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Abstract The betweenness centrality (BWC) of a vertex is
a measure of the fraction of shortest paths between any two
vertices going through the vertex and is one of the widely
used shortest path-based centrality metrics for the complex
network analysis. However, it takes O(|V |2 + |V ||E |) time
(whereV and E are, respectively, the sets of nodes and edges
of a network graph) to compute the BWC of just a sin-
gle node. Our hypothesis is that nodes with a high degree,
but low local clustering coefficient, are more likely to be
on the shortest paths of several node pairs and are likely to
incur a larger BWC value. Accordingly, we define the local
clustering coefficient-based degree centrality (LCCDC) for
a node as the product of the degree centrality of the node and
one minus the local clustering coefficient of the node. The
LCCDC of a node can be computed based on just the knowl-
edge of the two-hop neighborhood of a node and would take
significantly lower time. We conduct an exhaustive correla-
tion analysis and observe the LCCDC to incur the largest
correlation coefficient values with BWC (compared to other
centrality metrics under three different correlationmeasures)
and to hold very strong levels of positive correlation with
BWC for at least 14 of the 18 real-world networks analyzed.
Hence, we claim the LCCDC to be an apt metric to rank the
nodes or compare any two nodes of a real-world network
graph in lieu of BWC.
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1 Introduction

Network science (a.k.a. complex network analysis) is an
emerging area of interest in the data science discipline and
corresponds to analyzing complex real-world networks from
a graph theory point of view. Among the variousmetrics used
for complex network analysis, node centrality is a promi-
nently used metric of immense theoretical interest and prac-
tical value. The centrality of a node is a link statistics-based
quantitative measure of the topological importance of the
nodewith respect to the other nodes in the network [1].Appli-
cations for node centrality metrics could be, for example, to
identify the most influential persons in a social network, the
key infrastructure nodes in an internet, the super-spreaders
of a disease, etc. The existing centrality metrics could be
broadly classified into twocategories [1]: neighbor-based and
shortest path-based. Degree centrality (DegC) and eigenvec-
tor centrality (EVC) [2] arewell-knownmetrics for neighbor-
based centrality, while Betweenness centrality (BWC) [3]
and closeness centrality (ClC) [4] are well-known metrics
for shortest path-based centrality. Throughout the paper, the
terms ‘node’ and ‘vertex’, ‘link’ and ‘edge’, and ‘network’
and ‘graph’ are used interchangeably. They mean the same.

The degree centrality of a vertex is the number of neigh-
bors connected to the vertex and can be determined just based
on the one-hop neighborhood knowledge. The eigenvector
centrality of a vertex is a measure of the degree of the vertex
as well as the degree of its neighbors. The betweenness cen-
trality of a vertex is a measure of the fraction of the shortest
paths between any two vertices that go through the vertex;
whereas the closeness centrality of a vertex is ameasure of the
shortest path distances to every other vertex in the network.
Other than degree centrality, all the above three centrality
metrics require the global knowledge of the network for their
computation.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-016-0073-1&domain=pdf


24 Vietnam J Comput Sci (2017) 4:23–38

With respect to the running time of the algorithms to com-
pute the centrality metrics, for an arbitrary network graph of
|V | vertices and |E | edges: the EVC of all the vertices en
masse can be computed in O(|V |3) time, whereas it would
take O(|V |+|E |) andO(|V |2+|V ||E |) time, respectively, to
compute the closeness centrality and betweenness centrality
of an individual vertex. The BWC, thus, incurs the longest
running time to be computed for just a single node. As the
BWC for a node u is defined as the sum of the fraction of
shortest paths between any two nodes i and j (i �= j �= u)

that go through node u, one would have to run the shortest
path algorithm on every node in the graph to compute the
BWC of even a single node. Even though the BWC of all the
vertices could be determined once the shortest path algorithm
is run on every node in a network graph, it is still too much
of a computation overhead on network graphs with a larger
number of nodes and/or edges (especially, if one is inter-
ested in just knowing the relative importance of a selected
few vertices with regards to their location on the shortest
paths among any two vertices in the network graph). Thus,
the motivation of this research is to explore the possibility
of using a computationally lightweight localized centrality
metric that is highly correlated to the BWC and could be
used to rank the vertices or compare selected vertices in a
network graph in lieu of the BWC.

Our high-level contribution in this paper is the pro-
posal of a local clustering coefficient-based degree centrality
(LCCDC) metric as a computationally lightweight central-
ity alternative for the betweenness centrality (BWC). The
local clustering coefficient of a node in a graph is the frac-
tion of the pairs of its neighbors that are directly connected
to each other. The underlying theoretical basis for the pro-
posed LCCDC metric is that if none of the neighbors of a
vertex go through the vertex for shortest path communica-
tion, and then none of the other vertices in the graph go
through the vertex for shortest path communication. Accord-
ingly, we define the LCCDC of a vertex as the product
of the degree of the vertex and one minus the local clus-
tering coefficient of the vertex. The LCCDC metric, thus,
quantifies the extent, to which the degree centrality of a
vertex facilitates shortest path communication through the
vertex and could be at most the degree centrality of the
vertex. If a vertex has a high degree, but a low local cluster-
ing coefficient, it implies that though the vertex has several
neighbors—a very few of these neighbors are directly con-
nected to each other. Hence, a high-degree vertex with a
low local clustering coefficient is likely to be on the short-
est path for several pairs of vertices in the network (at least
for the neighbors of the node). On the other hand, a vertex
with a higher clustering coefficient (even if it has a higher
degree) is not likely to be on the shortest paths connecting
its neighbors and thereby not likely to be on the shortest
paths between any two vertices in the graph. All of the

above arguments form the basis of our hypothesis that a high-
degree vertex with a low local clustering coefficient is more
likely to exhibit a larger value for the betweenness central-
ity.

We explore the level of correlation between LCCDC and
BWC through extensive experimental studies involving a
suite of 18 real-world networks, whose degree distribution
ranges from Poisson to Power-law [5] under three differ-
ent correlation measures [5]. We observe the LCCDC to
exhibit highest values for the correlation coefficient with
BWC (compared to DegC, EVC, and ClC under all the
three correlation measures). In addition to the quantitative
values, we also qualitatively classify the level of correla-
tion for BWC with the other centrality metrics studied in
this paper, and observe the newly proposed LCCDC metric
to exhibit strong-very strong levels of positive correlation
with BWC for at least 16 of the 18 real-world networks
analyzed. High levels of positive correlation between time-
efficient LCCDC and time-consuming BWC are an indicator
that if two vertices are to be compared based on their BWC
values, it would be more likely sufficient to just compare
their LCCDC values. Similarly, the ranking of the vertices
in a real-world network graph based on their BWC values
is more likely to be the same as the ranking of the ver-
tices based on the LCCDC metric. Thus, we claim that the
LCCDC could be used to compare vertices in lieu of their
BWC.

The rest of the paper is organized as follows: Sect. 2
reviews the classical centrality metrics (DegC, EVC, BWC,
and ClC) and the calculation of the BWC metric with an
example. Section3 introduces the local clustering coefficient-
based degree centrality (LCCDC) metric and justifies its
proposal as an alternate for BWCwith a motivating example.
Section 4 introduces the three measures of correlation used
in the experimental studies on real-world networks. Section 5
presents the 18 real-world network graphs and discusses the
results of correlation coefficient analysis for BWCwith each
of LCCDC, DegC, EVC, and ClC as well as ranks the five
centrality metrics on the basis of the execution time incurred
to compute them on these graphs. Section 6 reviews related
work on correlation studies involving the centrality metrics.
Section 7 concludes the paper and explores directions for
future research.

2 Node centrality metrics

We now review the centrality metrics that are used for the
correlation coefficient analysis studies in this paper. These
are the neighbor-based degree centrality (DegC) and eigen-
vector centrality (EVC) metrics and the shortest path-based
betweenness centrality (BWC)and closeness centrality (ClC)
metrics.
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The degree centrality (DegC) of a vertex is the number
of neighbors for the vertex in the graph and can be easily
computed by counting the number of edges incident on the
vertex. If A is the n × n adjacency matrix for a graph, such
that A[i , j] = 1 if there is an edge connecting vi to v j (for
undirected graphs) and A[i , j] = 0 if there is no edge con-
necting vi and v j . The degree centrality of a vertex vi is
quantitatively defined as follows: DegC(vi ) =

∑n
j=1 A[i, j].

It would take O(|V |) time to determine the degree cen-
trality of a vertex, as there would be n = |V | entries
in the row corresponding to each vertex in the adjacency
matrix.

The eigenvector centrality (EVC) of a vertex is a quan-
titative measure of the degree of the vertex as well as the
degree of its neighbors. A vertex that has a high degree for
itself as well as located in the neighborhood of high-degree
vertices is likely to have a larger EVC. The EVC values of the
vertices in a graph correspond to the entries for the vertices
in the principal eigenvector of the adjacency matrix of the
graph. An n × n adjacency matrix has n eigenvalues and the
corresponding eigenvectors. The principal eigenvector is the
eigenvector corresponding to the largest eigenvalue (princi-
pal eigenvalue) of the adjacency matrix, A. Moreover, if all
the entries in a square matrix are positive (i.e., greater than or
equal to zero), the principal eigenvalue aswell as the entries in
the principal eigenvector are also positive [6]. We determine
the EVC of the vertices using the power-iteration method [6]
of complexity O(|V |3) in a graph of |V | vertices, as there
are O(|V |2) multiplications in each iteration of the power-
iteration method, and there could be at most |V | iterations
before the normalized value of the eigenvector converges to
the principal eigenvalue (typically, the number of iterations
needed for the convergence to happen would be far less than
the number of vertices in the graph).

The betweenness centrality (BWC) of a vertex is the sum
of the fraction of shortest paths going through the vertex
between any two vertices, considered over all pairs of ver-
tices. In this paper, we determine the BWC of the vertices
using the breadth first search (BFS)-variant of the well-
known Brandes algorithm [7]. We run the BFS algorithm
[8] on each vertex in the graph and determine the level of
each vertex (the number of hops/edges from the root) in each
of these BFS trees. The root of a BFS tree is said to be at
level 0 and the number of shortest paths from the root to
itself is 1. On a BFS tree rooted at vertex r , the number of
shortest paths for a vertex i at level l (l > 0) from the root
r is the sum of the number of shortest paths from the root r
to each the neighbors of vertex i(in the original graph) that
are at level l−1 in the BFS tree. Since we are working on
undirected graphs, the total number of shortest paths from
vertex i to vertex j (denoted spi j ) is simply the number of
shortest paths from vertex i to vertex j in the shortest path
tree rooted at vertex i or vice-versa. The number of short-

est paths from a vertex i to a vertex j that go through a
vertex k (denoted spi j (k)) is the maximum of the number
of shortest paths from vertex i to vertex k in the shortest
path tree rooted at i and the number of shortest paths from
vertex j to vertex k in the shortest path tree rooted at ver-

tex j . Thus, BWC(k) = ∑

k �= i
k �= j

spi j (k)
spi j

. With regard to

the run-time complexity of the Brandes algorithm, it would
take O(|V | + |E |) time to run the BFS shortest path algo-
rithm on a particular vertex and a total of O(|V |*(|V |+|E |))
time on the |V | vertices of a network graph. In addition,
for each vertex: one has to trace through the |V | shortest
path trees to determine the number of shortest paths from
the root vertices of these shortest path trees to the par-
ticular vertex for which we want to find the BWC. This
could take another |V ||E | time for all the vertices in the
graph. Thus, the computation time incurred to determine
the BWC values of all the vertices in a graph would be:
O(|V |2 + |V ||E | + |V ||E |), which for all theoretical pur-
poses is written simply as: O(|V |2 + |V ||E |).

Figure 1 illustrates an example to calculate theBWCof the
vertices on a sample graph that is used as a running example
in Figs. 1, 2, 3, 4, 5, and 6. We can observe the betweenness
values for vertices 0, 6, and 7 are zero each, because no
shortest path between any two vertices go through them. We
observe that even though vertices 4 and 5 have the same
larger degree, the average degree of the neighbors of vertex
5 is slightly lower than the average degree of the neighbors
of vertex. As a result, vertex 5 is more likely to occupy a
relatively larger fraction of the shortest path between any two
vertices and incur a relatively larger BWC value compared
to vertex 4 (even though vertex 4 has a larger EVC value).
In addition, even though vertex 3 has a larger degree than
vertex 1, the BWC of vertex 1 is significantly larger than that
of vertex 3. This could be attributed to vertex 1 lying on the
shortest path from vertices 0 and 2 to vertices 4, 5, 6, and
7; on the other hand, vertex 3 lies only on the shortest path
between 2 and 5.

The closeness centrality (ClC) of a vertex is the inverse
of the sum of the number of shortest paths from the vertex
to every other vertex in the graph. We determine the ClC of
the vertices by running the BFS algorithm on each vertex
and summing the number of shortest paths from the root
vertex to every other vertex in these BFS trees. It would
take O(|V | + |E |) time to run the BFS algorithm once and
determine the shortest path tree rooted at a particular vertex.
To determine the closeness centrality of all the vertices in
a graph, one would have to run the BFS algorithm on each
of the vertices: thus, incurring an overall time complexity
of O(|V |*(|V | + |E |)) = O(|V |2 + |V ||E |). However, unlike
theBWCmetric, there is no additional computation overhead
incurred to determine the ClC values of the vertices.
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Fig. 1 Example to illustrate the
calculation of betweenness
centrality

Fig. 2 Example to illustrate the calculation of local clustering coefficient

3 Local clustering coefficient-based degree
centrality

The local clustering coefficient (LCC) of a vertex is the
ratio of the actual number of links between the neighbors
of the vertex to that of the maximum possible number of
links between the neighbors of the vertex [1]. For a vertex
vi with degree ki (i.e., ki neighbors), the maximum possi-
ble number of links between the neighbors of the node is
ki (ki−1)/2. Figure 2 illustrates the computation of the LCC
values of the vertices on the example graph used in Fig. 1.
We see that a vertex having high degree need not necessarily
have a higher LCC, as it would be difficult to expect direct

links between any two neighbors of the vertex. In Fig. 2, we
observe that both vertices 4 and 5 that have a degree of 5 each
incur LCC values that are lower than the LCC of vertices 6
and 7 that have a degree of 3 each. In addition, vertices with
the same degree need not have the same LCC, as the connec-
tivity among the neighbors of each vertex could be different
from that of the others. We notice that though vertices 3, 6,
and 7 have a degree of 3 each, the LCC of vertex 3 is only
0.33, whereas vertices 6 and 7 have an LCC of 1.0 each.

Our hypothesis behind the proposed local clustering
coefficient-based degree centrality (LCCDC)metric is as fol-
lows: a high-degree vertex with a lower clustering coefficient
is essential to at least connect the neighbors (that are not
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Fig. 3 Example to illustrate the calculation of local clustering coefficient-based degree centrality

Fig. 4 Example to illustrate the computation of Pearson’s correlation coefficient (betweenness centrality: B and local clustering coefficient-based
degree centrality: C)

Fig. 5 Example to illustrate the computation of Spearman’s correlation coefficient (betweenness centrality: B and local clustering coefficient-based
degree centrality: C)

directly connected to each other) of the vertex on a shortest
path. In addition, such a high-degree vertexwith a lower LCC
might be on the shortest path of several other pairs of vertices
(especially, for those vertices that are in the 2-hop and 3-hop
neighborhood), eventually contributing to a higher BWC for
the vertex. On the other hand, a vertex in a connected graph
incurs a BWC of zero if none of the neighbors of the vertex
go through it for their shortest path(s) to any other vertex in
the graph. In other words, a vertex sustains a BWC value of
zero if it is either a stub vertex (has a degree of 1: that is con-
nected to only one other vertex) or there exists a link between
any two neighbors of the vertex. In both the cases, the LCC
of the vertex is 1 and the BWC value for the vertex will be

zero. Considering all of the above, we propose to calculate
the LCCDC metric for a vertex as the product of the degree
centrality of the vertex and one minus the local clustering
coefficient of the vertex. That is, LCCDC(vi ) = ki * (1 −
LCC(vi )). The proposed formulation also sets upmeaningful
upper bound and lower bound for the LCCDC metric. With
the above formulation, the maximum possible value for the
local clustering coefficient-based degree centrality of a ver-
tex is the degree centrality of the vertex itself (if the LCC
of the vertex is 0) and the minimum possible value for the
LCCDC of a vertex is 0 (if the LCC of the vertex is 1). Thus,
the proposed formulation for LCCDC of a vertex captures
the extent to which the degree centrality of a vertex is useful
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Fig. 6 Example to illustrate the
computation of Kendall’s
correlation coefficient
(betweenness centrality: B and
local clustering
coefficient-based degree
centrality: C)

in facilitating shortest path communication through the ver-
tex, and we claim it to be lightweight alternative to the BWC
metric (as verified in Sect. 4).

Figure 3 illustrates the computation of the LCCDC values
of the vertices of the example graph used in Figs. 1 and 2.We
observe that larger the LCCDC value for a vertex, the larger
the BWC value for the vertex and vice-versa. We observe
that vertices 0, 6, and 7 that do not lie on the shortest path for
any two vertices in the graph have a BWC of zero each and
also have LCCDC value of zero each. Notice that for each of
these 3 vertices 0, 6, and 7: the neighbors of the vertex have
direct links to each other and are not required to go through
the vertex (this is one of the two scenarios forwhich theBWC
value of a vertex will be zero, as explained above). We also
notice that though both vertices 4 and 5 have a degree of 5
each, vertex 5has relatively larger values for both theLCCDC
and BWCmetrics owing to relatively fewer fraction of direct
links among its neighbors. Likewise, though both vertices 1
and 3 have a degree of 3 each, vertex 1 has relatively larger
BWC and LCCDC values due to a relatively fewer fraction
of direct links among its neighbors.

The local clustering coefficient of a vertex can be com-
puted by checking whether the neighbors of the vertex are

directly connected to each other. For a vertex i with ki neigh-
bors, there is a possibility of ki (ki−1)/2 edges among the
neighbors of vertex i . This could be efficiently done in O(1)
time for each pair of neighbors by checking their corre-
sponding entry in the adjacency matrix, leading to a time
complexity ofO(k2i ) for a vertex i of degree ki . Thus, the time
complexity incurred to compute the local clustering coeffi-
cient of the vertices in a graph narrows down to the problem
of determining an upper bound for the sum of the squares of
the degrees of the vertices in a graph. This has been derived
to be O(|E | ∗ (

2∗|E |
|V |−1 + |V | − 2)) for a graph of |V | vertices

and |E | edges [36]. It would take O(|V |2) time to compute
the degree centrality of the vertices in a graph. Hence, the
time complexity incurred to compute the LCCDC of the ver-
tices in a network graph of |V | vertices and |E | edges can be
written as: O(|V |2 + |E | ∗ (

2∗|E |
|V |−1 + |V | − 2)).

4 Correlation coefficient measures

We now discuss the three well-known correlation coeffi-
cient measures that are used to evaluate the correlation
between BWC and LCCDC as well as the correlations
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between BWC and each of the other three centrality met-
rics (DegC, EVC and ClC) presented in Sect. 2. These
are the product moment-based Pearson’s correlation coef-
ficient, Rank-based Spearman’s correlation coefficient, and
Concordance-based Kendall’s correlation coefficient. The
Spearman’s and Kendall’s correlation measures are rank-
based and the Pearson’s correlation measure is a measure of
the linear relationship between two variables (in our case,
the LCCDC and BWC metrics) [6]. The Pearson’s mea-
sure captures the correlation between the two metrics as
follows: If we were to list the vertices in the monotonically
increasing order of their BWC values, are the LCCDC val-
ues of these vertices are also in the monotonically increasing
order or decreasing order or neither. The Spearman’s mea-
sure captures the correlation as follows: How close is the
ranking of the vertices based on the increasing order of their
BWC values and in the increasing order of their LCCDC
values? Kendall’s measure captures the correlation between
the two metrics as follows: Consider any two vertices vi
and v j . If BWC(vi ) > BWC(v j ), is the LCCDC(vi ) >

LCCDC(v j )orLCCDC(vi ) <LCCDC(v j )orLCCDC(vi )
= LCCDC(v j )? All the three correlation measures are inde-
pendent of each other.We use three different and independent
correlation measures to more rigorously validate our hypoth-
esis that the time-efficient LCCDC metric can be used
to rank the nodes or compare any two nodes in a real-
world network graph in lieu of the time-consuming BWC
metric.

The correlation coefficient values obtained for all the three
measures range from −1 to 1. Correlation coefficient values
closer to 1 indicate a stronger positive correlation between the
two metrics considered (i.e., a vertex having a larger value
for one of the two metrics is more likely to have a larger
value for the other metric too), while values closer to −1
indicate a stronger negative correlation (i.e., a vertex having
a larger value for one of the two metrics is more likely to
have a smaller value for the other metric). Correlation coeffi-
cient values closer to 0 indicate no correlation (i.e., the values
incurred by a vertex for the two metrics are independent of
each other). We will adopt the ranges (rounded to two dec-
imals) proposed by Evans [9] to indicate the various levels
of correlation, shown in Table 1. The color code to be used

for the various levels of correlation are also shown in this
table.

For simplicity, we refer to the two data sets as B and
C , respectively, corresponding to the betweenness centrality
and each of the other four centrality metrics (including the
LCCDC). We will use the results from Fig. 3 to illustrate
examples for the computation of the correlation coefficient
under each of the three correlation measures.

4.1 Pearson’s product moment-based correlation
coefficient

The Pearson’s product moment-based correlation coefficient
for two data sets is defined as the covariance of the two data
sets divided by the product of their standard deviation [5]. Let
Bavg and Cavg denote the average values for the BWC and
the LCCDC centrality metric for a graph of n vertices and
let Bi and Ci denote, respectively, the values for the BWC
and LCCDC incurred for vertex vi . The Pearson’s correla-
tion coefficient (indicated PCC) is quantitatively defined as
shown in Eq. (1). The term product moment is associated
with the product of the mean (first moment) adjusted values
for the two metrics in the numerator of the formulation. Fig-
ure 4 presents the calculation of the PCC for the betweenness
centrality (B) and local clustering coefficient-based degree
centrality (C) values obtained for the example graph used
in Figs. 1, 2, 3. We obtain a correlation coefficient value of
0.97 (see Fig. 4) indicating a very strong positive correlation
between the two metrics for the example graph.

PCC(B,C) =
∑n

i=1 (Bi − Bavg)(Ci − Cavg)
√∑n

i=1 (Bi − Bavg)2
∑n

i=1 (Ci − Cavg)2
...

(1)

4.2 Spearman’s rank-based correlation coefficient

Spearman’s rank correlation coefficient (SCC) is a measure
of howwell the relationship between two data sets (variables)
can be assessed using a monotonic function [5]. To compute
the SCC of two data sets Band C , we convert the raw scores
Bi and Ci for a vertex i to ranks bi and ci and use formula (2)

Table 1 Range of correlation coefficient values and the corresponding levels of correlation

Range of Correlation 
Coefficient Values Level of Correlation Range of Correlation 

Coefficient Values Level of Correlation

0.80 to 1.00  Very Strong Positive -1.00 to -0.80 Very Strong Negative
0.60 to 0.79 Strong Positive -0.79 to -0.60 Strong Negative
0.40 to 0.59 Moderate Positive -0.59 to -0.40 Moderate Negative
0.20 to 0.39 Weak Positive -0.39 to -0.20 Weak Negative
0.00 to 0.19 Very Weak Positive -0.19 to -0.01 Very Weak Negative
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shownbelow,where di = bi−ci is the difference between the
ranks of vertex i in the twodata sets.We follow the convention
of assigning the rank values from 1 to n for a graph of n
vertices, even though the vertex IDs range from 0 to n−1.
To obtain the rank for a vertex based on the list of values
for a centrality metric, we first sort the values (in ascending
order). If there is any tie, we break the tie in favor of the
vertex with a lower ID; we will thus be able to arrive at a
tentative, but unique, rank value for each vertex with respect
to the centrality metric. We determine a final ranking of the
vertices as follows: For vertices with unique value of the
centrality metric, the final ranking is the same as the tentative
ranking. For vertices with an identical value for the centrality
metric, the final ranking is assigned to be the average of their
tentative rankings. Figure 5 illustrates the computation of
the tentative and final ranking of the vertices based on their
betweenness centrality and local clustering coefficient-based
degree centrality values in the example graph used in Figs. 1,
2, 3, 4 aswell as illustrates the computation of the Spearman’s
rank-based correlation coefficient.

SCC(B,C) = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
.... (2)

In Fig. 5, we observe ties among vertices with respect to
both BWC and LCCDC. The tentative ranking is obtained by
breaking the ties in favor of vertices with lower IDs. In the
case ofBWC (B), we observe the 3 vertices 0, 6, and 7 to have
an identical BWC value of 0 each and their tentative rankings
are, respectively, 1, 2, and 3 (ties for tentative rankings are
broken in favor of vertices with lower IDs); the final ranking
(2) of each of these 3 vertices is thus the average of 1, 2, and
3. A similar scenario could be observed for LCCDC: vertices
0, 6, and 7 have an identical LCCDC value of 0 each and the
final ranking of each of these three vertices is 2, based on
their tentative rankings of 1, 2, and 3. The Spearman’s rank-
based correlation coefficient (SCC) computed for maximal
clique size and degree centrality for the example graph used
from Figs. 1, 2, 3, 4 is 0.98. We observe the SCC value to be
slightly larger than the PCC value obtained in Fig. 4 for the
same graph and the level of correlation for both the measures
falls in the range of very strong positive correlation.

4.3 Kendall’s concordance-based correlation coefficient

The Kendall’s concordance-based correlation coefficient
(KCC) for any two centralitymetrics (say, B andC) is amea-
sure of the similarity (a.k.a. concordance) in the ordering of
the values for themetrics incurred by the vertices in the graph
[5]. We define a pair of distinct vertices vi and v j as concor-
dant if {Bi > Bj and Ci > C j} or {Bi < Bj and Ci < C j}.
In other words, a pair of vertices vi and v j are concordant if
either one of these two vertices strictly have a larger value

for the two metrics B and C compared to the other vertex.
We define a pair of distinct vertices vi and v j as discordant
if {Bi > Bj and Ci < C j} or {Bi < Bj and Ci > C j}. In
other words, a pair of vertices vi and v j are discordant if a
vertex has a larger value for only one of the two centrality
metrics. A pair of distinct vertices vi and v j are neither con-
cordant nor discordant if either {Bi = Bj} or {Ci = C j} or
{Bi = Bj and Ci = C j}. The Kendall’s concordance-based
correlation coefficient is simply the difference between the
number of concordant pairs (denoted #conc.pairs) and the
number of discordant pairs (#disc.pairs) divided by the total
number of pairs considered. For a graph of nvertices, KCC
is calculated as shown in formulation (3).

KCC(B,C) = #conc.pairs − #disc.pairs
1
2n(n − 1)

.... (3)

Figure 6 illustrates the calculation of the Kendall’s corre-
lation coefficient betweenBWCandLCCDC for the example
graph used in Figs. 1, 2, 3, 4, 5. For a graph of 8 vertices,
the total number of distinct pairs that could be considered is
8(8−1)/2 = 28, and out of these, 25 pairs are classified to be
concordant and just 1 pair as discordant (this itself is a direct
indication of the very strong positive correlation between
BWC and LCCDC). The remaining 2 pairs are neither con-
cordant nor discordant (denoted as N/A) in the figure.We get
a correlation coefficient of 0.86: still falling in the range of
very strong positive correlation, though the absolute value of
the correlation coefficient is lower than the correlation coef-
ficient values obtained with the Pearson’s and Spearman’s
measures. The KCC is also observed to return the lowest
correlation coefficient values for all our experiments with
the real-world networks (Sect. 5). Thus, the KCC could be
construed to provide a lower bound for the correlation coef-
ficient values and the level of correlation between BWC and
the centrality metrics considered.

5 Real-world network graphs

We consider a suite of 18 real-world network graphs for our
correlation analysis. We list below and identify these graphs
in the increasing order of their variation in node degree, cap-
tured in the form of a metric called the spectral radius ratio
for node degree (denoted λsp) [10]. The spectral radius ratio
for node degree for a graph is the ratio of the principal eigen-
value of the adjacency matrix of the graph to that of the
average node degree. The λsp values are always greater than
or equal to 1.0. The larger the value, the larger the variation
in node degree. The λsp values of the real-world networks
considered in this paper range from 1.01 to 3.48 (i.e., from
random networks to scale-free networks). Random networks
exhibit a Poisson-style degree distribution and have a lower
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Table 2 Fundamental properties of the real-world network graphs used in the correlation studies

# Net. λsp #nodes #edges kavg Gc D PLavg Ga Gm CCavg #comps

1 FON 1.01 115 613 10.7 1.46 4 2.51 0.191 0.604 0.403 1

2 EAN 1.12 77 1549 40.2 10.6 2 1.47 −0.040 0.211 0.770 1

3 FTC 1.21 48 170 7.1 0.68 5 2.40 −0.014 0.455 0.438 1

4 RFN 1.27 217 1839 16.9 1.71 4 2.40 0.097 0.431 0.363 1

5 SJF 1.29 75 155 4.1 0.29 7 3.49 0.030 0.595 0.322 1

6 UKF 1.35 81 577 14.2 1.33 4 2.10 0.039 0.449 0.574 1

7 PBN 1.42 105 441 8.4 0.32 7 3.08 −0.023 0.521 0.488 1

8 BJN 1.45 198 2742 27.7 0.57 6 2.24 0.031 0.444 0.633 1

9 TFF 1.49 50 122 3.3 0.10 8 2.65 0.363 0.741 0.599 4

10 HCN 1.66 74 302 7.9 0.67 4 2.14 0.030 0.546 0.854 4

11 KFP 1.70 39 85 4.3 0.10 10 3.23 0.241 0.448 0.361 5

12 LMN 1.82 77 254 6.6 0.21 5 2.64 −0.077 0.553 0.736 1

13 CFN 1.83 87 407 9.1 0.98 3 1.95 −0.166 0.372 0.777 2

14 MTB 1.95 70 295 9.2 0.33 2 1.85 0.029 0.380 0.794 1

15 FBN 2.29 187 939 10.0 0.10 7 3.07 0.349 0.687 0.631 21

16 AKN 2.48 138 494 7.1 0.33 5 2.45 −0.081 0.371 0.798 2

17 ERN 3.00 472 1314 6.1 0.05 11 4.02 0.182 0.534 0.347 3

18 SJC 3.48 475 625 2.6 0.03 17 6.49 0.350 0.945 0.818 104

variation in node degree; their λsp values are typically closer
to 1.0. Scale-free networks have a larger variation in node
degree (especially those like the airline networks that have
a few hubs—high degree nodes, and the rest of the nodes
are of relatively much lower degree)—incurring a larger λsp
value.

The real-world network graphs are briefly introduced
below, in the increasing order of their λsp value. We also
identify these networks with their ID (ranging from 1 to 18 as
listed below) as well as with a three-character abbreviation—
listed along with the λsp value. Table 2 lists the values for
the following fundamental properties for each of these net-
works: average degree (kavg), algebraic connectivity (Gc)

[11], diameter (D), average path length (PLavg), assortativity
(Ga) [12], modularity (Gm) [13], average clustering coeffi-
cient (CCavg) [1], and number of components (#comps). The
values for each of the above properties for the real-world
network graphs were obtained using our own implementa-
tion of the algorithms to determine these properties and their
validity is verified using the Gephi [14] tool. We restrict our-
selves to networks of moderate size due to the excessive
computation time involved in computing the betweenness
centrality for larger networks. In addition, we restrict our-
selves to undirected network graphs (i.e., those that have a
symmetric adjacency matrix) for the analysis conducted in
this paper. Note that betweenness centrality is a symmetric
centrality metric (i.e., unlike in-degree and out-degree, there
do not exist in and out versions of BWC).

1. US Football Network (FON; λsp = 1.01) [15]: this is
a network of 115 football teams (nodes) of US uni-
versities that played in the Fall 2000 season; there is
an edge between two nodes if the corresponding teams
have played against each other in the league games.

2. Employee Awareness Network (EAN; λsp = 1.12)
[16]: this is a network of 77 employees (nodes) from a
research team in amanufacturing company; there exists
an edge between two nodes if the two employees are
aware of each other’s knowledge and skills.

3. Flying Teams Cadet Network (FTC; λsp = 1.21) [17]:
this is a network of 48 cadet pilots (vertices) at an US
Army Air Forces flying school in 1943, and the cadets
were trained in a two-seated aircraft; there exists an
edge between two vertices if at least one of the two cor-
responding cadet pilots have identified the other pilot
among his/her preferred partners with whom she/he
likes to fly during the training schedules.

4. ResidenceHall FriendshipNetwork (RFN; λsp = 1.27)
[18]: this is a network of 217 residents (vertices) living
at a residence hall located on the Australian National
University campus. There exists an edge between two
vertices if the corresponding residents are friends of
each other.

5. San Juan Sur Family Network (SJF; λsp = 1.29) [19]:
this is a network of 75 families (vertices) in San Juan
Sur, Costa Rica, 1948. There exists an edge between
two vertices if at least one of the two corresponding
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families have visited the other family’s household at
least once.

6. UK Faculty Friendship Network (UKF; λsp = 1.35)
[20]: this is a network of 81 faculty (vertices) at a UK
university. There exists an edge between two vertices
if the corresponding faculty are friends of each other.

7. US Politics Books Network (PBN; λsp = 1.42) [21]:
this is a network of books (vertices) about US poli-
tics sold by Amazon.com around the time of the 2004
US presidential election. There exists an edge between
two vertices if the corresponding two books were co-
purchased by the same buyer (at least one buyer).

8. Jazz Band Network (JBN; λsp = 1.45) [22]: this is
a network of 198 Jazz bands (vertices) that recorded
between the years 1912 and 1940; there exists an edge
between two bands if they shared at least one musician
in any of their recordings during this period.

9. Teenage Female Friendship Network (TFF; λsp =
1.49) [23]: this is a network of 50 female teenage stu-
dents (vertices) who studied as a cohort in a school in
the West of Scotland from 1995 to 1997. There exists
an edge between two vertices if the corresponding stu-
dents reported (in a survey) that they were best friends
of each other.

10. Huckleberry Coappearance Network (HCN; λsp =
1.66) [24]: this is a network of 74 characters (vertices)
that appeared in the novel Huckleberry Finn by Mark
Twain; there is an edge between two vertices if the cor-
responding characters had a common appearance in at
least one scene.

11. Korea Family Planning Network (KFP; λsp = 1.69)
[25]: this is a network of 39 women (vertices) at a
Mothers’ Club in Korea; there existed an edge between
two vertices if the correspondingwomenwere seen dis-
cussing family planningmethods during an observation
period.

12. Les Miserables Network (LMN; λsp = 1.81) [24]: this
is a network of 77 characters (nodes) in the novel Les
Miserables; there exists an edge between two nodes if
the corresponding characters appeared together in at
least one of the chapters in the novel.

13. Copperfield Network (CFN; λsp = 1.83) [26]: this is
a network of 87 characters in the novel David Copper-
field by Charles Dickens; there exists an edge between
two vertices if the corresponding characters appeared
together in at least one scene in the novel.

14. Madrid Train Bombing Network (MTB; λsp = 1.95)
[27]: this is a network of suspected individuals and their
relatives (vertices) reconstructed by Rodriguez using
press accounts in the two major Spanish daily newspa-
pers (El Pais and El Mundo), regarding the bombing of
commuter trains in Madrid on March 11, 2004. There
existed an edge between two vertices if the correspond-

ing individuals were observed to have a link in the
form of friendship, ties to any terrorist organization,
co-participation in training camps and/or wars, or co-
participation in any previous terrorist attacks.

15. Facebook Network (FBN; λsp = 2.29): this is a net-
work of the 187 friends (vertices) of the author in the
well-known socialmedia network, Facebook [28]. There
exists an edge between two nodes if the corresponding
people are also friends of each other.

16. Anna Karnenina Network (AKN; λsp = 2.47) [24]: this
a network of 138 characters (vertices) in the novel Anna
Karnenina; there exists an edge between two vertices if
the corresponding characters have appeared together in
at least one scene in the novel.

17. Erdos Collaboration Network (ECN; λsp = 3.00) [29]:
this is a network of 472 authors (nodes) who have either
directly published an article with Paul Erdos or through
a chain of collaborators leading to Paul Erdos. There is
an edge between two nodes if the corresponding authors
have co-authored at least one publication.

18. Social Journal Network (SJN; λsp = 3.48) [30]: this is
a network of 475 authors (vertices) involved in the pro-
duction of 295 articles for the Social Networks Journal,
since its inception until 2008; there is an edge between
two vertices if the corresponding authors co-authored at
least one paper published in the journal.

We measured the execution time incurred (measured in
milliseconds) to compute each of the 5 centrality metrics:
LCCDC, DegC, BWC, EVC, and ClC for the above 18
real-world networks. The executions were conducted on a
computer with Intel Core i7-2620M CPU @ 2.70 GHz and
an installed main memory (RAM) of 8 GB. We ran the pro-
cedures for each of these 5 centrality metrics on each of
the real-world networks for 20 iterations and averaged the
results. Table 3 lists the raw values for the average execution
time (in milliseconds) for each of the 5 centrality metrics
on the 18 real-world networks. Figure 7 plots the natural
logarithm of the average execution time (for the values to
be plotted on a comparable scale) incurred for the centrality
metrics on each of the real-world networks. While the net-
works are listed in Table 3 and Fig. 7 in the increasing order
of their spectral radius ratio for node degree (the same order
as in Table 2); for each network, the centrality metrics are
shown in the decreasing order of the execution times. Over-
all, we observe that networks with a larger number of nodes
incur a larger execution time; for networks with comparable
number of nodes, the execution time for the centrality met-
rics increases with increase in the edge-node ratio (ratio of
the number of nodes to the number of edges), especially to
compute the time-consuming centrality metrics, such as the
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Table 3 Average execution time to compute the centrality metrics for the real-world network graphs

# Net. # nodes Edge-node ratio Average execution time to compute the centrality metrics (ms)

BWC EVC ClC LCCDC DegC

1 FON 115 5.33 166149.5 6229.7 1403.8 136.5 26.2

2 EAN 77 20.12 61915.4 3203.2 582.8 459.2 17.5

3 FTC 48 3.54 9694.8 921.4 136.8 25.8 10.6

4 RFN 217 8.47 2,198,077.4 54,264.1 8925.4 472.1 50.6

5 SJF 75 2.07 33,514.1 1924.1 407.1 36.9 17.1

6 UKF 81 7.12 56,355.1 2321.3 507.5 133.0 18.2

7 PBN 105 4.20 1,16,321.7 4802.3 992.1 94.3 24.3

8 BJN 198 13.85 1,970,503.6 74,771.2 17,774.7 12,137.8 56.3

9 TFF 50 2.44 4527.5 548.1 109.5 13.7 9.5

10 HCN 74 4.08 25,299.1 1520.1 347.8 62.3 17.1

11 KFP 39 2.18 3782.5 318.9 76.8 13.3 7.2

12 LMN 77 3.30 35,168.4 1361.2 470.2 42.2 17.1

13 CFN 87 4.68 56,355.1 2321.3 507.5 133.0 18.2

14 MTB 70 4.21 23,998.0 1170.4 308.7 52.8 16.7

15 FBN 187 5.02 8,17,865.3 24,435.9 5166.5 184.4 40.3

16 AKN 138 3.58 3,96,377.5 1,54,722.5 27,190.2 1270.7 33.8

17 ERN 472 2.78 23,106,718.9 5,38,524.0 81,444.4 1238.4 100.7

18 SJC 475 1.32 14,564,978.3 3,49,242.1 82,584.8 181.3 89.7

Fig. 7 Average execution time to compute the centrality metrics for the real-world network graphs (natural logarithm scale)

BWC and EVC. Table 3 and Fig. 7 display a clear ranking
of the centrality metrics with respect to the execution time:
BWC and DegC incur, respectively, the largest and small-
est values for the average execution time for each real-world
network analyzed. As the LCCDC values are computed by
making use of the DegC values, it is natural to expect the
execution time of the procedure to compute the LCCDC val-
ues to be larger than that of the DegC values. The execution
time of the degree centrality metric appears to be anywhere
from 0.4–69 % of the execution time of the LCCDC metric.

From Table 3 and Fig. 7, we could clearly observe the
LCCDC metric to consistently incur a lower execution time
compared to the BWC, EVC, and ClCmetrics for each of the
real-world networks analyzed.Weobserve the execution time
incurred to compute the LCCDC metric to be significantly
smaller than that of the BWCmetric. The ratio of the average
execution time for computing the BWC and LCCDC values
for the real-world networks ranges from 117 to 80,330. The

ClCmetric incurs an execution time that is at least 25% larger
than the execution time of the LCCDCmetric and appears to
be even significantly larger for several real-world networks
evaluated. The EVCmetric incurs an execution time that is 6
to 1926 times larger than the execution time of the LCCDC
metric. Considering all of the above, our claim that LCCDC
is a computationally lightweight metric is well justified.

Table 4 presents the raw values for the correlation coef-
ficient obtained for the Betweenness centrality metric and
each of the four centrality metrics: LCCDC, DegC, EVC,
and ClC based on the PCC, SCC, and KCC measures. We
color code the levels of correlation in Table 4 according to
the color codes listed in Table 1. Under all the three corre-
lation measures, we observe the proposed LCCDC metric to
demonstrate significantly larger correlation coefficient val-
ues with BWC vis-a-vis the correlation coefficient values
incurred by the other centrality metrics. Among the three
correlation measures, the Spearman’s rank-based correla-
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Table 4 Correlation coefficient values between betweenness centrality and the other centrality metrics for real-world network graphs

Pearson Correlation Coeff. Spearman Correlation Coeff. Kendall's Correlation Coeff.

# Net. LCC
DC

Deg
C ClC EVC LCC

DC
Deg
C ClC EVC LCC

DC
Deg
C ClC EVC

1 FON 0.67 0.28 0.82 0.15 0.61 0.40 0.84 0.17 0.44 0.20 0.65 0.12
2 EAN 0.94 0.89 0.95 0.74 1.00 0.83 0.83 0.68 0.95 0.69 0.69 0.57
3 FTC 0.92 0.78 0.79 0.54 0.92 0.73 0.80 0.41 0.77 0.55 0.61 0.30
4 RFN 0.90 0.84 0.76 0.65 0.93 0.84 0.86 0.62 0.79 0.66 0.67 0.45
5 SJF 0.86 0.81 0.79 0.53 0.85 0.73 0.77 0.41 0.66 0.52 0.57 0.29
6 UKF 0.91 0.78 0.71 0.63 0.95 0.79 0.75 0.60 0.82 0.61 0.57 0.45
7 PBN 0.78 0.71 0.78 0.44 0.86 0.68 0.81 0.37 0.69 0.49 0.61 0.26
8 BJN 0.76 0.61 0.48 0.40 0.86 0.74 0.73 0.57 0.71 0.57 0.56 0.42
9 TFF 0.68 0.22 0.36 0.14 0.88 0.46 0.47 -0.19 0.61 0.29 0.34 -0.11

10 HCN 0.94 0.83 0.06 0.67 0.92 0.70 0.69 0.65 0.55 0.41 0.41 0.37
11 KFP 0.70 0.47 0.28 0.28 0.80 0.51 0.61 0.40 0.62 0.35 0.46 0.26
12 LMN 0.93 0.75 0.63 0.42 0.88 0.77 0.68 0.72 0.60 0.48 0.43 0.43
13 CFN 0.90 0.81 0.82 0.58 0.95 0.83 0.77 0.77 0.73 0.60 0.55 0.53
14 MTB 0.87 0.73 0.15 0.55 0.91 0.76 0.68 0.56 0.64 0.53 0.46 0.35
15 FBN 0.54 0.26 0.18 -0.12 0.86 0.58 0.70 -0.22 0.67 0.40 0.52 -0.14
16 AKN 0.95 0.89 0.66 0.72 0.88 0.78 0.66 0.69 0.54 0.49 0.39 0.41
17 ERN 0.83 0.78 0.15 0.62 0.92 0.86 0.72 0.64 0.69 0.63 0.51 0.44
18 SJC 0.59 0.39 0.34 0.03 0.78 0.65 0.56 0.16 0.29 0.22 0.19 -0.08

tion measure yields the largest values for the correlation
coefficient between LCCDC and BWC, such that the level
of correlation is very strongly positive for 16 of the 18
networks analyzed and strongly positive for the remain-
ing two networks. Similarly, with respect to the Pearson’s
product moment-based correlation measure, we observe the
LCCDC metric to exhibit correlation levels of strongly
to very strongly positive for 16 of the 18 networks (11
networks exhibit very strongly positive correlation and 5 net-
works exhibit strongly positive correlation). The Kendall’s
concordance-based correlation measure yields the lowest
values for the correlation coefficient between BWC and
the other centrality metrics. Nevertheless, even under the
Kendall’s correlation measure: we observe the LCCDCmet-
ric to exhibit strong to very strong positive correlation with
BWC for 14 of the 18 real-world networks analyzed. Overall,
considering all the three correlation measures, we could say
that the LCCDC metric exhibits strong to very strong levels
of positive correlation for at least 14 of the 18 real-world net-
works analyzed. Such a high level of correlation with BWC
is not observed for the other three centrality metrics analyzed
in this paper, as well as for any other network analysis metric
in the literature.

Figures 8, 9 and 10 compare the relative magnitude of
the values for the correlation coefficient (based on the prox-
imity of the data points to the diagonal line in these figures)
obtained for BWC-LCCDCwith each of the other three com-
binations of centrality metrics: BWC-DegC, BWC-ClC, and
BWC-EVC under each of the three correlation measures.

Each data point in these figures corresponds to a particu-
lar real-world network. If a data point is below the diagonal
line, it implies the correlation coefficient incurred for BWC-
LCCDC is larger than the correlation coefficient incurred for
the BWC-centrality metric combination for the real-world
network that the data point represents. If a data point lies
above the diagonal line, it implies the BWC-LCCDC cor-
relation coefficient is lower than the BWC-centrality metric
combination for the corresponding real-world network. If a
data point lies on the diagonal line, it implies the correla-
tion coefficient values are almost equal. Among the other
three centrality metrics analyzed (see Figs. 8, 9, 10 for a
comparison), the degree centrality metric exhibits relatively
higher levels of correlation with BWC. Nevertheless, when
compared to the correlation coefficient values incurred for
BWC-LCCDC, the BWC-DegC correlation coefficient val-
ues are at least lower by 0.05 (in a scale of −1 to 1) for all
the 18 real-world networks and lower by at least 0.10 for at
least 10 of the 18 real-world networks under each of the three
correlation measures.

The only centralitymetricwhich exhibits correlation coef-
ficient values (with BWC) matching or exceeding to that
incurred for LCCDC-BWC for at least one of the real-world
networks under at least one of the three correlation measures
is the closeness centrality (ClC) metric. The best case sce-
nario for ClC is that there exists just one real-world network
(among the 18 networks analyzed) for which the BWC-ClC
correlation coefficient is larger than the BWC-LCCDC cor-
relation coefficient under all the three correlation measures;
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BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 8 Distribution of the correlation coefficient values for real-world networks under the Pearson’s product moment-based correlation measure
(from the centrality metrics viewpoint)

BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 9 Distribution of the correlation coefficient values for real-world networks under the Spearman’s Rank-based correlation measure (from the
centrality metrics viewpoint)

BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 10 Distribution of the correlation coefficient values for real-world networks under the Kendall’s concordance-based correlationmeasure (from
the centrality metrics viewpoint)

in addition, under the Pearson’s and Spearman’s correlation
measures: the correlation coefficient values incurred for ClC
with BWC equal to those incurred for LCCDCwith BWC for
two of the 18 real-world networks. Note that the closeness
centrality metric is relatively more computation-intensive (a
shortest path algorithm needs to be run at every vertex), as
is also vindicated by the results in Table 3 and Fig. 7. The
Eigenvector centrality (EVC)metric exhibits relatively lower
levels of correlation with BWC among all the centrality met-
rics analyzed and under all the three correlation measures.
This could be attributed to the relatively larger clustering
coefficient values incurred for vertices with higher EVC. A
node iwith a higher EVC is more likely surrounded by nodes
having higher degree: a majority of these nodes could be
directly connected to each other and there would be no need
to go through node i . As a result, vertices with higher EVC
are very less likely to lie on the shortest path for their neigh-
bor nodes.

Among the three correlation measures used to evaluate
the correlation of BWC with LCCDC and the other cen-
trality metrics, we observe the Spearman’s measure to yield
correlation coefficient values that are relatively more closer
to that of the Pearson’s measure. This could be deduced by
observing the relative proximity of the data points to the
diagonal line in Fig. 11: the data points corresponding to
the Spearman’s and Pearson’s correlation measures are rela-
tively more closer to the diagonal line when compared to the
data points corresponding to the Kendall’s and Pearson’s cor-
relation measures. Overall, for a majority of the real-world
networks analyzed, the Spearman’s andKendall’s correlation
measures appear to, respectively, provide the upper bound
and lower bound for the values of the correlation coefficient
(and the correlation levels) incurred between BWC and each
of the other four centrality metrics.

With respect to the impact of the variation in node degree
on the correlation levels, overall: we observe the level of cor-
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Betweenness Centrality (BWC) and Local Clustering
Coefficient-based Degree Centrality (LCCDC) Degree Centrality (DegC) 

Betweenness Centrality (BWC) and Betweenness Centrality (BWC) and 

Betweenness Centrality (BWC) and

Closeness Centrality (ClC) Eigenvector Centrality (EVC)

Fig. 11 Distribution of the correlation coefficient values for real-world network graphs (from the correlation measures viewpoint)

relation betweenBWCand each of the four centralitymetrics
to decrease with increase in the spectral radius ratio for node
degree (more predominantly observed with the Kendall cor-
relation measure and to a certain extent with the Pearson’s
and Spearman’s correlation measures). A high-level view
of the results in Table 4 indicates that the correlation level
tends to reduce from a higher positive level to a relatively
lower level as the spectral radius ratio for node degree of
the real-world network graphs increases. As the networks
become increasingly scale-free (i.e., the variation in node
degree in the network increases), the trend we could deduce
is a decrease in the correlation coefficient values between
BWC and each of the four centrality metrics (especially in
the case of Eigenvector centrality under all the three correla-
tion measures).

6 Related work

Several centrality metrics have been proposed for the com-
plex network analysis.UCINET6 [31] employs the following
eight of these centrality metrics: degree, betweenness, close-
ness, eigenvector, power, information, flow, and reach. As
mentioned earlier, the most frequently used centrality met-
rics are: degree, closeness, betweenness, and eigenvector.
In one of the first studies on correlations among central-

ity metrics, Bolland [32] observed that degree centrality
and closeness centrality are highly correlated, while the
betweenness centrality is relatively uncorrelatedwith degree,
and closeness and eigenvector centralities. Rothenberg et
al. [33] observed the information centrality and distance
metrics (eccentricity, mean, and median of the path length
between any two vertices) to be not so strongly correlated
with the degree and betweenness centrality metrics. Rother-
berg et al. [33] observed the degree centrality to be the
most strongly correlated metric with betweenness centrality:
we also observe that next to LCCDC, the degree central-
ity could be claimed as the centrality metric that exhibits
stronger correlation with BWC. With respect to the impact
of symmetry in the adjacency matrix on the correlation lev-
els observed, Valente et al. [34] observed that the disparity
between symmetric centralitymetrics (like betweenness) and
asymmetric centrality metrics (like degree) increases when
computed on the undirected instances of directed network
graphs.

For scale-free networks [35], the distribution of the
betweenness centrality of the vertices has been observed
to follow a power-law pattern (similar to that of the degree
centrality) [37]. It was also observed in [38] that for scale-
free networks that are either dissortative [12] or neutral with
respect to node degree, the average of the betweenness cen-
tralities of the neighbors of a vertex is proportional to the
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betweenness centrality of the vertex considered; whereas, for
assortative scale-free networks, the betweenness centralities
of the neighbors of a vertex is independent of the betweenness
centrality of the vertex considered.

Among the various localized centrality metrics proposed
in the literature, the “leverage” centrality metric proposed by
Joyce et al. [39] for brain networks has gained prominence.
Leverage centrality of a node is a measure of the extent of
connectivity of the node relative to the connectivity of its
neighbors. For a node i withdegree ki and set of neighbors Ni ,
the leverage centrality of node i , LVC(i) = 1

ki

∑
j∈Ni

ki−k j
ki+k j

[39]. Leverage centrality is based on the notion that a node
with degree higher than the degree of its neighbors is likely
to be more influential on its neighbors and vice-versa. The
above formulation for LVC restricts its use only for ver-
tices with degree 1 or above and not applicable for isolated
vertices. On the other hand, our proposed LCCDC metric
(also a localized centrality metric) could be computed for
any vertex and the entire network graph need not be just
one single connected component. Moreover, the above for-
mulation for leverage centrality metric compares the degree
of a node with the degree of an individual neighbor node,
and fails to take into consideration the connectivity among
the neighbor nodes themselves (without involving the node
in consideration). Hence, the leverage centrality metric can-
not be a suitable alternate for the betweenness centrality
(BWC) metric, as is also evidenced in the correlation studies
of [39]: the correlation between leverage centrality and BWC
is lower than the correlation between degree centrality and
BWC. On the other hand, we observe that the correlation
between LCCDC and BWC is even stronger than the cor-
relation between degree centrality and BWC that has been
observed in the literature until now. Thus, our proposed
LCCDC metric is significantly different from that of the
leverage centrality, closeness centrality, and the other cen-
trality metrics.

Li et al. [40] conducted an extensive correlation study for
the centralitymetrics on 34 real-world network graphs aswell
as the theoretical graphs generated from the Erdos-Renyi
(ER; for random networks) [41] and Barabasi-Albert (BA;
for scale-free networks) [36] models. It has been observed in
[40] that the degree centrality metric exhibits the strongest
levels of correlation with the betweenness centrality met-
ric for both the ER and BA networks. Likewise, for about
two-thirds of the 34 real-world network graphs, the BWC-
DegC correlation coefficient values were observed to be the
largest incurred compared to the correlation coefficient val-
ues incurred for BWC-ClC, BWC-LVC, and BWC-EVC.
Unlike our paper, the correlation study in Li et al. [40] has
been conducted only with the Pearson’s product moment-
based correlation measure. We observe from the results of
this paper that the Kendall’s concordance-based correlation

measure gives a lower estimate for the levels of correla-
tion between any two centrality metrics. The LCCDCmetric
withstands the test with respect to all the three correlation
measures and consistently incurs larger values for the cor-
relation coefficient with BWC compared to the correlation
coefficient values incurred for any other centrality metric
with BWC.

7 Conclusions

The high-level contribution of this paper is the proposal of
a localized, computationally lightweight alternate centrality
metric for the computation-intensive betweenness centrality
(BWC) metric that is widely used for the complex network
analysis. We effectively magnify the importance of a node to
connect its neighbors on the shortest path (evaluated through
the local clustering coefficient) with the node’s degree to
assess its importance to connect any two nodes in the network
on a shortest path. Our hypothesis is that nodes with higher
degree, but lower local clustering coefficient, are more likely
to be part of several shortest paths between any twonode pairs
in the network. Accordingly, we propose the local clustering
coefficient-based degree centrality (LCCDC) for a vertex as
the product of the degree of the vertex and oneminus the local
clustering coefficient. We observe the LCCDC to exhibit a
strong-very strong positive correlation with BWC (under all
the three correlation measures used) for a majority of the
real-world network graphs analyzed. Evenwith theKendall’s
concordance-based correlation measure (that is observed to
return lower values for the correlation coefficient among
the three correlation measures considered), we observe the
LCCDCmetric to exhibit strong-very strong levels of correla-
tionwith BWC for 14 of the 18 real-world networks analyzed
(whereas the degree centrality and closeness centrality met-
rics could at most exhibit strong correlation with BWC for at
most 4–5 of the 18 real-world networks analyzed). Under the
Spearman’s rank-based correlation measure, we observe the
LCCDC to be very strongly correlated to BWC (correlation
coefficient values of 0.80 or above) for 16 of the 18 real-world
networks. Thus, we confidently claim that the LCCDC could
effectively serve as an alternatemetric for ranking the vertices
of a graph in lieu of the BWC. To the best of our knowledge,
we have not come across such a computationally lightweight
centrality metric that is highly correlated with betweenness
centrality. As part of future work, we will explore extending
the application of the LCCDCmetric (with appropriate mod-
ifications) for directed real-world network graphs as well as
conduct a correlation study between LCCDC and BWC for
network graphs generated from theoretical models (like the
ER and BA models).
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