of closed itemsets (which is
based on the lattice theoretic framework of formal concept
analysis [16,23,38]) has received great attention for two rea-
sons. First, the number of closed frequent itemsets is greater
than the number of maximal frequent itemsets while typi-
cally being orders of magnitude lower than the total number
of frequent itemsets. Thus, their discovery can help purge
redundant itemsets. Second, the set of all closed frequent
itemsets is a condensed representation because we can deter-
mine whether an itemset X is frequent as well as the exact
support of X. In other words, we can generate all the fre-
quent itemsets based on the closed frequent itemsets. This
generation is very effective if we also use closed frequent
itemset generators. Charm_L [42], MinimalGenerator [41],
Touch [34] and GenClose [8] are some typical algorithms for
mining them.
Constraint-based association rule mining A serious problem
encountered during themining of frequent itemsets and asso-
ciation rules is that, in the worst case (0 < s0 = c0 ≤ 1/|n|),
the cardinalities of frequent itemset class FS(s0) and asso-
ciation rule set ARS(s0, c0) can become unwieldy (e.g.,
Max(#FS(s0)) = 2m − 1 = O(2m), Max(#ARS(s0, c0))
= 3m − 2m + 1 = O(3m)). In addition, their genera-
tion typically produces an intractable number of duplicates
(included in both candidates and solutions) that must then be
eliminated. Thus, we not only waste computational and stor-
age resources, but it is difficult to save, manage and use the
results generated. Hence, in the interest of increased practi-
cality, it is preferable tomine a suitable number of association
rules subjected to user constraints.

One common rule mining approach is to filter the gen-
erated rule set via constraints on ‘interestingness’ measures
until its size becomes manageable [12,24,35]. An alternative
approach is to use inference methods to prune association
rules that can be derived from other rules [14,25]. Zaki [41]
proposes an algorithm for mining the “most general” rules
with minimal antecedents and consequents (in terms of the
subset relation) in a collection of rules with identical support
and confidence. The rule for listing all the remaining rules is
given in [37]. Pasquier et al. [32] and Tin et al. [36] concen-
trate on methods to discover rules with minimal antecedents
and maximal consequents in rule classes with identical clo-
sures.

Several recent studies have focusedon thediscoveryof fre-
quent itemsets and association rules based on constraints (the
reader is referred to [29] for details). Indeed, [28] added con-
straints such as monotone, anti-monotone, etc., to the mining
process. The problem of integrating Boolean constraints,
referring to the presence or absence of items in rules, was
considered by [35]. In contrast, [10] proposed mining with
a minimum “improvement” threshold. They also considered

123

Vietnam J Comput Sci (2017) 4:261–277 263

association rules with constraints in their right-handed sides.
The concept of tree boundaries has been proposed to reduce
the running times of the aforementioned mining methods. In
addition, algorithms for mining multi-dimension association
rules are given in [26].

1.1 Problem statement

We have recently concentrated on frequent itemset and asso-
ciation rule mining with frequently modified constraints,
which directly involve support and confidence thresholds in
addition to items. For example, online users who know fre-
quent keyword sets contained in a class of keyword sets on a
given subjectmight be interested in association rules between
two given subjects. In [4,5], we solved the problem of finding
frequent itemsets that are contained in a set given constraint
C or contain at least one of its items. Hai et al. [21] applied
double constraints to the problem. The discovery of associ-
ation rules with various constraint types (the two-side union
contained in a constraint, the intersection of a rule side with
a constraint is not empty, the left-handed and right-handed
sides contain two constraints, respectively) is considered in
[6,9,22].

The present paper focuses on the mining of association
rules based onmaximumsingle constraints on both rule sides,
which is stated as follows. Given four thresholds, minimum
support s0, maximum support s1, minimum confidence c0
and maximum confidence c1, such that 0 < s0 ≤ s1 ≤
1, 0 < c0 ≤ c1 ≤ 1 and two nonempty constraint itemsets
in accordance with the two rule sides: ∅ ⊂ L1,R1,⊆ A,

the task is to discover the association rules r : L′ → R′
whose support and confidence are sandwiched by two pairs,
(s0, s1), (c0, c1), and whose sides are contained in L1 and R1,
respectively. More formally, we need to determine the set

ARS⊆L1, ⊆R1(s0, s1, c0, c1) = {r : L′ → R′ ARS(s0, c0)

| supp(r) ≤ s1, conf(r) ≤ c1,L
′ ⊆ L1,R

′ ⊆ R1},

where ARS(s0, c0) = {r : L′ → R′ | ∅ 	= L′,R′ ⊆ A,L′ ∩
R′ = ∅,S′ ≡ L′ +R′, s0 ≤ supp(r), c0 ≤ conf(r)} includes
the association rules r with the standardmeaning (the support
of r and its confidence are written as supp(r) and conf(r)). For
s1 = c1 = 1 and L1 = R1 = A, we return the traditional
mining problem. For smaller values of s1 and greater values
of c0, we receive robust rules from unusual itemsets that are
valuable in special cases.

1.2 Related work and approach

The traditional approach to generating association rules
solves the problem in two phases: (1) discover frequent
itemsets with constraints and (2) generate association rules
with constraints from them. Srikant et al. [35] proposed a

three-phase algorithm to mine association rules with item
constraints.Apriori-based generation creates candidates con-
taining given constraint items. A database pass allows for
the computation of the supports of all the subsets of frequent
itemsets with constraints. These frequent itemsets, together
with their subsets and supports, are used to enumerate all the
constrained association rules. However, similar to the dif-
ferent variants of the Apriori algorithm, it produces a large
number of frequent itemset candidates as well as duplicates
(D1, D2). Han et al. [20] introduced the idea of integrating
constraints into the initialization of FP-trees. Pei et al. [33]
proposed the concept of convertible constraints and com-
bined them with FPGrowth for mining constrained frequent
itemsets. Unfortunately, if the constraints change, the algo-
rithms must be re-executed. Hence, they are unsuitable for
user-interactive systems.

Post-processing approach In this approach, the constrained
rule set ARS⊆L1, ⊆R1(s0, s1, c0, c1) is discovered after the
following two phases are completed: (1) determining the set
of association rules without constraintsARS(s0, c0) and (2)
checking and filtering out those of the form r : L′ → R′
satisfying the constraints, i.e., supp(r) ≤ s1, conf(r) ≤ c1
and L′ ⊆ L1,R′ ⊆ R1.

As discussed in the Introduction, we can identify ARS
(s0, c0)by (1) finding the frequent itemset classFS(s0)using
algorithms such as Apriori, dEclat or FPGrowth, and then
(2) for each S′ ∈ FS(s0), listing all the rules r : L′ → R′ ∈
ARS(s0, c0), with ∅ 	= L′ ⊂ S′,R′ ≡ S′\L′ (using the
algorithms proposed by [3] or [31]). However, we encounter
the same aforementioned difficultieswhen using thismethod.

A more efficient method, which mines ARS(s0, c0), is
based on a lattice LC of frequent closed itemsets [7,32,36,
37,41]. Rather than extracting all the frequent itemsets, we
only extract the closed itemsets and determine the resulting
lattice structure. Based on this lattice, the set ARS(s0, c0)
is split into disjoint equivalence classes of identical closures
of left-hand-side and two-side unions. The elements in each
class have identical support and confidence and are computed
once.Using frequent closed itemset generators (latticeLCG),
[32] proposed algorithms for mining rule classes. However,
these algorithms generated redundancies and duplicates. In
[7,36,37], we completely pruned the generation of dupli-
cates using unique rule representations (based on effective set
techniques) in each class. We also discovered rules wherein
the two-side union of each rule adheres to a given con-
straint (see [6]). This approach is very efficient because (1)
we compute LCG once (using well-known algorithms such
as CHARM_L and MinimalGegenators), and (2) it is suit-
able for use with frequently modified support and confidence
thresholds.

Because the cardinality of ARS⊆L1,⊆R1(s0, s1, c0, c1) is
typically small compared with ARS(s0, c0), these post-

123

264 Vietnam J Comput Sci (2017) 4:261–277

processing algorithms consume significant computing reso-
urces to both discover the rules ofARS(s0, c0) and filter out
(using set operators) those in ARS⊆L1, ⊆R1(s0, s1, c0, c1).
Even in special cases, this solution set can be empty. In
addition, if online users modify the support and confi-
dence constraints,ARS(s0, c0)must be re-computed, which
decreases the speed of mining. Because the size and cardi-
nality of ARS(s0, c0) with s0 = c0 = 1/n are prohibitive,
it becomes too complicated to mine and maintain.

1.3 Our approach

We use the lattice LCG of closed itemsets and generators
because the cardinality of closed itemsets is typically orders
of magnitude smaller than that of the total itemsets FS(s0)
(approximately 100 times smaller, as shown in [42]), and the
ratio of the number of generators to the number of closed
itemsets is approximately 1:2 (see [34]; thus, we only mine
and save the lattice once. The frequent sub-lattice LCG, with
respect to the frequent closed itemsets satisfying specified
constraints, can be quickly extracted from LCG whenever
constraints emerge or change. To considerably decrease the
number of duplicated candidates, it is necessary to parti-
tion the association rule set into disjoint classes. Using an
equivalence relation on the closures of the two rule sides,
(L ≡ h(L′) ⊆ S ≡ h(L′ + R′)), the constrained associa-
tion rule set ARS⊆L1, ⊆R1(s0, s1, c0, c1) is partitioned into
disjoint equivalence rule classesAR+

⊆L1, ⊆R1
(L , S) for each

(L , S) inNFCS⊆L1, ⊆R1 (s0, s1, c0, c1) ,which contains all
the closed itemset pairs satisfying the constraints. This prunes
most of the duplicates produced during the generation of
candidate rules and reduces the storage of the support and
confidence of rules in the same class. In addition, it is also
lays a foundation for designing efficient algorithms in par-
allel and distributed environments. The rules in each rule
class, AR+

⊆L1,⊆R1
(L , S), are uniquely represented via the

two closed itemsets L, S and their corresponding sets of gen-
erators G(L),G(S). These representations help us understand
the rule structure and prevent duplicates.We propose an algo-
rithm called M ARMax SC , which mines a complete set of
constrained rules in a negligible amount of time compared
with post-processing methods.

1.4 Organization

The remainder of the paper is organized as follows. Section
2 covers the basic concepts of frequent itemset mining, asso-
ciation rule mining and closed itemset lattices. In Sect. 3, we
first describe the partitioning of the constrained association
rule set followed by the structure and unique representa-
tion of the rules of identical classes via closed itemsets and
their generators. Based on theoretical results, the efficient
MAR_MaxSC algorithm is proposed to completely and non-

repeatedly mine a complete set of association rules given
specific constraints. Section 4 describes the performance of
the proposed algorithm compared with two post-processing
algorithms. Finally, the conclusions of the study and future
work are given in Sect. 5.

2 Preliminaries

Let T = (O,A,R) be a binary database where O is
a nonempty set of objects (transactions), A are attributes
(items) appearing in the objects andR is a binary relation on
O×A. A subset A ofA is called an itemset. We consider the
operator λ : 2O→2A from the class of all object sets to the
class of all itemsets and the operator ρ : 2A→2O from the
class of all itemsets to the class of all object sets as follows:

∀O,A : ∅ 	= O ⊆ O, ∅ 	= A ⊆ A,λ(O)

= {a ∈ A| (o, a) ∈ R, o ∈ O}, ρ(A)

= {o ∈ O | (o, a)R, ∀a ∈ A},

(per convention: λ(∅) = A, ρ(∅) = O). Itemset λ(O) is
the common itemset of all the objects inO, and ρ(A) is the set
of the objects included in A. We define the closure operator
h on 2A as the union mapping of λ and ρ: h = λ o ρ. Then,
h(A) = λ(ρ(A)) is called the closure of A. Itemset A is a
closed itemset if and only if h(A)=A [31].

The support of an itemset A is defined as the frequency
of occurrence of the objects containing A, supp(A) ≡
|ρ(A)|/|O|. The minimum and maximum support thresh-
olds are designated s0 and s1, respectively, with 0 < 1/n ≤
s0 ≤ s1 ≤ 1 and n = |O|. We only consider the non-trivial
items in A, AF ≡ {a ∈ A : supp({a})s0}. The class of all
closed itemsets is referred to as CS. As the normal subset
containment relation “⊇” on the subsets of A generates an
order ≤ on CS,LC ≡ ({(S, supp(S)|S ∈ CS}, ≤) is the
lattice of closed itemsets together with their support, which is
represented by a Hass diagram. If the support of a nonempty
itemset A (for A ⊆ AF) is greater than or equal to s0 and
less than or equal to s1, i.e., s0 ≤ supp(A) ≤ s1 , A is called
a frequent itemset. By convention, s1 is identical to 1. Let
FS(s0, s1) ≡ {L′ : ∅ 	= L′ ⊆ A, s0 ≤ supp(L′) ≤ s1}
and FCS(s0, s1) ≡ FS(s0, s1) ∩ CS be the classes of all
the frequent and closed itemsets, respectively.

For two nonempty itemsets G,A : ∅ 	= G ⊆ A ⊆ A, G
is called a generator [32] of A if and only if1 h(G) = h(A)
and (h(G′) ⊂ h(G), ∀G′ : ∅ 	= G′ ⊂ G). We denote
G(A) as the class of all generators of A. Because G(A) is
not empty and finite [8] and |G(A)| = k, all its elements
can be numbered as follows: G(A) = {G1,G2, . . . ,Gk}. Let

1 We write “if and only if” as simply “iff”.

123

Vietnam J Comput Sci (2017) 4:261–277 265

LCG ≡ ({< S, supp(S), G(S) > | S ∈ CS}, ≤) be the
lattice of all the closed itemsets together their generators and
supports, and letFLCG(s0, s1) ≡ ({< S, supp(S), G(S) >

| S ∈ FCS(s0, s1)}, ≤) be the sub lattice of the frequent
itemsets.

For frequent itemset S′ ∈ FS(s0, s1), we remove a proper,
nonempty subset L’ of S’ (∅ 	= L′ ⊂ S′) and assign
R′ ≡ S′\L′. Thus, an implication r : L′ → R′ is called
a rule created by L′,R′ (or L′,S′). The support and confi-
dence of r are defined as supp(r) ≡ supp(S′) and conf(r) ≡
supp(S′)/supp(L′), respectively. For the givenminimum and
maximum confidences co, c1(0 < c0 ≤ c1 ≤ 1), we con-
sider r to be an association rule iff s0 ≤ supp(r) ≤ s1 and
c0 ≤ conf(r) ≤ c1. When s1 = 1 and c1 = 1, we return
the traditional concept of an association rule. The set of all
association rules satisfying the thresholds of s0, s1, c0, c1 is
written as

ARS(s0, s1, c0, c1)={r : L′ → R′ : L′,R′ 	= ∅,

L′ ∩ R′ = ∅,L′ + R′ 2 ∈ FS(s0, s1), c0 ≤ conf(r) ≤ c1}.
The set of all rules that satisfy the two constraint itemsets
L1,R1 ⊆ A, is denoted by

ARS⊆L1,⊆R1(s0, s1, c0, c1) = {r : L′ → R′

∈ ARS(s0, s1, c0, c1) |L′ ⊆ L1,R
′ ⊆ R1}.

This also refers to the class of association rules with
maximum single constraints, the association rule set with
constraints or the constrained association rule.

3 Mining association rules based on maximum
single constraints

3.1 Partitioning an association rule set with maximum
single constraints

3.1.1 Rough partitioning

To considerably decrease the number of duplicated candi-
dates, it is necessary to partition the association rule set
into disjoint classes using a suitable equivalence relation.
Based on the beautiful properties of operator h on lattice
LCG, we propose the following two equivalence relations on
FS(s0, s1) and ARS(s0, s1, c0, c1):

Definition 1 (Two equivalence relations on FS(s0, s1) and
ARS(s0, s1, c0, c1)).

(a) ∀A, B ∈ FS(s0, s1), A ∼A B ⇔ h(A) = h(B).

(b) ∀rk : Lk → Rk ∈ ARS(s0, s1, c0, c1), k = 1, 2,

r1 ∼r r2⇔[h(L1)= h(L2) and h(L1+R1)

=h(L2 + R2)]

It follows from Definition 1 that ∼A and ∼r are two equiva-
lence relations. Let [L]A ≡ {L′ ⊆ L : L′ 	= ∅ , h(L′) = L}
be the equivalence class of the frequent closed itemsets hav-
ing the same closure L where L ∈ FCS(s0, s1). For L,S ∈
FCS(s0, s1), ∅ 	= L ⊆ S, supp(S)/supp(L) ∈ [c0; c1],
the class AR(L,S) ≡ {r : L′ → R′ |L′ ∈ [L]A,R′ 	=
∅,L′ ∩ R′ = ∅,S′ ≡ L′ + R′ ∈ [S]A} contains the rules
r : L′ → R′ such that h(L′) = L, h(L′ + R′) = S.

Remark 1 (a) Using the properties of h, it is simple to show
that ∀L ∈ FCS(s0, s1), supp(L ′) = supp(L), ∀L ′ ∈
[L]A. In other words, every frequent itemset of the same
class [L]A has identical support supp(L).

(b) For every r : L ′ → R′ ARS(s0, s1, c0, c1), we
denote L ≡ h(L ′), S′ ≡ L ′ + R′, S ≡ h(S′). We
then have:∅ 	= L ⊆ S, supp(S′) = supp(S) ∈
[s0, s1], con f (r) = supp(S′)/supp(L ′) = supp(S)/sup
p(L) ∈ [c0, c1] and (L , S) ∈ NFCS (s0, s1, c0, c1),
where

NFCS (s0, s1, c0, c1) ≡ {(L , S) ∈ CS2 |
S ∈ FCS(s0, s1),

∅ 	= L ⊆ S, supp(S)/supp(L) [c0, c1]}.

Consider (L , S) ∈ NFCS(s0, s1, c0, c1). Thus, every
rule in equivalence classAR (L , S) has identical support
and confidence, supp(S), supp(S)/supp(L), respec-
tively. This fact considerably reduces the storage of the
support and confidence of frequent itemsets and associ-
ation rules.

(c) The following is a partitionof the setARS(s0, s1, c0, c1):

ARS(s0, s1, c0, c1)=�(L ,S)∈NFCS(s0,s1,c0,c1)AR(L , S).

As ARS⊆L1,⊆R1(s0, s1, c0, c1) ⊆ ARS(s0, s1, c0, c1),
it is straightforward to construct the following rough par-
tition on the rule set with constraintsARS⊆L1,⊆R1(s0, s1
, c0, c1).

Proposition 1 (Roughly partitioning the constrained asso-
ciation rule set). We have

ARS⊆L1,⊆R1(s0, s1, c0, c1)

= �(L ,S)∈NFCS(s0,s1,c0,c1)AR⊆L1,⊆R1(L , S),

where AR⊆L1,⊆R1(L , S) ≡ {r : L ′ → R′ ∈ AR(L , S) |
L ′ ⊆ L1, R′ ⊆ R(t)

1 }.
Based on this rough partition (obtained from the lat-

tice FLCG of frequent closed itemsets), association rules
with constraints can be discovered in two steps. For each
pair (L , S) ∈ NFCS (s0, s1, c0, c1), the rules r : L ′ →
R′ in AR(L , S) are non-repeatedly listed using the two

123

266 Vietnam J Comput Sci (2017) 4:261–277

Object Items

1 a c e g i

2 a c f h i
3 a d f h i
4 b c e g i
5 a c e g i
6 b c e g i
7 a c f h i

(a) Example database

acegi2/7

ae, ag
bcegi2/7

b
acfhi2/7

cf, ch

cegi4/7

e, g

afhi3/7

f, h

aci4/7

ac

ai5/7

a

adfhi1/7

d

ci6/7

c

i7/7

i

(b) The lattice of frequent closed itemsets (underlined) together with their
generators (italicized) and support (superscripted).

Fig. 1 a Example database and b lattice of frequent closed itemsets and their generators

derivation functions FS(L), FS(S\L ′)L ′ proposed by [9].
Then, we check whether the rules satisfy two constraints,
L ′ ⊆ L1 and R′ ⊆ R1. The rules passed over by the
check are retained. The corresponding algorithm is named
P P_M AR_Max SC_2. It isworth noting that there aremany
instances of constraints where the corresponding constrained
rule set ARS⊆L1,⊆R1(s0, s1, c0, c1) is empty, as well as
many closed itemset pairs (L , S) ∈ NFCS(s0, s1, c0, c1) in
which the corresponding classeswith constraintsAR⊆L1,⊆R1

(L , S) are empty. Moreover, despite the fact that ∅ 	=
AR⊆L1,⊆R1(L , S) ⊆ AR(L , S), the size of AR(L , S)

might remain prohibitive and contain numerous redundant
rules.

Example 1 (Illustrating the weakness of P P_M AR_Max
SC_2). In the remainder of the paper, we always consider the
database T in Fig. 1a. Given s1 = 5/7, c0 = 1/3 and c1 =
0.9. For s0 = 1/7, Charm_L and MinimalGenerators
produce the lattice of frequent closed itemsets and their
generators and support shown in Fig. 1b. We can see that
P P_M AR_Max SC_2 exploits |NFCS(s0, s1, c0, c1)| =
19 rule classes andgenerates 302 rules inARS(s0, s1, c0, c1);
however, it is unaware that these rules only satisfy the con-
straints of support and confidence.

(a) For the maximum single constraints of L1 = c, R1 =
i,ARS⊆L1,⊆R1(s0, s1, c0, c1) = ∅!

(b) Given L1 = ceg, R1 = ai , there are only two (per
19) rule classes with respect to two pairs, (cegi, acegi)
and (ci, aci) , that contain association rules satisfying

the constraints, and their cardinality is only 12+2=14
(per 302)! Moreover, AR (cegi, acegi) includes 45
rules but we can only retrieve 12 of these desired rules,
AR⊆L1,⊆R1 (cegi, acegi) = {e → a, e → ai, ce →
a, ce → ai, eg → a, ge → ai, ceg → a, ceg →
ai, g → a, g → ai, cg → a, cg → ai}!

(c) For L1 = a, R1 = c f hi , there are only two rule classes
containing the rules with constraints AR⊆L1,⊆R1(ai,
ac f hi) = {a → c f, a → c f i, a → c f h, a →
c f hi, a → ch, a → chi} andAR⊆L1,⊆R1(ai, a f hi) =
{a → f, a → f i, a → h, a → hi, a → f h, a →
f hi}.

To overcome the above shortcomings, we propose two
necessary condition groups. The first group addresses the
nonemptiness of ARS⊆L1,⊆R1(s0, s1, c0, c1). The second
groupeliminates the specificpairs (L , S) ∈ NFCS(s0, s1, c0
, c1) forwhich the corresponding rule classAR⊆L1,⊆R1(L , S)

is empty. Next, we describe the rules of AR⊆L1,⊆R1(L , S)

(for pairs (L , S) ∈ NFCS (s0, s1, c0, c1) that pass the
above condition) via AR+

⊆L1,⊆R1
(L , S). Based on this

description, a smoother partition ofARS⊆L1,⊆R1(s0, s1, c0,
c1) is proposed.

3.1.2 Necessary conditions for the nonemptiness of
ARS⊆L1,⊆R1(s0, s1, c0, c1) and AR⊆L1,⊆R1(L , S)

We denote the following:

.S∗
1 ≡ L1 ∪ R1, C1 ≡ L1,

123

Vietnam J Comput Sci (2017) 4:261–277 267

s∗
0 ≡ max(s0; c0.supp(C1)), s∗

1 ≡ s1;
.S′ ≡ L ′ + R′, S ≡ h(S′), SS∗

1
≡ S ∩ S∗

1 ,

GS∗
1
(S) ≡ {Sk ∈ G(S) |Sk ⊆ S∗

1 }
.FCS⊆S∗

1
(s∗

0 , s∗
1) ≡ {SS∗

1
≡ S ∩ S∗

1 | S

∈ FCS(s∗
0 , s∗

1),GS∗
1
(S) 	= ∅};

. s′
0 ≡ s′

0(S) ≡ supp(S)/c1, s′
1 ≡ s′

1(S)

≡ min(1; supp(S)/c0),

L ≡ h(L ′), LC1 ≡ L ∩ C1 = L ∩ C1,

GC1(L) ≡ {Li ∈ G(L) | Li ⊆ C1}, FCS⊆C1(s
′
0, s′

1)

≡ {LC1 ≡ L ∩ C1|L ∈ FCS(s′
0, s′

1),GC1(L) 	= ∅};
.FS⊆LC1 ≡ {L ′ ⊆ LC1 | L ′ 	= ∅, h(L ′) = h(LC1)};
. R∗

1 ≡ R∗
1 (L ′) ≡ (S ∩ R1)\L ′, FS

(
SS∗

1
\L ′)

L ′,⊆R∗
1

≡ {R′ |∅ 	= R′ ⊆ R∗
1 , h(L ′ + R′) = h(SS∗

1
)};

.NFCS⊆L1,⊆R1(s0, s1, c0, c1) ≡ {(L , S) ∈ CS2|SS∗
1

∈ FCS⊆S∗
1
(s∗

0 , s∗
1), ∅ 	= L ⊆ S, LC1 ∈ FCS⊆C1(s

′
0, s′

1)};
.∀(L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1),

AR+
⊆L1,⊆R1

(L , S) ≡ {r : L ′ → R′ | L ′ ∈ FS⊆LC1 ,

R′ ∈ FS(SS∗
1
\L ′)L ′,⊆R∗

1
}.

Proposition 2 (Necessary conditions for the nonemptiness
of ARS⊆L1,⊆R1(s0, s1, c0, c1),AR⊆L1,⊆R1(L,S), and a
different representation of AR⊆L1,⊆R1(L,S)).

(a) If r : L ′ → R′ ∈ ARS⊆L1,⊆R1(s0, s1, c0, c1) 	= ∅:

– (L , S) ∈ NFCS(s0, s1, c0, c1), r ∈ AR⊆L1,⊆R1

(L , S) 	= ∅ with L = h(L ′), S = h(L ′ + R′) and
– the following necessary conditions are satisfied:

s∗
0 ≤ s∗

1 , supp(S∗
1) ≤ s∗

1 . (H1)

Henceforth, we always assume that (H1) is satisfied.
(b) For each (L , S) ∈ NFCS(s0, s1, c0, c1),

– For any r : L ′ → R′ ∈ AR⊆L1,⊆R1(L , S) 	= ∅:

SS∗
1

∈ FCS⊆S∗
1
(s∗

0 , s∗
1), LC1 ∈ FCS⊆C1(s

′
0, s′

1),

L ′ ∈ FS⊆LC1 , R′ ∈ FS(SS∗
1
\L ′)L ′,⊆R∗

1
.

Then, (L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1) 	= ∅

and AR⊆L1,⊆R1(L , S) ⊆ AR+
⊆L1,⊆R1

(L , S).

– AR⊆L1,⊆R1(L , S) ⊆ ARS⊆L1,⊆R1(s0, s1, c0, c1).

(c) For each (L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1) 	=
∅, ∃L ′ ∈ FS⊆LC1

and

AR+
⊆L1,⊆R1

(L , S) = AR⊆L1,⊆R1(L , S).

Proof (a) If r : L ′ → R′ ∈ ARS⊆L1,⊆R1(s0, s1, c0, c1),
we have L ′, R′ 	= ∅ , L ′ ∩ R′ = ∅, S′ ≡ L ′ + R′, L ′ ⊆
L1, R′ ⊆ R1.
Denote L ≡ h(L ′), S ≡ h(L ′ + R′). Because L ′ 	= ∅,

∅ 	= L ⊆ S (if L = ∅, ∅ ⊂ L ′ ⊆ h(L ′) ⊆ h(L) = ∅!,),
supp(S) = supp(S′) ∈ [s0, s1], supp(S)/supp(L) =
supp(S′)/supp(L ′) = con f (r) [c0, c1]. Thus, (L , S) ∈
NFCS (s0, s1, c0, c1) and r ∈ AR⊆L1,⊆R1(L , S).

Moreover, S′ ⊆ S∗
1 , L ′ ⊆ L ∩ C1 = LC1 ⊆

C1, supp(C1) ≤ supp(L ′), supp(C1).c0 ≤ supp(L ′).c0
supp(S′) and s∗

0 ≤ supp(S′) = supp(S) ≤ s∗
1 . Hence,

s∗
0 ≤ s∗

1 and supp(S∗
1) ≤ supp(S′) ≤ s∗

1 .

(b) For every (L , S) ∈ NFCS(s0, s1, c0, c1), ∀r : L ′ →
R′ ∈ AR⊆L1,⊆R1(L , S), we have ∅ 	= L ⊆
S, L ′, R′ 	= ∅ , L ′ ∩ R′ = ∅, h(L ′) = L , h(S′) =
S, s0 ≤ supp(S′) = supp(S) ≤ s1, c0 ≤
supp(S)/supp(L) ≤ c1 and R′ ⊆ R1, L ′ ⊆ L1.

It is easy to know that L ′ ∈ F S⊆LC1 as L ′ ⊆ LC1 ⊆ L
and L = h(L ′) = h(LC1). In addition, supp(S)/c1 ≤
supp(L ′) = supp(L) ≤ supp(S)/c0, s′

0 ≤ supp(L ′) ≤
s′
1, S ⊇ SS∗

1
⊇ S′ ≡ L ′ + R′ and supp(C1).c0 ≤

supp(L ′).c0 ≤ supp(S′) = supp(S). Then, s∗
0 ≤

supp(S) ≤ s∗
1 and h(S′) = h(SS∗

1
) = S.

Take Li ∈ G(L ′) ⊆ G(L), Sk ∈ G(S′) ⊆ G(S)

(as G(L ′) 	= ∅ , G(S′) 	= ∅ [8]). We have Li ⊆
L ′ ⊆ C1, Sk ⊆ S′ ⊆ S∗

1 , i.e., GC1(L) 	= ∅ , GS∗
1
(S) 	=

∅ , LC1 ∈ FCS⊆C1(s
′
0, s′

1), SS∗
1

∈ FCS⊆S∗
1
(s∗

0 , s∗
1) or

(L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1).
Moreover, the fact that R′ = S′\L ′ ⊆ (S\L ′)∩R1 = R∗

1
means that R′∈FS(SS∗

1
\L ′)L ′

,⊆R∗
1
, r ∈ AR+

⊆L1,⊆R1
(L , S)

and AR⊆L1,⊆R1(L , S) ⊆ AR+
⊆L1,⊆R1

(L , S).
As c0 ≤ con f (r) = supp(S′)/supp(L ′) = supp(S)/

supp(L) ≤ c1, we have r ∈ ARS⊆L1,⊆R1(s0, s1, c0, c1).
Therefore, AR⊆L1,⊆R1(L , S) ⊆ ARS⊆L1, ⊆R1(s0, s1,
c0, c1).

(c) Indeed, for (L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1), we
have LC1 ∈ FCS⊆C1(s

′
0, s′

1), ∃Li ∈ G(L) : Li ⊆ C1

with L ′ ≡ Li , ∅ ⊂ Li ⊆ L ′. Then, Li = L ′ ⊆
LC1 ⊆ L , L = h(Li) = h(L ′) = h(LC1). Hence,
L ′ ∈ FS⊆LC1

	= ∅.

As (L , S) ∈ NFCS⊆L1, ⊆R1(s0, s1, c0, c1) ⊆ NFCS
(s0, s1, c0, c1), statement (b) shows that AR⊆L1,⊆R1(L , S)

⊆ AR+
⊆L1,⊆R1

(L , S). Thus, we must prove the reverse, i.e.,

AR+
⊆L1,⊆R1

(L , S) ⊆ AR⊆L1,⊆R1(L , S).

In fact, because∀r : L ′→R′ ∈ AR+
⊆L1,⊆R1

(L , S), L ′, R′
	= ∅ , L ′ ∈ FS⊆LC1

, R′ ∈ FS(SS∗
1
\L ′)L ′,⊆R∗

1
, we have

L ′ ⊆ LC1 ⊆ C1, h(L ′) = h(LC1), R′ ⊆ R∗
1 = (S ∩

R1)\L ′ R1, L ′ ∩ R′ = ∅, h(L ′ + R′) = h(SS∗
1
). Because

123

268 Vietnam J Comput Sci (2017) 4:261–277

Fig. 2 The M FC S_FromLattice procedure

SS∗
1

∈ FCS⊆S∗
1
(s∗

0 , s∗
1), LC1 ∈ FCS⊆C1(s

′
0, s′

1), ∃Li ∈
G(L) : Li ⊆ C1, ∃Sk ∈ G(S) : Sk ⊆ S∗

1 , i.e., Li ⊆ LC1 ⊆
L , L = h(Li) = h(LC1) = h(L ′) and Sk ⊆ SS∗

1
⊆ S, S =

h(Sk) = h(SS∗
1
) = h(S′). Then, r ∈ AR⊆L1,⊆R1(L , S), i.e.,

AR+
⊆L1,⊆R1

(L , S) ⊆ AR⊆L1,⊆R1(L , S) 	= ∅. ��
Consequence 1 (The necessary and sufficient condition for
the nonemptiness of ARS⊆L1,⊆R1(s0, s1, c0, c1)).

(a) If at least one condition of (H1) is violated, then
ARS⊆L1,⊆R1(s0, s1, c0, c1) = ∅.

(b) r :L ′→R′ ∈ ARS⊆L1,⊆R1(s0, s1, c0, c1) 	= ∅ ⇔ there
exists (L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1), L ′ ∈
FS⊆LC1

, R′ ∈ FS(SS∗
1
\L ′)L ′,⊆R∗

1
, and r : L ′ → R′ ∈

AR+
⊆L1,⊆R1

(L , S) 	= ∅ .

Based on Proposition 2 and Consequence 1, we thus have
a partition of ARS⊆L1,⊆R1(s0, s1, c0, c1) that is smoother
than that in Proposition 1.

3.1.3 Smoothly partitioning the association rule set with
maximum single constraints

Theorem 1 (Smoothly partitioning the constrained associa-
tion rule set) Assuming that (H1) is satisfied, we have

ARS⊆L1,⊆R1(s0, s1, c0, c1)

= �(L ,S)∈NFCS⊆L1, ⊆R1 (s0,s1,c0,c1)AR+
⊆L1,⊆R1

(L , S).

This partition establishes a foundation for independently
mining each equivalence rule class AR+

⊆L1,⊆R1
(L , S).

Thus, it represents an original instance of using equivalence
relations to obtain algorithms in parallel and distributed
environments.

Example 2 (Illustrating the emptiness of ARS⊆L1,⊆R1(s0,
s1, c0, c1) when at least one necessary condition given in
(H1) is not satisfied, and that of AR⊆L1,⊆R1(L , S) when
(L , S) /∈ NFCS⊆L1, ⊆R1(s0, s1, c0, c1)).

(a) In Example 1(a), ARS⊆L1,⊆R1(s0, s1, c0, c1) = ∅.
Indeed, S∗

1 = ci, C1 = c, s∗
1 = 5/7, supp(S∗

1) =
6/7. As the condition supp(S∗

1) ≤ s∗
1 is violated, we

immediately conclude that ARS⊆L1,⊆R1(s0, s1, c0, c1)
= ∅ without generating |ARS(1/7, 5/7, 1/3, 0.9) =
302 rules and then eliminating all of them.

(b) For the constraints given in Example 1(b), we first find
that most of the frequent closed itemset pairs (L , S) of
NFCS(s0, s1, c0, c1) are redundant, i.e., they are not in
NFCS⊆L1, ⊆R1(s0, s1, c0, c1) = {(cegi, acegi) , (ci,
aci)}. For example, there are 17 redundant pairs (per
19) that contain no association rules satisfying the con-
straints. Let us consider pair (L , S) = (cegi, bcegi)
in NFCS(s0, s1, c0, c1). It is easy to see that S ∈
FCS(s∗

0 , s∗
1) as s∗

0 = 1.33/7 supp(S) = 2/7 ≤
s∗
1 = 5/7. However, because G(S) = {b} and {b}

� SS∗
1

= S ∩ S∗
1 = cegi , the necessary condition

SS∗
1

∈ FCS⊆S∗
1
(s∗

0 , s∗
1) is not satisfied, i.e., (L , S) /∈

NFCS⊆L1,⊆R1(s0, s1, c0, c1)). Hence, we immediately
conclude that AR⊆L1,⊆R1(cegi, bcegi) = ∅ with-
out listing all the rules of AR(cegi, bcegi). If the
necessary condition tests are executed for all pairs of
NFCS⊆L1,⊆R1(s0, s1, c0, c1), we can prune 17 rule
classes, i.e., we avoid the generation of 254(302 −
|AR(cegi, acegi)| − |AR(ci, aci)| = 302 − 45 −
3) (302 − |AR(cegi, acegi)| − |AR(ci, aci)| =
302−45−3) corresponding redundant rule candidates.
Observing the satisfied rule classes, we see that they
retain many redundant candidates that are duplicates or
were missed by the constraints. Through Example 3, we
will show that all the redundant rule candidates can be
completely pruned.

The M FC S_FromLattice(LCGs, C1, s′
0, s′

1)procedure sho-
wn in Fig. 2 finds the classFCS⊆C1(s

′
0, s′

1) of frequent closed
itemsets satisfying the constraints from LCGs—the sub lat-
tice of LCG with root S. To determine FCS⊆S∗

1
(s∗

0 , s∗
1), we

call the procedure with the input parametersLCG, S∗
1 , s∗

0 and

123

Vietnam J Comput Sci (2017) 4:261–277 269

s∗
1 . More formally, FCS⊆S∗

1
(s∗

0 , s∗
1) = M FC S_FromLat

tice(LCG, S∗
1 , s∗

0 , s∗
1). For example, if S = ac f hi , the sub

lattice LCGs is drawn by the lines of red color in Fig. 1b.
It is important to note that for (L , S) ∈ NFCS⊆L1,⊆R1(s0,

s1, c0, c1), the two sides of each rule r : L ′ → R′ of rule class
AR+

⊆L1,⊆R1
(L , S) = {r : L ′ → R′| L ′ ∈ FS⊆LC1 , R′ ∈

FS(SS∗
1
\L ′)L ′,⊆R∗

1
} havenot yet been explicitly represented,

and their generation can contain numerous duplicates and
redundant candidates.

3.2 Non-repeatedly producing all association rules
satisfying the constraints in each class
AR+

⊆L1,⊆R1
(L, S)

For (L , S) ∈ NFCS⊆L1,⊆R1(s0, s1, c0, c1), based on
the two generator sets G(L) and G(S), we propose a
unique, explicit representation for the constrained rules
inAR+

⊆L1,⊆R1
(L , S). This representation leads to the dis-

tinct and complete production of all the constrained rules
in each rule class, which is described in the algorithm
M AR_Max SC_OneClass.

3.2.1 The unique structure and representation of the
equivalence class of frequent sub itemsets restricted
on X with upper bound Z1

The unique structure and representation of the equivalence
class of frequent sub itemsets restricted on X with upper
bound Z1 proposed in this section are used to make the
unique structure and representation for the right-hand R′ ∈
FS(S\L ′)L ′,⊆R∗

1
and left-hand sides L ′ ∈ FS⊆LC1

of the

rules r : L ′→R′ in each classAR+
⊆L1,⊆R1

(L , S).
For any X, Y, Z1 A,

X ∩ Y = ∅, ∅ 	= Z1 ⊆ Y (H2)

(where Z1 is an upper bound, X is a restriction). Let us call,

.FS(Y)X,⊆Z1 ≡ {R′|∅R′ ⊆ Z1, h(X + R′) = h(X + Y)}

(Note that if X ∩ Y = ∅ and Z1 ⊆ Y , then the necessary
condition toFS(Y)X,⊆Z1 	= ∅ is that Y 	= ∅, Z1 	= ∅, X ∩
Z1 = ∅, with Y = ∅ or or Z1 = ∅ or X ∩ Z1 	= ∅ , we
have FS(Y)X,⊆Z1 ≡ ∅.)

.Rmin ≡ Minimal{Rk ≡ Sk\X, Sk ∈ G(X + Y), Rk ⊆
Z1}, Rk

U ≡ UR j ∈Rmin, j≤k R j , RU,k ≡
{

Rk−1
U \Rk, i f k ≥ 2

∅, i f k = 1
,

with Rk ∈ Rmin, R−,k ≡ Z1\Rk
U , Then, we denote

FS∗(Y)X,⊆Z1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{R′ ≡ Rk+R′
k+R∼

k |Rk ∈ Rmin,

R′
k ⊆ RU,k, R∼

k ⊆ R−,k,

(R j 	⊂ Rk+R′
k,∀R j∈Rmin : 1≤ j<k), R′ 	= ∅}, i f Rmin 	= ∅

∅ i f Rmin = ∅

(∗)

Proposition 3 (Uniquely representing frequent itemsets in
FS(Y)X,⊆Z1 	= ∅ by FS∗(Y)X,⊆Z1). ∀X, Y, Z1 ⊆ A :
X ∩ Y = ∅, ∅ 	= Z1 ⊆ Y :

(a) The frequent itemsets in FS∗(Y)X,⊆Z1 are distinctly
enumerated.

(b) FS(Y)X,⊆Z1 = FS∗(Y)X,⊆Z1 .

(c) FS∗(Y)X,⊆Z1 	= ∅ ⇔ GX+Z1(X + Y) 	= ∅.
(H3)

Proof (a) We establish this by the method of contradiction.
Assume that there exist two identical sets R′1, R′2 in
FS∗(Y)X,⊆Z1 , so that R′1 = R′2, i.e.,∃k2 > k1 ≥
1, R′ j ≡ Z0 + Rk j + R′

k j
+ R∼

k j
, Rk j ∈ Rmin, R′

k j
⊆

RU,k j , R∼
k j

⊆ R−,k j ,∀ j = 1, 2. Then, Rk1 ⊆ Rk1 +
R′

k1
+ R∼

k1
= Rk2 + R′

k2
+ R∼

k2
Because Rk1 ∩ R∼

k2
⊆ Rk1 ∩

R−,k2 ⊆ Rk1 ∩ R−,k1 = ∅ and Rk1 , Rk2 , are two different
minimal elements of Rmin, we have Rk1 ⊂ Rk2 + R′

k2
,

which contradicts the selection of R′
k2

(∗).
(b) . “⊆”: First, we consider the case that Rmin 	= ∅.
For R′FS(Y)X,⊆Z1 	= ∅, R′ ⊆ Z1, R′ 	= ∅. As R′ ⊆
Z1 ⊆ Y, Y ∩ X = ∅, we have R′ ∩ X = ∅ , S′ ≡
X + R′, h(S′) = h(X + Y), X ⊆ S′ ⊆ X + Y .
From S′ 	= ∅, take Sk ∈ G(S′) ⊆ G(X + Y) (see [8]),
Sk ⊆ S′, we have Rk ≡ Sk\X ⊆ S′\X = R′ ⊆ Z1.

Let B ≡ {Ri ≡ Si\X : Si ∈ G(S′), Ri ⊆ Z1}, C ≡
{Ri ≡ Si\X : Si ∈ G(X + Y), Ri ⊆ Z1}. Thus, Rk ∈ B.
Since B, C are finite and∅ 	= B ⊆ C , there exists aminimal
set Rmin,S′ ≡ Minimal(B) 	= ∅, Rmin ≡ Minimal(C) 	=
∅. Thus, we always acquire the minimum index k of sets Ri

in Rmin,S′ Minimal(B).
On the contrary, assume that Rk /∈ Rmin. Then, ∃R j ∈

Rmin : R j ⊂ Rk , with R j ≡ S j\X, S j ∈
G(X + Y) and h(S j) = h(X + Y), S j ⊆ X ∪ S j =
X + R j ⊆ X + Rk ⊆ X + R′ = S′ ⊆ X +Y, h(X +Y) =
h(S j) = h(S′). Hence, S j ∈ G(S′), R j ⊆ S′\X =
R′ ⊆ Z1, R j ∈ B ∩ Rmin. We then have R j ∈ Rmin,S′
and R j ⊂ Rk ∈ Rmin,S′ . This is impossible as the
assumption is that Rk is the minimal set in B! Therefore,
Rk ∈ Rmin 	= ∅.

This implies that, if Rmin = ∅, FS(Y)X,⊆Z1 =
∅FS∗(Y)X,⊆Z1 .

We also have S′ = Sk + S′′
k , for S′′

k ≡ S′\Sk .
It follows from S′ ⊇ X that S′ = X + Rk + R′

k +
R∼

k = X + R′, with R′ ≡ Rk + R′
k + R∼

k , Rk ≡
Sk\X Rmin, R′

k ≡ (S′′
k \X) ∩ Rk

U = [(S′\X)\Sk] ∩

123

270 Vietnam J Comput Sci (2017) 4:261–277

Rk−1
U ⊆ Rk−1

U \Sk ⊆ Rk−1
U \Rk ≡ RU,k (as Rk ∩

[(S′\X)\Sk] ⊆ Rk\Sk = ∅), R∼
k ≡ (S′′

k \X)\Rk
U ⊆ (S′\X)

\Rk
U ⊆ Z1\Rk

U ≡ R−,k .
We now suppose that ∃R j ≡ S j\X Rmin : 1 ≤ j < k and

R j ⊂ Rk + R′
k . Thus, h(S j) = h(X + Y), R j ⊆ Z1, S j ⊆

X ∪ S j = X + R j ⊆ X + Rk + R′
k ⊆ X + R′ ≡ S′ ⊆

X + Y, h(X + Y) = h(S j) = h(S′). Then, S j ∈ G(S′)
and R j ∈ B ∩ Rmin. Hence, R j ∈ Rmin,S′ , i.e., j < k:
a contradiction on how to choose index k! We can conclude
that R′ ∈ FS∗(Y)X,⊆Z1 .

“⊇”: For any R′ ∈ FS∗(Y)X,⊆Z1 , R′ = Rk + R′
k + R∼

k
where Rk ≡ Sk\X ∈ Rmin, Sk ∈ G (X + Y) , h(Sk) =
h(X + Y), Rk ⊆ Z1, R′ 	= ∅. Furthermore, R′

k ⊆ RU,k ⊆
Z1, R∼

k ⊆ R−,k ⊆ Z1. Then, R′ ⊆ Z1 ⊆ Y and R′ ∩ X =
∅. Otherwise, because X + Y ⊇ X + R′ ⊇ X + Rk = X ∪
Sk ⊇ Sk , we have h(Sk) = h(X + R′) = h(X + Y).
Hence, ′ FS(Y)X,⊆Z1 .

(c)+Rmin 	=∅ ⇔∃Sk∈G(X+Y) : Rk ≡ Sk\X ⊆ Z1 (c.1)

⇔ ∃Sk∈G(X+Y):Sk⊆ X+Z1(orGX+Z1(X+Y)) 	=∅ (c.2)

In fact, if Sk\X ⊆ Z1, Sk ⊆ X ∪ Sk = X + Rk ⊆ X + Z1

(as X ∩ Z1 = ∅). In contrast, if Sk ⊆ X + Z1, Sk\X ⊆ Z1.
+ If FS∗(Y)X,⊆Z1 	= ∅ , Rmin 	= ∅ . We immediately
have (c.2).
+ Suppose that (c.2) is true. Thus, Rmin 	= ∅. For R∗ ≡
Z1, we have ∅ 	= R∗ ⊆ Y . Take an arbitrary Rk ≡
Sk\X ∈ Rmin : Sk ∈ G(X + Y), Sk ⊆ X + Y, Rk ⊆
Z1 = R∗. Then, Sk ⊆ Sk∪X = X+Rk ⊆ X+R∗ ⊆ X+Y.

This implies that h(X +Y) = h(Sk) = h(X + R∗). Hence,
∃R∗ ∈ FS(Y)X,⊆Z1 = FS∗(Y)X,⊆Z1 	= ∅. ��
This concludes the proof of Proposition 3, which implies

the following remark.

Remark 2 (a) If Rmin 	= ∅, FS(Y)X,⊆Z1 	= ∅ ≡
FS∗(Y)X,⊆Z1 .

(b) GX+Z1(X + Y) 	= ∅ ⇔ ∃Sk ∈ G(X + Y) : Sk ⊆
X + Z1 ⇔ Rmin 	= ∅.

(c) Let us consider ∀R′ ∈ FS∗(Y)X,⊆Z1 such that R′ ≡
Rk + R′

k + R∼
k . If ∃R′ = ∅, then ∃Sk ∈ G(X +

Y) : Rk ≡ Sk\X = ∅. Therefore, Sk ⊆ X ⊆ X + Y
and h(X + Y) = h(X) = h(Sk). Furthermore, Rmin ≡
{R1 ≡ ∅}, RU,1 = R1

U = ∅, R−,1 ≡ Z1 	= ∅

and R′ = R∼
1 ⊆ R−,1. Hence, R′ is empty if

h(X + Y) = h(X) and Rmin = {∅ }. Then, R′ ∈
FS∗(Y)X,⊆Z1 ⇔ ∅ ⊂ R′ ⊆ Z1 	= ∅ .

For practical purposes, when computing Rmin, we consider
the following two cases:

• If Rmin = {∅ }, then RU,1 = R1
U = ∅, R−,1 ≡ Z1 	= ∅

and

FS∗(Y)X,⊆Z1 ≡ {R′| ∅ 	= R′ ≡ R∼
1 , R∼

1 ⊆ Z1}

= {R′| ∅ R′ ⊆ Z1}

• If Rmin = {∅ }:

FS∗(Y)X,⊆Z1 ≡ {R′ ≡ Rk + R′
k + R∼

k | Rk ∈ Rmin,

R′
k ⊆ RU,k, R∼

k ⊆ R−,k, (R j 	⊂ Rk + R′
k,

∀R j ∈ Rmin : 1 ≤ j < k)}.

It is worth noting that, in this case, we are not required to
check whether R′ 	= ∅ in generating R′ because it is always
true.

(d) (The advantage of (∗) for exponentially decreasing
redundancy). Assume that we are currently forming the
sets R′. Starting with Rk , we grow subsets R′

k ⊆ RU,k

and then R∼
k ⊆ R−,k to complement R′; if (∗) is incor-

rect, it is unnecessary to consider the approximately
(2|RU,k\R′

k | − 1) supersets R′′ of R′
k(R′

k ⊂ R′′ ⊆ RU,k)

and add all (2|R−,k |) subsets R∼
k of R−,k to R′. Essen-

tially, we have eliminated approximately (2|RU,k\R′
k | −

1).(2|R−,k |) redundant subset candidates for R′. Next,
we consider the remaining sets R′′

k ⊆ RU,k (such that
R′

k 	⊂ R′′
k ⊆ RU,k) or the subsequent sets Rk in Rmin.

Using the necessary and sufficient condition (*), we can
perfectly eliminate duplicates when generating the rules
r : L ′ → R′ in each class AR⊆L1, ⊆R1(L , S) based
solely on minimal sets or generators. Due to their low
cardinality and size, the algorithms applied during this
generation are fast and efficient.

(e) (Modifying the computation of the upper bound sets
RU,k and R−,k of R′

k and R∼
k , respectively). We can see

that, for each k > 1, the operations of Rk−1
U = Rk−2

U ∪
Rk−1, RU,k ≡ Rk−1

U \Rkand R−,k ≡ Z1\Rk
U must be

executed on sets that are potentially non-disjoint. To con-
serve calculation time, it is important to observe that

RU,k = [(Rk−2
U \Rk−1) + Rk−1]\Rk

= (RU,k−1 + Rk−1)\Rk,

R−,k = R−,k−1\Rk,∀k ≥ 2 and RU,1

≡ ∅, R−,1 ≡ Z1\R1.

In otherwords, RU,k=
{

(RU,k−1+Rk−1)\Rk, i f k≥2
∅, i f k=1

,

R−,k =
{

R−,k−1\Rk, i f k ≥ 2
Z1\R1, i f k = 1

.

Thus, for each k ≥ 2, we compute the disjoint union
RU,k = RU,k−1 + Rk−1 where RU,k−1 ⊆ Rk−2

U and the dif-
ference R−,k = R−,k−1\Rk where R−,k−1 ⊆ Z1, Rk ⊆ Rk

U .
It is readily apparent that this new calculation is faster than
the old one.

123

Vietnam J Comput Sci (2017) 4:261–277 271

For special values of Y, X and Z1 in FS(Y)X,⊆Z1 , we
have two structures, FS⊆LC1 and FS(SS∗

1
\L ′)L ′,⊆R∗

1
.

3.2.2 Structure and unique representation of the FS⊆LC1

and FS(SS∗
1
\L ′)L ′

,⊆R∗
1

itemsets

Suppose that (L , S) ∈NFCS⊆L1, ⊆R1(s0, s1, c0, c1) :
SS∗

1
∈FCS⊆S∗

1
(s∗

0 , s∗
1), ∅	= L ⊆ S, LC1 ∈ FCS⊆C1(s

′
0, s′

1)

and L’ ∈ FSC0⊆LC1 . As LC1 ∈ FCS⊆C1(s
′
0, s′

1), we have
GC1(L) 	= ∅, ∃Li ∈ G(L) : ∅ ⊆ Li ⊆ LC1 and LC1 	= ∅.

Corollary 1 ∀ L , C1 ⊆ A, if LC1 ≡ L ∩ C1 	= ∅ and
GC1(L) 	= ∅, then G(LC1) = GC1(L).

Structure and unique representation of the itemsets of
FS⊆LC1 For Y ≡ LC1 , X ≡ ∅ and Z1 = LC1 . As
LC1 ∈ FCS⊆C1(s

′
0, s′

1), we know from Corollary 1 that
GC1(L) = G(LC1) 	= ∅ and ∀Li ∈ GC1(L) : ∅ ⊂ Li ⊆
LC1 . Thus,

FS(LC1)∅, ⊆LC1
= {L ′| ∅ 	= L ′ ⊆ LC1 , h(L ′) = h(LC1)}
≡ FS⊆LC1

.

Based on the representation of Rmin in FS∗(Y)X,⊆Z1 ,

Kmin ≡ Minimal{Li , Li ∈ GC1(L)} = GC1(L), Li
U ≡

∪LkGC1 (L),k≤i Lk ,LU,i

{
Li−1

U \Li , i f i ≥ 2
∅, i f i = 1

, L−,i ≡ LC1/Li
U

and

FS∗⊆LC1
≡ { L ′ ≡ Li + L ′

i + L∼
i |Li ∈ GC1(L),

L ′
i ⊆ LU,i , L∼

i ⊆ L−,i , (Lk 	⊂ Li + L ′
i ,

∀Lk ∈ GC1(L) : 1 ≤ k < i), L ′ 	= ∅ }. (1)

Because GC1(L) 	= ∅ and LC1 	= ∅, it follows from Propo-
sition 3(c) that FS∗⊆LC1

	= ∅.

Structure and unique representation of the itemsets of
FS(SS∗

1
\L ′)L ′

,⊆R∗
1
For Y ≡SS∗

1
\L ′, X = L ′, Z1= R∗

1 =
(S∩ R1)\L ′ :Z1 ⊆ Y . Based on the fact that SS∗

1
∈ FCS⊆S∗

1

(s∗
0 , s∗

1) and Corollary 1, we have G
(

SS∗
1

)
= GS∗

1
(S) 	= ∅.

Then,

FS(SS∗
1
\L ′)L ′,⊆R∗

1
≡ {R′|∅ 	= R′ ⊆ R∗

1 , h(L ′ + R′)
= h(SS∗

1
)}.

Wedenote Rmin≡Minimal{Rk ≡Sk\L ′, Sk ∈GS∗
1
(S), Rk ⊆

R∗
1}, Rk

U ≡ ∪R j ∈Rmin, j≤k R j ,, RU,k ≡
{

Rk−1
U \Rk, i f k ≥ 2

∅, i f k = 1
,

R−,k ≡ R∗
1\(L ′ + Rk

U) = (S ∩ R1)\(L ′ + Rk
U) and

FS∗(SS∗
1
\L ′)L ′,⊆R∗

1
≡ {R′ ≡ Rk + R′

k + R∼
k |Rk ∈ Rmin,

R′
k ⊆ RU,k, R∼

k ⊆ R−,k,(
R j 	⊂ Rk + R′

k,∀R j ∈ Rmin : 1 ≤ j < k
)
, R′ 	= ∅}.

(2)

By Proposition 3(c), FS∗(SS∗
1
\L ′)L ′,⊆R∗

1
	= ∅ ⇔ [GL ′∪R1

(S) 	= ∅ and (S ∩ R1)\L ′ 	= ∅]. In fact, for ∀Sk ∈ G(S),
we have Sk ⊆ L ′ + (S ∩ R1) \L ′ = (S ∩ R1) L ′ =
S ∩ (

L ′ ∪ R1
) ⇔ Sk ⊆ L ′ ∪ R1 as Sk ⊆ S.

The following is a consequence of Proposition 3.
Consequence 2 (Unique representation and distinct gener-
ation of the two sides of the rules in AR+

⊆L1, ⊆R1
(L , S)).

∀(L , S) ∈ NFCS⊆L1, ⊆R1(s0, s1, c0, c1) :

(a) The itemsets in FS∗(SS∗
1
\L ′)L ′

,⊆R∗
1

and FS∗⊆LC1
are

generated distinctly.
(b) FS(SS∗

1
\L ′)L ′,⊆R∗

1
= FS∗(SS∗

1
\L ′)L ′

,⊆R∗
1
, F S⊆LC1

=
FS∗⊆LC1

.

(c) FS∗⊆LC1
	= ∅.

(d) ∀L ′FS∗⊆LC1
, then FS∗(SS∗

1
\L ′)L ′,⊆R∗

1
	= ∅ ⇔

[GL ′ ∪R1
(S) 	= ∅ and (S ∩ R1)\L ′ 	= ∅].

The general procedure M F S_Restrict Max SC(Y, X, Z1,

G(X + Y)) completely and distinctly generates the itemsets
of FS∗(Y)X,⊆Z1 (shown in Fig. 3)

FS∗(Y)X,⊆Z1

= M F S_Restrict Max SC (Y, X, Z1, G(X + Y)).

Based on Remark 2, we can add Lines 4–7 to the procedure.
Furthermore, at Line 21, we do not check if Rk+R′

k+ R∼
k 	=

∅ (because it is obvious). The special cases of this procedure
produce the results shown in Table 1.

In each rule class, cases 1 and 2 are used to dis-
tinctly enumerate the left-hand sides L’ of FS∗⊆LC1

and

the right-hand sides R′of FS∗(SS∗
1
\L ′)L ′

,⊆R∗
1
, respectively.

Moreover, cases 3 and 4 give us two efficient procedures
for generating L ′FS(L) and R′FS(S\L ′)L ′ in each class
AR(L , S) (used in [9]). They are also used to generate
the rules via the P P_M AR_Max SC_2 post-processing
approach as discussed in Sect. 3.1.1.

3.2.3 Structure and unique representation of rule class
AR+

⊆L1,⊆R1
(L , S)

For ∀(L , S) ∈ NFCS⊆L1, ⊆R1(s0, s1, c0, c1), let us denote

AR∗⊆L1, ⊆R1
(L , S) ≡ {r : L ′→R′| L ′ ∈ FS∗⊆LC1

,

R′ ∈ FS∗(SS∗
1
\L ′)L ′,⊆R∗

1
},

Su f f _F S∗⊆LC1
(S, R1) ≡ {L ′ ∈ FS∗⊆LC1

| GL ′∪R1(S) 	= ∅

and (S ∩ R1)\L ′ 	= ∅ }.

123

272 Vietnam J Comput Sci (2017) 4:261–277

Fig. 3 The M F S_Restrict Max SC procedure

Table 1 Special results of FS∗(Y)X,⊆Z1

Case Y X Z1 G(X + Y) Result set

1 LC1 ∅ LC1 G(LC1) FS∗⊆LC1

2 SS∗
1
\L ′ L ′ R∗

1 G(SS∗
1
) FS∗(SS∗

1
\L ′)L ′,⊆R∗

1

3 L ∅ A G(L) FS(L)

4 S\L ′ L ′ A G(S) FS(S\L ′)L ′

The following consequence is deduced from Consequence 2.

Consequence 3 (Necessary and sufficient conditions for the
nonemptiness of AR+

⊆L1, ⊆R1
(L , S) and its representation)

∀(L , S) ∈ NFCS⊆L1, ⊆R1(s0, s1, c0, c1):

(a) The rules in AR∗⊆L1,⊆R1
(L , S) are enumerated non-

repeatedly.

(b) AR+
⊆L1,⊆R1

(L , S) = AR∗⊆L1,⊆R1
(L , S).

(c) AR∗⊆L1,⊆R1
(L , S) 	= ∅ ⇔ Su f f _F S∗⊆LC1

(S, R1) 	=
∅.

(d) AR∗⊆L1,⊆R1
(L , S) = ∑

L′∈Su f f _F S∗⊆LC1
(S,R1)

{r : L
′ →

R
′ : R

′ ∈ FS∗(SS∗
1
\L ′)L ′

,⊆R∗
1
}.

Remark 3 For FS∗(SS∗
1
\L ′)L ′,⊆R∗

1
, if S ≡ L ∈ G(L), ∃!L ′

≡ L ∈ [L] Then, Z1 = (L ∩ R1)\L′ = ∅ and
FS∗(SS∗

1
\L ′)L ′,⊆R∗

1
= ∅! Hence, when L ≡ S, we always

assume that L /∈ G(L).

The M AR_Max SC_OneClass algorithm given in Fig. 4
distinctly generates all the association rules with the con-
straints AR∗⊆L1, ⊆R1

(L , S) for each pair (L , S) ∈ NFC
S⊆L1, ⊆R1(s0, s1, c0, c1).

Example 3 (Illustrating the advantage of distinctly generat-
ing all the rules in AR∗⊆L1, ⊆R1

(L , S) by M AR_Max SC_

123

Vietnam J Comput Sci (2017) 4:261–277 273

Fig. 4 The M AR_Max SC_OneClass algorithm

OneClass). Let us consider the mining of association rules
with constraints on database T with s0 = 1/7, s1 =
5/7, c0 = 1/3, c0 = 0.9

(a) For the constraints L1 = ceg, R1 = ai , we have
S∗
1 = ceagi , C1 = ceg, s∗

0 = 1.33/7, s∗
1 = 5/7 and

supp(S∗
1) = 2/7. Then,ARS⊆L1, ⊆R1(s0, s1, c0, c1) 	=

∅ . Now, consider the rule class with respect to (L , S) =
(cegi, acegi) ∈ NFCS(s0, s1, c0, c1) in Example
1(b): G(L) = {e, g},G(S) = {ae, ag}, supp(L) =
4/7 and supp(S) = 2/7. We have SS∗

1
=ceagi ∈

FCS⊆S∗
1
(s∗

0 , s∗
1) as S ∈ FCS(s∗

0 , s∗
1) and GS∗

1
(S) ≡

{ae, ag} 	= ∅. Furthermore, because s′
0 = supp(S)/c1

= 2.22/7, s′
1 min(1; supp(S)/c0) = 6/7, so L ∈

FCS(s′
0, s′

1). In addition, GC1(L) = {e, g} 	= ∅.
Then, LC1 = ceg ∈ FCS⊆C1(s

′
0, s′

1). First, we con-
sider the formation of FS∗⊆LC1

(Line 4). For L1 = e,

because L1
U = e, LU,1 = ∅ and L−,1 = cg, we

have the following left-hand sides: e + ∅ + ∅, e +
∅ + c, e + ∅ + g, e + ∅ + cg. For L1 = g, we
have L2

U = eg, LU,2 = e and L−,2 = c. Hence, the
M F S_Restrict Max SC procedure generates the new
left-hand sides g + ∅ + ∅, g + ∅ + c. Note that we did
not generate g + e +∅, g + e + c again as L1 ⊂ g + e.
Next, we concentrate on the generation of the right-hand
sides in accordance with left-hand side e (at Line 5).
We have R∗

1 = ai and GS∗
1
(S) = {ae, ag}. Hence,

Rmin = {a}. For a, we have R1
U = a, RU,1 = ∅, R−,1 =

ai\(e +a) = i . M F S_Restrict Max SC distinctly gen-
erates all the right-hand sides in FS∗(SS∗

1
\L ′)L ′,⊆R∗

1
: a,

ai . Thus, we receive two rules: e→a, e→ai . Continu-
ing with the left-hand sides of ce, eg, ceg, g and gc,
we receive ten additional rules of AR∗⊆L1, ⊆R1

(L , S)

without any duplicates (see Example 1(b) for the full
results).

(b) For the constraints L1 = a, R1 = c f hi , we have
S∗
1 = ac f hi, C1 = a, s∗

0 = 1.66/7, s∗
1 = 5/7and supp

(S∗
1) = 2/7. Thus, ARS⊆L1, ⊆R1(s0, s1, c0, c1) 	= ∅ .

Let (L , S) = (ai, ac f hi) ∈ NFCS(s0, s1, c0, c1)
with G(L) = {a},G(S) = {c f, ch}, supp(L) =
5/7, and supp(S) = 2/7. We have SS∗

1
= ac f hi ∈

FC S⊆S∗
1
(s∗

0 , s∗
1)because S ∈ FCS(s∗

0 , s∗
1) andGS∗

1
(S) =

{c f, ch} 	= ∅. As s′
0 = supp(S)/c1 = 2.11/7 and s′

1 ≡
min(1; supp(S)/c0) = 6/7, we have L ∈ FCS(s′

0, s10).
Furthermore, GC1(L) = {a}	= ∅. Then, LC1 = a ∈
FCS⊆C1(s

′
0, s′

1) . For G1 = a, because L1
U = a, LU,1 =

∅ and L−,1 = ∅, we have FS∗⊆LC1
= {a}. Next,

we generate all the rules with the same left-hand side
a (Line 5). We have R∗

1 = c f hi and GS∗
1
(S) =

{c f, ch}. Thus, Rmin = {c f, ch}. For c f , we have
R1

U = c f, RU,1 = ∅ and R_,1 = c f hi\(a + c f) = hi .
Next, M F S_Restrict Max SC generates the right-hand
sides of c f + ∅ + ∅, c f + ∅ + i, c f + ∅ + h and
c f +∅+hi (inFS∗(SS∗

1
\L ′)L ′

,⊆R∗
1
)without any dupli-

cates. Therefore, we have four rules: a → c f, a →
c f i, a → c f h, a → c f hi . For ch, we have R2

U =
c f h, RU,2 = f, R−,1 = c f hi\(a + c f h) = i . Then,
M F S_Restrict Max SC derives ch+∅+∅, ch+∅+i .
The right-hand sides of ch + f + ∅, ch + f + i are
not generated again as c f ⊂ ch + f . Finally, we have
AR∗⊆L1, ⊆R1

(L , S) = {a → c f, a → c f i, a →
c f h, a → c f hi, a → ch, a → chi}.

Example 3 implies that our algorithm solely derives the
association rules satisfying the constraints of AR∗⊆L1, ⊆R1
(L , S) without generating duplicates and redundant candi-
dates in AR(L , S).

3.3 Completely and distinctly deriving all the
association rules with the constraints of
ARS⊆L1, ⊆R1(s0, s1, c0, c1)

Theorem 2 follows from Theorem 1 and Proposition 3 as fol-
lows. Based on it, the M AR_Max SC algorithm is proposed

123

274 Vietnam J Comput Sci (2017) 4:261–277

Fig. 5 The M AR_Max SC algorithm

(see Fig. 5) to efficiently mine the set of all association rules
withmaximumsingle constraintsARS⊆L1, ⊆R1(s0, s1, c0, c1)
from lattice LCG.

Theorem 2 (Completely and distinctly deriving all the con-
strained association rules of ARS⊆L1, ⊆R1(s0, s1, c0, c1)).
Suppose that (H1) is satisfied. We have

ARS⊆L1, ⊆R1(s0, s1, c0, c1)

=
∑

(L ,S)∈NFCS⊆L1,⊆R1 (s0,s1,c0,c1)
AR∗⊆L1,⊆R1

(L , S),

where AR∗⊆L1,⊆R1
(L , S) =

∑
′∈Su f f _F S∗⊆LC1

(S, R1){r : L ′ → R′ : R′ ∈ FS∗(SS∗
1
\L ′)L ′ ,⊆ R∗

1}.

4 Experimental results

We compare the performance of three methods for min-
ing association rules with constraints as follows. The first
method, P P_M AR_Max SC_1, includes three phases: (a)
using d Eclat to mine frequent itemsets, (b) integrating the
constraints into the Gen_Rules [31] algorithm to gener-
ate rule candidates, and (c) post-processing to filter out
the rules satisfying the constraints. The two remaining
methods consist of first mining the lattice LCG of closed
itemsets together with their generators with Charm_L and
MinimalGenerators and then executing the P P_M AR
_Max SC_2 and M AR_Max SC algorithms, respectively.
The source code (in C++) for d Eclat , Charm_L and
MinimalGenerators can be downloaded from http://www.
cs.rpi.edu/~zaki/wwwnew/pmwiki.php/Software/Software#
patutils (converted to C#). The P P_M AR_Max SC_2 and

Table 2 Database characteristics

Database # Items # Transactions Average length

Connect 129 67,557 43

Mushroom 119 8124 23

Pumsb 7117 49,046 74

Chess 75 3196 37

M AR_Max SC algorithms are also coded in C#. The experi-
ments were carried out on an i5-2400 CPU 3.10 GHz@ 3.09
GHz PC with 3.16 GB of main memory. Four benchmark
databases in the FIMDR (Frequent Itemset Mining Dataset
Repository, http://fimi.cs.helsinki.fi/data/) were used in the
experiments (Table 2).

We fixed the maximum support and confidence thresh-
olds at 1 (as per tradition). For each database and given
minimum support, we chose the set AF of all frequent
items. Ten pairs of maximum constraints (L1, R1), were ran-
domly retrieved from AF of sizes |L1| = p1% ∗ ∣∣AF

∣∣ and
|R1| = p1% ∗ ∣∣AF

∣∣. We set p1 = 30% and p2 = 70%
for Connect, Pumsb and Chess, and p1 = 8%, p2 = 58%
for Mushroom (we achieved similar results for different val-
ues of p1, p2). We executed the three methods on each
database (DB) with two given minimum supports M S (%)
and confidences MC (%) and noted the average running
times of ten constraint pairs, T _Max SC_1(DB, M S, MC),
T _Max SC_2(DB, M S, MC) and T _Max SC(DB,

M S, MC), called T _Max SC_1, T _Max SC_2 and T _Max
SC . All three methods finished their executions on Mush-
room, Chess and Pumsb; however, after 12-h running on
Connect, P P_M AR_Max SC_1 did not halt.

123

http://www.cs.rpi.edu/~zaki/wwwnew/pmwiki.php/Software/Software#patutils
http://www.cs.rpi.edu/~zaki/wwwnew/pmwiki.php/Software/Software#patutils
http://www.cs.rpi.edu/~zaki/wwwnew/pmwiki.php/Software/Software#patutils
http://fimi.cs.helsinki.fi/data/

Vietnam J Comput Sci (2017) 4:261–277 275

Fig. 6 Average running times
of the three methods on
Mushroom

Fig. 7 Average running times
of the three methods on Chess

Fig. 8 Average running times
of the three methods on Pumsb

Figures 6, 7, 8 and 9 show the average running times of
the three methods on several characteristic experiments.

Table 3 shows the RT1, RT2 running time ratios (average
on different minimum confidences) of two post-processing
methods compared with our method for each (DB, MS)
pair. More concretely, for (Chess, 78), we have RT1 =∑

MC∈{70,65,60,55,50,45,40}
T _Max SC_1(Chess,78,MC)

T _Max SC(Chess,78,MC)
/7=245.2

and RT2 = ∑
MC∈{70,65,60,55,50,45,40}

T _Max SC_2(Chess,78,MC)
T _MaxSC(Chess,78,MC)

/7 = 10.2. Thus, our M AR_Max SC method is 245 and 10
faster than the post-processing methods using P P_M AR_
Max SC_1 and P P_M AR_Max SC_2, respectively.

The reason is as follows. Two post-processing methods
(P P_M AR_Max SC_1 and P P_M AR_Max SC_2) con-
sume significant times to generate large amounts of rule

candidates, however, most of them do not satisfy the max-
imum single constraints. Indeed, we find that the percent
ratios of the numbers of redundant candidate rules to the
total of all rules generated by P P_M AR_Max SC_1 and
P P_M AR_Max SC_2 are both 99%, approximately, for all
above experiments.

5 Conclusions and future work

Two serious problems encountered during the mining of
association rules with maximum single constraints are that
(1) their cardinality grows exponentially, and the known
algorithms for mining them typically generate numerous

123

276 Vietnam J Comput Sci (2017) 4:261–277

Fig. 9 Average running times
of P P_M AR_Max SC_2 and
M AR_Max SC on Connect

Table 3 Running time reduction ratios

DB MS (%) Thresholds of MC (%) RT1 RT2

Chess 78 70, 65, 60, 55, 50,
45, 40

245.2 10.2

76 311.9 10.2

74 273.1 7.4

72 266.9 6.0

70 286.2 5.7

Connect 89 70, 65, 60, 55, 50,
45, 40, 35, 30

7.7

87 22.9

85 38.4

83 53.0

Pumsb 88 70, 65, 60, 55, 50,
45, 40, 35

969.8 3.5

86 2470.9 6.4

Mushroom 30 70, 65, 60, 55, 50,
45, 40, 35, 30

572.3 4.0

25 2738.1 9.1

redundancies and duplicates and (2) their constraints are fre-
quently modified. We generate a solution to this problem
with a mathematical approach. Starting with a latticeLCG of
closed itemset and their generators, which are suitable for use
with frequently modified constraints, we efficiently extract
the corresponding frequent sub itemsets. Based on this lat-
tice, a proposed suitable equivalence relation partitions the
set of association rules with maximum single constraints into
disjoint equivalence classes. We then use the closed itemsets
and their generators (of generally lowcardinality) to uniquely
represent the rules in each class. After studying our results,
we propose using the M AR_Max SC algorithm to distinctly
and completely produce all the constrained rules in each rule
class.

Our approach can be adapted to process on big data
because it can be exploited in parallel and distributed envi-
ronments. In the future, we will get bigger data sets to test
the approach. As an interesting extension, we plan to adapt

a Hadoop Map/Reduce framework. In addition, it is impor-
tant for us to apply our approach to mining problems with
additional types of constraints.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules. In: Proceedings of the 20th International Conference on Very
Large Data Bases, pp. 487–499 (1994)

2. Agrawal, R., Imielinski, T., Swami, N.: Mining association rules
between sets of items in large datasets. In: Proceedings of the 1993
ACM SIGMOID, pp. 207–216 (1993)

3. Agrawal, R.,Mannila, H., Srikant, R., Toivonen, H., Verkamo,A.I.:
Fast discovery of association rules. In: Advances in Knowledge
Discovery and Data Mining, AAAI Press, pp. 307–328 (1996)

4. Anh, T., Hai, D., Tin, T., Bac, L.: Efficient algorithms for mining
frequent itemsets with constraint. In: Proceedings of the 3rd Inter-
national Conference on Knowledge and Systems Engineering, pp.
19–25 (2011)

5. Anh, T., Hai, D., Tin, T., Bac, L.: Mining frequent itemsets with
dualistic constraints. In: PRICAI 2012, LNAI, vol. 7458, pp. 807–
813. Springer (2012)

6. Anh, T., Tin, T., Bac, L., Hai, D.: Mining Association Rules
Restricted on Constraint. In Proceedings of the IEEE-RIVF Inter-
national Conference onComputing andCommunication Technolo-
gies 2012, pp. 51–56 (2012)

7. Anh T., Tin T., Bac L.: Structures of association rule set. In: LNAI,
vol. 7197, Part II, pp. 361–370. Springer (2012)

8. Anh T., Tin T., Bac L.: An approach for mining concurrently closed
itemsets and generators. In: Advanced Computational Methods
for Knowledge Engineering, SCI, vol. 479, pp. 355–366. Springer
(2013)

9. Anh, T., Tin, T., Bac, L.: An approach for mining association rules
intersectedwith constraint itemsets. Adv. Intell. Syst. Comput. 245,
351–363 (2013b)

10. Bayardo, R.J. Jr.: Efficiently mining long patterns from databases.
In: Proceedings of the ACM-SIGMOD 1998 International Confer-
ence on Management of Data, pp. 85–93 (1998)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vietnam J Comput Sci (2017) 4:261–277 277

11. Burdick,D.,Calimlim,M.,Gehrke, J.:MAFIA: amaximal frequent
itemset algorithm for transactional databases. In: Proceedings of
2001 ICDE, pp. 443–452 (2001)

12. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule
mining in large, dense databases. In: Data Mining and Knowledge
Discovery, vol. 4, no. (2/3), pp. 217–240. Kluwer Academic Pub.
(2000)

13. Cong, G., Liu, B.: Speed-up iterative frequent itemset mining with
constraint changes. In: Proceedings of ICDM 2002, pp. 107–114
(2002)

14. Cristofor, L., Simovici, D.: Generating an informative cover for
association rules. In: Proceedings of the IEEE International Con-
ference on Data Mining 2002, pp. 597–600 (2002)

15. Das, A., Ng, W.-K., Woon, Y.-K.: Rapid association rule mining.
In: Proceedings of 10th International conference on Information
and knowledge management, pp. 474–481. ACM Press (2001)

16. Ganter, B., Wille, R., Franzke, C.: Formal concept analysis: math-
ematical foundations. Springer, New York (1997)

17. Grahne, G., Zhu, J.: High performancemining ofmaximal frequent
itemsets. In: Proceedings of SIAM 2003 Workshop on High Per-
formance Data Mining: Pervasive and Data Stream Mining (2003)

18. Goethals, B., Zaki, M.J.: Advances in frequent itemset mining
implementations. In: Report on FIMI 2003, ACMSIGKDDExplo-
rations Newsletter, vol. 6, no. 1, pp. 109–117 (2004)

19. Gouda, K., Zaki, M.J.: Genmax: an effcient algorithm for mining
maximal frequent itemsets. Data Min. Knowl. Discov. 11(3), 223–
242 (2005)

20. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without
candidate generation: a frequent-pattern tree approach. Data Min.
Knowl. Discov. 8(1), 53–87 (2004)

21. Hai, D., Tin, T., Bay, V.: An efficient method for mining frequent
itemsets with double constraints. Int. J. Eng. Appl. Artif. Intell. 27,
148–154 (2013)

22. Hai, D., Tin, T.: An efficient method for mining association rules
based on minimum single constraints. Vietnam J. Comput. Sci.
2(2), 67–83 (2015)

23. Ho, B.: An approach to concept formation based on formal concept
analysis. IEICE Trans. Inf. Syst. E78–D(5), 553–579 (1995)

24. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.,
Verkamo, A.I.: Finding interesting rules from large sets of discov-
ered association rules. In: Proceeding of the 3rdCIKMConference,
pp. 401–407 (1994)

25. Li, G., Hamilton, H.J.: Basic association rules. In: Proceedings of
the 4th SIAM International Conference on Data Mining, pp. 166–
177 (2004)

26. Lee, A.J., Lin, W.C., Wang, C.S.: Mining association rule with
multi-dimensional constraints. J. Syst. Softw. 79(1), 79–92 (2006)

27. Mannila, H., Toivonen, H., Verkamo, I.A.: Efficient algorithms for
discovering association rules. In: Workshop on Knowledge Dis-
covery in Databases 1994, pp. 181–192 (1994)

28. Nguyen, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory
Mining and Pruning Optimizations of Constrained Association
Rules. In: Proceedings of the 1998 ACM-SIG-MOD International
Conference on the Management of Data, pp. 13–24 (1998)

29. Oded, M., Lior, R.: Data mining and knowledge discovery Hand-
book. Springer, New York (2010)

30. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash based algorithm
for mining association rules. In: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, pp.
175–186 (1995)

31. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining
of association rules using closed itemset lattice. Inf. Syst. 24(1),
25–46 (1999)

32. Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Gen-
erating a condensed representation for association rules. J. Intell.
Inf. Syst. 24(1), 29–60 (2005)

33. Pei, J., Han, J., Lakshmanan, V.S.: Pushing convertible constraints
in frequent itemset mining. Data Min. Knowl. Discov. 8(3), 227–
252 (2004)

34. Szathmary, L., Valtchev, P., Napoli, A.: Efficient vertical mining
of frequent closed itemsets and generators. In: Proceedigns of IDA
2009, pp. 393–404 (2009)

35. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with
item constraints. In: Proceedings of KDD 1997, pp. 67–73 (1997)

36. Tin, T., Anh, T.: Structure of set of association rules based on con-
cept lattice. In: Advances in Intelligent Information and Database
Systems, SCI, vol. 283, pp. 217–227. Springer (2010)

37. Tin, T., Anh, T., Thong, T.: Structure of association rule set based
on min-min basic rules. In: Proceedings of the International Con-
ference onComputing andCommunication Technologies 2010, pp.
83–88 (2010)

38. Wille, R.: Concept lattices and conceptual knowledge systems.
Comput. Math. Appl. 23(6–9), 493–515 (1992)

39. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms
for fast discovery of association rules. In: Proceedings of the 3rd
International Conference on Knowledge Discovery and Data Min-
ing, pp. 283–286 (1997)

40. Zaki, M. J., Gouda, K.: Fast vertical mining using diffsets. In:
Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge discovery and Data Mining, pp. 326–335. ACM
(2003)

41. Zaki, M.J.: Mining non-redundant association rules. Data Min.
Knowl. Discov. 9(3), 223–248 (2004)

42. Zaki,M.J., Hsiao, C.J.: Efficient algorithms formining closed item-
sets and their lattice structure. IEEETrans.Knowl.Data Eng. 17(4),
462–478 (2005)

123

	Efficiently mining association rules based on maximum single constraints
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Related work and approach
	1.3 Our approach
	1.4 Organization

	2 Preliminaries
	3 Mining association rules based on maximum single constraints
	3.1 Partitioning an association rule set with maximum single constraints
	3.1.1 Rough partitioning
	3.1.2 Necessary conditions for the nonemptiness of mathcalAmathcalRmathcalSsubseteqL1, subseteqR1 (s0 ,s1 ,c0 ,c1) and mathcalAmathcalRsubseteqL1, subseteqR1 (L, S)
	3.1.3 Smoothly partitioning the association rule set with maximum single constraints

	3.2 Non-repeatedly producing all association rules satisfying the constraints in each class mathcalAmathcalRsubseteqL1 ,subseteqR1 +(L, S)
	3.2.1 The unique structure and representation of the equivalence class of frequent sub itemsets restricted on X with upper bound Z1
	3.2.2 Structure and unique representation of the mathcalFmathcalSsubseteqLC1 and mathcalFmathcalS(SS1ast \L)L,subseteqR1ast itemsets
	3.2.3 Structure and unique representation of rule class mathcalAmathcalRsubseteqL1,subseteqR1 + (L,S)

	3.3 Completely and distinctly deriving all the association rules with the constraints of mathcalAmathcalRmathcalSsubseteqL1 , subseteqR1 (s0 ,s1 ,c0 ,c1)

	4 Experimental results
	5 Conclusions and future work
	References

