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Abstract Classification of speech is one of the most vital
problems in speech processing. Although there have been
many studies on the classification of speech, the results
are still limited. Firstly, most of the speech classification
approaches requiring input data have the same dimension.
Secondly, all traditional methodsmust be trained before clas-
sifying speech signal and must be retrained when having
more training data or new class. In this paper, we propose an
approach for speech classification using Scale-invariant Fea-
ture Transform (SIFT) features on spectrogram images of
speech signal combination with Local naïve Bayes nearest
neighbor. The proposed approach allows using feature vec-
tors to have different sizes. With this approach, the achieved
classification results are satisfactory. They are 73, 96, 95,
97%, and 97% on the ISOLET, English Isolated Digits,
Vietnamese Places, Vietnamese Digits, JVPD databases,
respectively. Especially, in a subset of the TMW database,
the accuracy is 100%. In addition, in our proposed approach,
non-retraining is needed for additional training data after the
training phase. The experiment shows that the more fea-
tures are added to the model, the more is the accuracy in
performance.
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1 Introduction

Studies on speech processing have been carried out for more
than 50 years. Despite the fact that a great deal about how
the system works has been researched, there is still more to
be discovered. Previously, researches considered speech per-
ception and speech recognition as separate domains. Speech
perception focuses on the process that operates to decode
speech sounds no matter what words those sounds might
comprise.

However, there have been some differences between
speech perception, speech classification and speech recog-
nition. The differences are that speech recognition points out
what the input signal is, while speech perception results in
an interaction of input signal and speech classification, orga-
nizing speech signal into a category for its most effective and
efficient use base on a set of training speech signal. In this
paper, we focus on the problem of speech classification or,
more particularly, on isolated words classification.

Researches on the speech classification have started with
[1–3]. Some popular theory for speech classification are
Motor theory [2], TRACE model [4,5], Cohort model [6]
and Fuzzy-logical model [4].

The Motor theory was proposed by Liberman and Cooper
[2] in the 1950s. The Motor theory was developed further by
Liberman et al. [1,2]. In this theory, listeners were said to
interpret speech sounds in terms of the motoric gestures they
would use to make those same sounds.

The TRACE model [5] is a connectionist network with
an input layer and three processing layers: pseudo-spectra,
phoneme and word. There are three types of connection in
TRACE model. The first connection type is feedforward
excitatory connections from input to features, features to
phonemes and phonemes to words. The second connection
type is lateral inhibitory connections at the feature, phoneme
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and word layers. The last connection type is top-down feed-
back excitatory connections from words to phonemes.

The original Cohort model was proposed in 1984 by Wil-
son et al. [6]. The core idea at the heart of the Cohort model is
that human speech comprehension is achieved by processing
incoming speech continuously as it is heard. At all times, the
system computes the best interpretation of currently avail-
able input combining information in the speech signal with
prior semantic and syntactic context.

The fuzzy logical theory of speech perception was devel-
oped by Massaro [4]. He proposes that people remember
speech sounds in a probabilistic, or graded, way. It suggests
that people remember descriptions of the perceptual units
of language, called prototypes. Within each prototype, var-
ious features may combine. However, features are not just
binary, there is a fuzzy value corresponding to how likely it
is that a sound belongs to a particular speech category. Thus,
when perceiving a speech signal our decision about what we
actually hear is based on the relative goodness of the match
between the stimulus information and values of particular
prototypes. The final decision is based on multiple features
or sources of information, even visual information.

For the speech recognition problem, some commonmeth-
ods are hiddenMarkovmodels (HMM) [7,8], neural network
[9,10], dynamic time wrapping [11], deep neural network
(DNN) acoustic models [12,13]. These approaches usually
use frequent features of speech signal such as MFCC [9],
LPC [14] or raw speech signal using a convolution neural
network to learn features [16–18] as input features. To be
used with common machine learning techniques, the size
of these input features must be the same. Thus, the speech
features must be resampled or quantized to have the same
size. In addition, the disadvantage of these machine learning
techniques is that they do not allow adding training sam-
ples without retraining. This reduces the flexibility needed
for large-scale speech perception application. To retain all
the discriminative features of the data, Boiman proposed a
classification approach called naïve Bayes Nearest neighbor
(NBNN) [19], then Sancho developed this method and pro-
posed an approach called local naïve Bayes nearest neighbor
(LNBNN) [20]. These approaches were successful in images
classification problem.

In this study, we propose an approach for speech classi-
fication based on spectrogram images. In this approach, we
proposed the use of scale-invariant feature transform (SIFT)
of speech signal spectrogram image. SIFT features are invari-
ant to scale and have been used well for image classification
[21,22]. In particular, feature points with SIFT description
are extracted successfully from 2D image of frequency spec-
tral of speech signal. The quantity of feature points of each
image is different. Each feature point describes one local fea-
ture of image; therefore, quantization of these features will
result in the loss of the descriptive nature about the local

feature of the image. Therefore, we should use an algorithm
classification which allows using feature vectors in different
sizes, while LNBNN [20] accepts input features with differ-
ent sizes and has acceptable running time. In this paper, we
propose the use of LNBNN for classifying speech signal rep-
resented by image based on SIFT features. This is motivated
from the work in [20], where LNBNN is used with SIFT
features for searching images in a database. One advantage
of this approach is that new training samples are also added
without retraining.Moreover, this approach allows using fea-
ture vectors in different sizes.

The paper is structured as follows. Section 2 presents
related works. The scale-invariant feature transform and the
local naïve Bayes nearest neighbor method is described in
Sect. 3. Then, our approach is explained in Sect. 4, and exper-
iments to show the performance of the approach are shown
in Sect. 5.

2 Related works

Speech classification by machine came into existence in
the early 1920s. The first machine to recognize speech was
manufactured in 1920s [23]. The earliest attempts to devise
systems for automatic speech classification by machine were
made in 1950s, when various researchers tried to exploit the
fundamental ideas of acoustic phonetics. During 1950s, most
of the speech classification systems investigated spectral res-
onances during the vowel region of each utterance which
were extracted from output signals of an analog filter bank
and logic circuits [24]. In 1952, Davis et al. [25] built a sys-
tem for isolated digit classification for a single speaker. The
system relied heavily on measuring spectral resonances dur-
ing the vowel region of each digit. In 1956, Olson et al. [26]
tried to classify ten syllables of a single talker, as embodied in
ten monosyllabic words. The system again relied on spectral
measurements primarily during vowel regions. In 1959, Fry
[27] tried to build a phoneme recognizer to recognize four
vowels. They used a spectrum analyzer and a patternmatcher
to make the recognition decision.

In the 1970s, research on speech classification just focused
on isolated word recognition [28] and the problems of con-
nected word recognition was a focus of research in the 1980s
with the goal of creating a robust system capable of recog-
nizing a fluently spoken string of words based on matching
a concatenated pattern of individual words [29].

In the 1990s, Loizou and Cole [30,31] proposed a
high-performance alphabet recognition based on context-
dependent phoneme HMM. They used E-set letters consist-
ing of the letters B, C, D, E, G, P, T, V and Z to perform
the recognition experiment. In the experiment, they also
addressed confusion caused by nasals (letters M and N).
They have achieved a 95% recognition rate for speaker-
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independent E-set recognition and an overall alphabet recog-
nition rate of 97.3%. Cole and Fanty [32,33] proposed the
English Alphabet Recognizer (EAR) system that performed
recognition of isolated alphabets. In this system, a rule-based
segmenter was used to segment the alphabet into four broad
phonetic categories. Then, featureswere extracted from these
broad phonetic categories. These features were the input
of back propagation neural network (BPNN) for classifica-
tion. Cole and Fanty used BPNN with conjugate gradient
optimization consisting of 617 input nodes, 52 hidden layer
and 26 output nodes as the classification method. The EAR
system result achieved 96% for speaker-independent letter
recognition. Favero [15] also proposed speech-recognized
model on E-set letters. In this model, the speech signal is
parameterized with compound wavelets and an HMM-based
recognizer was used for classification. Experiments were
conducted by varying the compound level to note the increase
in the recognition rate. The best recognition rate obtainedwas
71.4% at compound level 4. However, they did not solve the
problem in a noisy environment.

In 2001, Karnjanadecha [34] proposed signal modeling
for high performance and robust isolated word recogni-
tion. In this model, HMM was used for classification. The
recognition accuracy rate of this experiment was 97.9%
for speaker-independent isolated alphabet recognition.When
adding Gaussian noise (15 dB) or testing like telephone
speech simulation, the recognition rates were 95.8 and
89.6%, respectively.

In 2004, Ibrahim [35] presented a technique to overcome
the confusion problem by means of time-extended features.
He expanded the duration of the consonants to gain a high
characteristic difference between confusable pairs in the E-
set letters. A continuous density HMM model was used as
the classifier. The best recognition rate was only 88.72%.
Moreover, the author did not test on any noisy speech.

In 2011, Jonathan developed a model for Sound event
classification in mismatched conditions [36]. In this model,
they developed a nonlinear feature extraction method which
first maps the spectrogram into a higher dimensional space,
by quantizing the dynamic range into different regions, and
then extracts the central moments of the partitioned mono-
chrome intensity distributions as the feature of sound.

In 2009, Mohamed et al. tried using pre-trained, deep
neural networks as part of a hybrid monophone DNN–HMM
model on TIMIT, a small-scale speech task [37], and in
2012, Mohamed et al. were the first to succeed in pre-trained
DNN–HMMs on acoustic modeling with varying depths of
networks [38,39]. In 2013, Bocchieri and Tuske succeeded
in using DNN for speech recognition for large vocabulary
speech tasks [40,41].

Ossama et al. proposed using convolutional neural net-
works (CNN) for speech recognition in 2014. They showed

that the hybrid deep neural network hidden Markov model
(DNN–HMM) has been shown to significantly improve
speech recognition performance over the conventional
Gaussian mixture model–hidden Markov model (GMM–
HMM). Their experimental results show that CNN reduces
the error rate by 6–10 % compared with DNN on the TIMIT
phone recognition and the voice search large vocabulary
speech recognition problem.

In 2015, Palaz at al. used CNN for continuous speech
recognition using raw speech signal [42]. They extended the
CNN-based approach to large vocabulary speech recogni-
tion problem and compared the CNN-based approach against
the conventional ANN-based approach on Wall Street Jour-
nal corpus. They also showed that the CNN-based method
achieves better performance in comparison with the conven-
tional ANN-based method as many parameters and features
learned from raw speech by the CNN-based approach could
generalize across different databases.

In 1997, early classification approach based on naïve
Bayes classifierwas proposed byDomingos and Pazzani [43]
in images classification where the independence assumption
was violated. They showed that the naïve Bayes classifier
can perform well with regard to misclassification rate even
when the independence assumption does not hold. They have
performed extensive evaluations onmany real-world datasets
that violate the independence assumption and have showed
that the classification performance is equal to or better than
other learning methods. In 2008, Boiman et al. [19] pro-
posed a feature-wise nearest neighbor model called naive
Bayes nearest neighbor (NBNN). They did not quantize the
descriptors, but retained all of the reference descriptors in
their original form. In 2010, they optimized NBNN by cor-
recting it for the case of unbalanced training sets [44]. They
also pointed out that a major practical limitation of NBNN
is the performing time in the nearest neighbor search. In
2011, Tuytelaars et al. [45] used the NBNN response vec-
tor of a query image as the input feature for a kernel SVM.
This allowed discriminative training and combination with
other complementary features using multiple kernels. Kernel
NBNN produces increase in classification accuracy over the
use of the basic NBNN algorithm.

In the NBNN model, a large amount of time needed to
search for the nearest neighbors is a big problem. Even
approximate methods can be slow here. They scale linearly
with the number of categories. To overcome all the prob-
lems, Sancho et al. [20] introduced a local nearest neighbor
improving the original NBNN in 2012. The authors figured
out that the high performing timewas caused by themanifold
structure of descriptor space. This led to poor estimation of
Euclidean distances. Their methods took advantage of local
coding [46] and early cutoff soft assignment to use only the
local neighborhood of a descriptor during the coding step
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[47]. By restricting the coding to use only the local dictio-
nary elements, the method has achieved improvements over
their non-local equivalents.

In the above-mentioned methods, an important step is
extracting certain important information from the speech sig-
nal. Feature extraction could be seen as extracting certain
mathematically parameterized information from the original
source signal. There are many traditional feature extraction
techniques that may be used such as fast Fourier transform
(FFT) coefficients [48], perceptual linear prediction (PLP)
[14], linear predictive cepstral coefficients (LPCC) and mel-
frequency cepstral coefficients (MFCCs) [7,9]. Some recent
researches already have extracted speech feature from spec-
trogram image of a speech signal for audio retrieval system
[49,50].

3 Background

In this paper, we propose using LNBNN in combination with
SIFT feature of spectrogram images which are converted
from speech signals. This section provides an overview of
the scale-invariant feature transform and local naïve Bayes
nearest neighbor classifier.

3.1 Scale-invariant feature transform (SIFT)

SIFT was proposed by David Lowe in 1999 [22]. SIFT
is an algorithm in computer vision to detect and describe
the local features in images. SIFT [21,22], with its great-
est characteristic—scale invariance, seems to be one of the
best feature extractions in image processing. Thismodel uses
Difference of Gaussian (DoG) functioning as a kind of an
improvement of Gauss–Laplace algorithm to achieve scale
invariance. After making scale-space by DoG, SIFT com-
pares each point with its adjacent 26 pixels, which is the sum
of eight adjacent pixels in the same layer and 9 pixels in the
upper and lower adjacent layers. The location and scale of
this point are recorded whether it is minimum or maximum.
Hence, SIFTnot only detects all extremepoints ofDoGscale-
space, but also locates them exactly. These extreme points are
called keypoints. After that, low contrast and unstable edge
points would be removed. For each keypoint, SIFT computes
the gradient strength and direction of every neighborhood,
then it votes in histogram for every neighborhood according
to gradient directions. The summations are used as the gradi-
ent strengths of a keypoint. The maximal gradient strength is
defined as the main direction of this keypoint. Then, a 16 ×
16 region centered at the keypoint is chosen. After the region
is chosen, it is divided into 4 × 4 sub-regions. The gradient
strength in each sub-region is summed.An eight-dimensional
vector is generated using eight directions in each sub-region.
Thereby, SIFT gets a 128-dimensional feature description
from 16 sub-regions.

The reason why we propose the use of SIFT as features
of speech perception is that speech signals must be invari-
ant under the transformation of the signals from speaker to
speaker. Indeed, if they were not invariant in this way, some
of the signals could only be produced by speakers with vocal
tracts of a certain size. Actually, there are several invari-
ances in speech sounds that are not quite so clearly dependent
on the communication premise, and seem to have an influ-
ence on the nature of speech sound. Humans tend to speak
at different speeds, with different loudness, or with varying
dynamic range, when they are in different levels of stimu-
lation. As a result, languages seem to adapt to this human
feature by becoming more abstract in such a way that words
are invariant under changes in tempo, pitch range, or empha-
sis. Presumably, this transformation of temporal stretching
and compressing provides the invariance property of speech
that plays an important role in the success of alphabets as
descriptive devices for the sounds of human language.Alpha-
bets are also invariant under changes in spacing and size of
the letters. All these invariances of speech must be displayed
in the spectrogram image of signals.

In addition, SIFT is an image descriptor for image-based
matching and recognition [19,20]. These descriptors as well
as related image descriptors are used for a large number
of purposes in computer vision related to point matching
between different views of a 3-D scene and view-based object
recognition. The SIFT descriptor is invariant to translations,
rotations and scaling transformations in the image domain
and robust to moderate perspective transformations and illu-
mination variations. Experimentally, the SIFT descriptor has
been proven to be successful in practice for image match-
ing and object recognition under real-world conditions [20].
For all these reasons, we would like to employ SIFT in our
experiments.

3.2 Local naïve Bayes nearest neighbor

The LNBNN [20] was proposed by Sancho in 2012 to
improve NBNN for image classification problems. The
LNBNNcan be described as follows. Supposing that we have
to classify data into N classes C1, C2, …CN , each of which
has a number of training samples Ti1, Ti2, …, for i= 1,…N ,
and each sample is presented with a number of feature vec-
tors. A feature vector is an m-dimension vector.

Firstly, LNBNN merges all feature vectors from the sam-
ples of all classes to build a kd-tree to speed up the nearest
neighbor searching. In the classification phase, when a fea-
ture vector is queried, its k + 1 nearest neighbors are found.
The k + 1 nearest neighbors are sorted in ascending order of
distance to query the feature vector. Hence, the border dis-
tance is assigned by the distance of the (k + 1)th neighbor.
LNBNNcalculatesminimumdistance from the query feature
vector to all feature vectors found in k nearest neighbors. The
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minimum total distance determines the class of the query fea-
ture vector. In short, the LNBNN algorithm is described as
follows:

4 Our approach

In this section, we describe the characteristics of speech sig-
nals’ spectrogram images and how to extract SIFT [21,22]
from these images. Then we describe our speech classifica-
tion framework.

SIFT [21,22] is a feature extractor in image processing.
Therefore, if we want to use SIFT features in speech clas-
sification, we must present speech signal in the form of its
spectrogram. The spectrogram of speech is a visual repre-
sentation of the spectrum of frequencies in a sound or other
signal, as they vary with time or some other variable. The
spectrogram was used to identify spoken words phonetically
and to analyze the various calls of animals. After convert-
ing to a spectrogram, each speech signal is presented in a
grayscale image. Then, we extract SIFT feature from the
spectrogram images of all training and testing samples.

Figures 1, 2, 3, 4 and 5 are spectrogram images of some
speech signals. Figure 1 shows the spectrograms images of
the English alphabet A produced by four different speakers,
while Fig. 2 describes the spectrogram images of A, B, C and
D from the same speaker. Figure 3 illustrates the spectrogram
images of five utterances spoken by five different speakers
and Fig. 4 presents the spectrogram images of five utterances
produced by a speaker. The last one, Fig. 5, is about some
SIFT feature points extracted from A, B, C and D alphabet.

Figures 1 and 3 show that although speech signals are pro-
duced by different speakers, the speech signals of the same
words tend to be similar in the spectrogram image. Besides,
Figs. 2 and 4 show that signals of different words have dif-
ferent spectrogram images. It can be seen that the speech
classification problems can turn into the image classification
problems, which could inherit the results of computer vision
field such as feature extraction. Moreover, both quantization

    

Fig. 1 Spectrogram images of the English alphabet A from four dif-
ferent speakers

A B C D

Fig. 2 Spectrogram images of theEnglish alphabetA–D from the same
speaker

and informative feature selection on a long-tail distribution
will incur a large information loss. To reduce the loss dis-
criminative feature, we need to maintain all features that are
extracted from the training database, so each samplewill have
a different number of features.Whilemost of the state-of-the-
art classification approaches need input data to have the same
size, the LNBNN classifier permits classifying data with dif-
ferent sizes of the feature vector. In addition, the LNBNN
does not need to retrain old data when adding new data. This
leads to the fact that LNBNN can learn incrementally.

In this paper, we propose an image base for the speech
classification framework. Our framework has two phases: the
preparing phase and the classification phase. In the preparing
phase, firstly, all speech signals are converted to spectrogram
image with windows size 10 ms and overlap 5 ms. Now, each
speech signal is presented in a spectrogram image. Then,
we use the SIFT extractor to extract the SIFT features from
all training spectrogram images. Each spectrogram image
is represented by a set of SIFT features. Next, we build a
KD-TREE to boost up the KNN search in all SIFT features
of training spectrogram images. In the classification phase,
query speech is also converted to a spectrogram image and
then the SIFT extracted from this. After that, we use SIFT
feature of query spectrogram image and use LNBNN to clas-
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Fig. 3 Spectrogram images of
five utterances in the JVPD
database from five different
speakers

Haa Haa Haa Haa Haa

Fig. 4 Spectrogram images of
five utterances in the JVPD from
a speaker

Haa Hii Huu Hee Hoo

Fig. 5 SIFT features from
some English alphabet A, B, C
and D

A B C D

sify this. Figure 6 describes our image-based framework for
speech classification.

5 Experiments

In this section, we describe the six databases that are used in
three experiments. In the first experiment, we compare the
accuracy rate of LNBNN with SIFT and MFCC feature. In
the second experiment, we compare the LNBNN classifier
to some other popular machine learnings which are naïve
Bayes, Bayesian network, support vector machine, random
forest and decision tree analysis J48. In the third experiment,

we evaluate the capacity of addingdata inLNBNNafter train-
ing. In the last experiment,we carry out two sub-experiments.
First, we trained the model for all classes in the training data-
base with small training samples and then add more samples
for each class and evaluate the accuracy of the model when
adding more data. Then, we perform using a small number
of classes to train the model and then incremental update
classes.

5.1 Experiment set

In our experiments, we use six databases, namely Iso-
lated Letter (ISOLET) [3], English Isolated digits [51],
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Build KD-TREE

Preparing Classification

class#

speech signal speech signal

Convert to 
spectrogram image

Convert to
spectrogram image

Extract SIFTExtract SIFT

LNBNN classifier

Fig. 6 Speech classification using LNBNN with SIFT

Vietnamese Places name [52], Vietnamese Digits, Tohoku
University- Matsushita IsolatedWord (TMW) [53], and Five
Japanese Vowels of Males, Females, and Children Along
with Relevant Physical Data (JVPD) [54].

The ISOLET database has 676 samples of spoken Eng-
lish letters. It was constructed by 26 speakers. The ISOLET
database was divided into 20 training samples and 6 testing
samples for each class. The Isolated digits database (0–9, o)
has 454 samples for each class. This was divided into 266
training samples and 188 testing samples. The Places data-
base has eight classes that were names of eight places (caphe,
dung, karaoke, khachsan, khong, matxa, tramatm, trolai) in
Vietnamese. Each class has 485 training samples and 50 test
samples.

Vietnamese spoken digits database (Mô. t, Hai, Ba, Bốn,
Năm, Sáu, Bay, Tám, Chín, Mu’ò’i) was divided into 20 train-
ing samples and 5 testing sample for each class.

The TMW is Tohoku University-Matsushita Isolated
Word Database. It has phonetically balanced 212 words
that are spoken by 60 people (30 males and 30 females).
This database was divided into the training and testing set.
The training set has 40 samples and the test set has 20
samples.

JVPD is built on five Japanese Vowels of Males, Females,
and Children which are along with Relevant Physical Data.
The vowels are haa, hii, huu, hee, hoo. The speech data
of men, women, and children ranging between 6 and 56
years of age were edited into files. Each utterance is spo-
ken by 385 speakers (186 males and 199 females). The
JVPD was divided into 269 training samples and 115 testing
samples.

Table 1 Compare average correct classification rate of LNBNN with
MFCC and SIFT features on six databases

Databases SIFT MFCC

ISOLET 0.73 0.34

English digits 0.96 0.94

Vietnamese places 0.95 0.39

Vietnamese digits 0.97 0.72

TMW 1.00 0.39

JVPD 0.97 0.53

5.2 Experiment with LNBNN in combination
with SIFT and MFCC

In the first experiment, we used LNBNN in the classification
step. In the feature extraction step, we used MFCC and SIFT
to find suitable feature extraction for LNBNN in the speech
classification approach. The experiment was deployed on all
six above databases. Table 1 shows the average correct result
for each database of classification.

Table 1 figures out the accuracy of LNBNN when using
SIFT feature of spectrogram image higher than usingMFCC.
The highest different accuracy is in the TMW database. It is
39%higher when using SIFT compared to usingMFCC. The
lowest different accuracy is in the English digits database. It
is 2% higher when using SIFT compared to using MFCC.
This result shows that the SIFT feature is better for speech
classification when using LNBNN.

Table 1 shows the average accuracy of LNBNN in com-
bination with SIFT which is higher than combination with
MFCC, while Figs. 7, 8, 9, 10 and 11 show that for each
database. The accuracy of all classes using SIFT are mostly
higher when using MFCC except in the English digit data-
base. Two classes (three and six) have higher accuracy in the
MFCC feature than using SIFT.

The first experiment shows that SIFT features are not only
a good feature in the image processing field, but also better
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1
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MFCC

Fig. 7 Correct classification rate of LNBNN with MFCC and SIFT
features on the English digits database
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Fig. 8 Correct classification rate of LNBNN with MFCC and SIFT
features on the ISOLET database
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Fig. 9 Correct classification rate of LNBNN with MFCC and SIFT
features on the TMW database
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Fig. 10 Correct classification rate of LNBNN with MFCC and SIFT
features on the JVPD database

than the familiarMFCC in speech perceptionwhen combined
with the LNBNN classifier.

5.3 Experiments with LNBNN and other classifiers

In the second experiment, our objective was to evaluate the
effectiveness of the LNBNN in speech classification by com-
paring this method with other approaches such as naïve
Bayes, bayesian network, support vector machine (SVM),
random forest and decision tree analysis J48 (Tree.J48).
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Fig. 11 Correct classification rate of LNBNN with MFCC and SIFT
features on the Vietnamese digits database

In LNBNN, we use both SIFT and MFCC features
extracted from spectrogram images of speech signals. Since
other classifiers need to have the same dimension input data,
we use the LBG algorithm to quantize features to the same
dimension. SIFT features extracted fromspectrogram images
are quantized to 16 SIFT feature points; then these 16 fea-
ture points are converted to 128 × 16 dimension vectors
for each sample. For MFCC features, we extract 18 MFCC
coefficients from each speech signal, and then all MFCC
coefficients are quantized to 16 feature vectors. After that,
16 MFCC vectors are converted to one 16 × 18 dimension
vector.

Tables 2 and 3 show the average correct result for each
classification approach on six databasewithMFCC and SIFT
features.

Table 2 shows that LNBNN in combination with MFCCs
does not have the highest correction rate. The LNBNN accu-
racy is slightly lower than other classifiers on all databases. In
the ISOLET database, the LNBNN classifier has the lowest
accuracy. In the Vietnamese places and TMW database, the
accuracy of the LNBNN classifier is noticeably lower than
most others methods.

In Table 3, the LNBNN with SIFT gives the highest cor-
rection rate compared to others for the speech classification
problem. In the ISOLET database, LNBNN reaches 72.8%
correct classified samples, then random forest (64.4%) and
naïve Bayes (64.2%). Especially, in English Isolated dig-
its database, the LNBNN classifies correctly accounting
for 96.2%, then random forest reaches the rate of 70.7%.
The most apparent difference between LNBNN and other
approaches is in JVPD and Vietnamese Places database. The
LNBNN reaches the highest accuracy at 96.9% and the sec-
ond highest accuracy at 62.4% in Random Forest on the
former and LNBNN reaches the highest accuracy at 95.0%
and the second highest accuracy at 78.5% in Random Forest
on the later. Especially, in 20 first classes of TMW database,
LNBNN in combination with SIFT classifies correctly all
samples, while the second highest accuracy is 69.0 of Ran-
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Table 2 Average correct
classification rate with different
methods with MFCC

Method ISOLET English
digits

Vietnamese
places

Vietnamese
digits

TMW JVPD

LNBNN 34.0 94.1 38.5 72.0 39.0 87.1

Naïve Bayes 64.2 98.6 67.6 42.4 44.6 44.5

Bayes Net 57.0 99.5 70.2 47.5 21.3 21.3

SVM 61.6 99.5 78.0 62.8 40.7 96.5

RandomForest 64.4 98.4 71.8 73.5 56.7 97.2

TreeJ48 38.1 90.2 53.8 42.4 15.2 82.7

Bold values indicate highest value in the column

Table 3 Average correct classification rate with different methods with SIFT

Method ISOLET English digits Vietnamese places Vietnamese digits TMW JVPD

LNBNN 72.8 96.2 95.0 96.9 100.0 96.9

Naïve Bayes 32.8 50.4 58.5 53.1 34.1 55.8

Bayes Net 20.6 57.2 70.5 47.7 33.1 60.8

SVM 3.8 11.3 12.5 14.6 8.5 35.2

Random forest 37.7 70.7 78.5 55.2 69.0 62.4

Tree J48 18.3 47.3 60.3 34.6 17.4 46.8

Bold values indicate highest value in the column

Table 4 Average correct classification rate on increment update samples training

Database 20% Training
samples

40% Training
samples

60% Training
samples

80% Training
samples

100% Training
samples

ISOLET 0.46 0.56 0.60 0.68 0.73

English digits 0.90 0.92 0.94 0.95 0.96

VN places 0.91 0.92 0.93 0.94 0.95

VN digits 0.27 0.72 0.71 0.82 0.97

TMW 0.92 0.93 0.98 0.99 1.00

JVPD 0.94 0.96 0.96 0.95 0.97

dom Forest and SVM has the lowest accuracy (8.5). Table
3 also shows that SVM has the lowest accuracy rate for all
database when using quantized SIFT features.

5.4 Increment update training in LNBNN

One of the LNBNN classifier advantages is that LNBNN
allows adding training samples without retraining the whole
samples. In this section, we describe the capacity of incre-
ment update training data to the LNBNN. We carry out the
experiment on adding more training samples for all classes
after training. In this experiment,we divided training samples
of each class into five portions of 20%. We use increment
update training data to model. First, we use 20% of train-
ing data to build the model and test classification correction.
Then, we add 20%more training data, and up to 100% train-
ing data are added to the model. Secondly, we perform an
experiment on adding new classes after training the model.
In this experiment, we divided training classes into five por-
tions of 20%. Thus, the experiment has five steps, starting

with 20% of classes for training and testing and ending with
100% of training and testing classes added to the model. In
both experiments, we use SIFT feature combination with the
LNBNN classifier. Table 4 shows the average correction rate
with increment update samples. Table 5 shows the average
correction rate of increment update classes.

In Table 4, the VN digit has the highest difference correc-
tion rate in 20 % of training samples and 100 % of training
samples. At the step when 20 % samples were added to the
model, the VN digits reached 0.27 and at 100 % training
samples step, 0.97. The second highest difference correction
rate was on the ISOLET database and the lowest differ-
ence was on the JVPD database. Table 4 shows that, on
most of the database, when training samples were added,
the classification accuracy increased. However, in steps 2
and 3 on the JVPD database, the accuracy was not increased
when training data were added, but it even decreased in
step 4.

In Table 5, while most of the database has lower accuracy
when more classes are added, the accuracy is almost not
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Table 5 Average correct
classification rate on increment
update class training

Database 20% Classes 40% Classes 60% Classes 80% Classes 100% Classes

ISOLET 0.55 0.64 0.60 0.60 0.73

English Digits 1.00 0.98 0.98 0.97 0.96

VN Places 1.00 0.97 0.95 0.94 0.95

VN Digits 1.00 0.97 0.98 0.96 0.97

TMW 1.00 1.00 1.00 1.00 1.00

JVPD 1.00 1.00 0.97 0.97 0.97

changed in the TMW and even increases in the ISOLET.
This shows that when learning more knowledge, the model
is more confusing in classification. However, this experiment
has proved that the LNBNNallows addingmore classes (new
knowledge) without retraining the whole training samples.

6 Conclusion

In this paper, we have proposed an approach that uses
LNBNN classifier in combination with SIFT features for the
speech classification problem.The proposed approach allows
adding training samples without retraining after the training
phase. This saves training time which is suitable for big data.
Another advantage of this method is that feature vectors do
not need to be quantized. Such quality of input features is
not diminished. It contributes to improve the quality of clas-
sification. As the above experiments figure out, the proposed
approach performs well in a speech classification system.
Classification of the speech signal based on combination of
LNBNN and SIFT features gives better results than a com-
bination of LNBNN and other features. In addition, SIFT
features are more suitable for the LNBNN classifier than
other classifiers.

In the future, we would like to improve SIFT-based
LNBNN classifier to reduce the number of features. We also
would like to modify SIFT to more suitable speech data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
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Commons license, and indicate if changes were made.

References

1. Liberman, A.M., Cooper, F.S., Shankweiler, D.P., Studdert-
Kennedy, M.: Perception of speech code. Psychol. Rev. 74,
431–461 (1967)

2. Liberman, A.M., Mattingly, I.G.: The motor theory of speech per-
ception revised. Cognition 21, 1–36 (1985)

3. Cole, R., Fanty,M.: ISOLET (Isolated Letter Speech Recognition),
Department of Computer Science and Engineering, September 12
(1994)

4. Massaro, D.W.: Testing between the TRACEModel and the Fuzzy
Logical Model of Speech perception. Cognitive Psychology, pp.
398–421 (1989)

5. McClelland, J.L., Elman, J.L.:The TRACE model of speech per-
ception. Cognitive Psychology (1986)

6. Wilson, W., Marslen, M.: Functional parallelism in spoken word-
recognition. Cognition 25, 71–102 (1984)

7. Patel, I.: Speech recognition usingHMMwithMFCC—an analysis
using frequency spectral decomposition technique. Signal& Image
Proc Int J (SIPIJ). 1(2) (2010)

8. Paul, D.B.: Speech Recognition Using Hidden Markov Models.
Lincoln Lab. J. 3(1) (1990)

9. Adam, T.B.: Spoken english alphabet recognition with mel fre-
quency cepstral coefficients and back propagation neural networks.
Int J Comput Appl. 42(12), 0975–8887 (2012)

10. Salam, M.S.H., Mohamad, D., Salleh, S.: Malay isolated speech
recognition using neural network: a work in finding number of
hidden nodes and learning parameters. Int Arab J Info Technol 8,
364–371 (2011)

11. Sakoe, H., Chiba, S.: Dynamic programming algorithm opti-
mization for spoken word recognition. In: IEEE Transactions on
Acoustics, Speech and Signal Processing, pp. 43–49 (1978)

12. Hinton, G., et al.: Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups. In:
IEEE Signal Process, pp. 82–97 (2012)

13. Abdel-Hamid, O., et al.: Convolutional neural networks for speech
recognition in IEEE/ACM transactions on audio. Speech and lan-
guage processing, October, USA (2014)

14. Hermansky: Perceptual linear predictive (PLP) analysis of speech.
J. Acoust. Soc. Am. 87(4), 1738–52 (1990)

15. Favero R.F.: Compound wavelets: wavelets for speech recogni-
tion. In: International symposiumon time-frequency and time-scale
analysis, pp. 600–603, (1994)

16. Jaitly, N., Hinton, G.: Learning a better representation of speech
soundwaves using restricted boltzmann machines. In: Proc. of
ICASSP, pp. 5884–5887 (2011)

17. Sainath T., Weiss, R., Senior, A., Wilson, W., Vinyals O.: Learning
the Speech Front-end with Raw Waveform CLDNNs. In: Inter-
speech (2015)

18. Dimitri, P., Mathew, M.D., Ronan, C.: Analysis of CNN-based
speech recognition system using raw speech as input. In: Inter-
speech (2015)

19. Boiman, O., Shechtman, E., Iran, M.: In defense of nearest-
neighbor based image classification. In: CVPR (2008)

20. McCann, S., Lowe, D.G.: Local Naive Bayes nearest neighbor for
image classification. In: CVPR (2012)

21. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. In: IJCV (2004)

22. Lowe, D.G.: Object recognition from local scale-invariant features.
Proceedings of the international conference on computer vision 2,
1150–1157 (1999)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vietnam J Comput Sci (2016) 3:247–257 257

23. Sakriani, S.,Konstantin,M., Satoshi,N.,Wolfgang,M.: Incorporat-
ing knowledge sources into statistical speech recognition.: Springer
Science & Business Media (2009)

24. Sadaoki, F.: 50 years of Progress in speech and Speaker Recogni-
tion Research. vol. 1, no. 2, November (2005)

25. Davis K.H., Biddulph R., Balashek, S.: Automatic recognition of
spoken digits. J. Acoust. Soc. Am, pp. 637–642 (1952)

26. Olson, H.F., Belar, H.: Phonetic typewriter. J. Acoust. Soc. Am.
28(6), 1072–1081 (1996)

27. Fry D.B.: Theoretical aspects of mechanical speech recognition. J.
Br. Inst. Radio Eng., pp. 211–299 (1959)

28. Rabiner, L.R., Levinson, S.E., Rosenberg, A.E., Wilpon, J.G.:
Speaker independent recognition of isolatedwords using clustering
techniques. IEEE Trans. Acoustics, Speech, Signal Proc (1979)

29. Sakoe, H.,: Two level DP matching—a dynamic programming
based pattern matching algorithm for connected word recognition.
IEEE Trans. Acoustics, Speech, Signal Proc., pp. 588–595 (1979)

30. Loizou, P.C., Spanias, A.S.: High-performance alphabet recogni-
tion. IEEE Trans. Speech Audio Proc. 4, 430–445 (1996)

31. Cole, R., Fanty, M., Muthusamy, Y., Gopalakrishnan M.: Speaker-
independent recognition of spoken english letters. In: International
Joint Conference on Neural Networks (IJCNN), pp. 45–51 (1990)

32. Cole, R., Fanty, M.,: Spoken letter recognition. In: Presented at the
Proceedings of the conference on advances in neural information
processing systems Denver, Colorado, United States (1990)

33. Fanty,M., Cole, R.: Spoken Letter Recognition. In: Presented at the
Proceedings of the conference on advances in neural information
processing systems Denver, Colorado, United States (1990)

34. Karnjanadecha, M., Zahorian, S.A.: Signal modeling for high-
performance robust isolated word recognition. IEEE Trans. Speech
Audio Proc. 9, 647–654 (2001)

35. Ibrahim, M.D., Ahmad, A.M., Smaon, D.F., Salam M.S.H.:
Improved E-set recognition performance using time-expanded
features. In: Presented at the second national conference on com-
puter graphics and multimedia (CoGRAMM), Selangor, Malaysia
(2004)

36. Jonathan, D., Da, T.H., Haizhou, L.: Spectrogram Image feature
for sound event classification in mismatched conditions. In: IEEE
Signal Processing letters, pp. 130–133 (2011)

37. Mohamed, A.R., Dahl, G.E., Hinton, G.E.: Deep belief networks
for phone recognition. In: NIPS workshop on deep learning for
speech recognition and related applications (2009)

38. Mohamed,A.,Dahl,G.,Hinton,G.: “Acousticmodeling using deep
belief networks. In: IEEE Trans. Speech, & Language Proc, Audio
(2012)

39. Mohamed,A.,Hinton,G., Penn,G.:Understandinghowdeepbelief
networks perform acoustic modelling. In: Proc. ICASSP (2012)

40. Bocchieri, E., Dimitriadis, D.: Investigating deep neural network
k based transforms of robust audio features for lvcsr. In: ICASSP
(2013)

41. Tuske, Z., Golik, P., Schluter, R., Ney, H.: Acoustic modeling with
deepneural networks using raw time signal for lvcsr. In: Interspeech
(2014)

42. Palaz, D., Magimai, M., Collobert, R.: Convolutional neural
networks-based continuous speech recognition using raw speech
signal. In: ICASSP (2015)

43. Domingos, P., Pazzani, M.: On the optimality of the simple
Bayesian classifier under zero-one loss. J. Mach., pp. 103–130
(1997)

44. Behmo, R., Marcombes, P., Dalalyan, A., Prinet V.: Towards opti-
mal naive bayes nearest neighbor. In: ECCV (2010)

45. Tuytelaars, T., Fritz,M., Saenko,K., Darrell, T.: TheNBNNkernel.
In: ICCV (2011)

46. Wang, J., Yang, J., Yu, K., Huang, T., Gong, Y.: Locality-
constrained linear coding for image classification. In:CVPR (2010)

47. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding.
In: ICCV (2011)

48. Ma, C., O’Shaughnessy, D.: A perceptual study of source coding of
Fourier phase and amplitude of the linear predictive coding residual
of vowel sound. J. Acoust. Soc. Am. 95(4), 2231–2239 (1994)

49. Cano, P.,Batlle, E.,Kalker, T.,Haitsma, J.:A reviewof audiofinger-
printing. J. VLSI Signal Proc. Syst. Signal Image Video Technol.
41, 271–284 (2005)

50. Wang, A.L.C.: https://www.ee.columbia.edu/dpwe/papers/.
Accessed 15 Nov 2015

51. https://catalog.ldc.upenn.edu/LDC2008S07. Accessed 15 Nov
2015

52. http://www.alovoice.vn/ai/du-lieu-tieng-noi-tieng-viet/. Acces-
sed 15 Nov 2015

53. http://research.nii.ac.jp/src/en/TMW.html. Accessed 15 Nov 2015
54. http://research.nii.ac.jp/src/en/JVPD.html. Accessed 15 Nov 2015
55. Diehl, R.L., Lotto, A.J., Holt, L.L.: Speech perception. Annu. Rev.

Psychol, pp. 149–179 (2004)
56. Liberman, A.M., Cooper, F.S., Shankweiler, D.P., Studdert-

Kennedy, M.: Perception of the speech code. Psychol, Rev (1967)
57. Dah, G., Yu, D., Deng, L., Acero, A.: Context-dependent pre-

trained deep neural networks for large vocabulary speech recog-
nition. In: IEEE Trans Speech, Lang Proc. Audio, USA (2012)

123

https://www.ee.columbia.edu/dpwe/papers/
https://catalog.ldc.upenn.edu/LDC2008S07
http://www.alovoice.vn/ai/du-lieu-tieng-noi-tieng-viet/
http://research.nii.ac.jp/src/en/TMW.html
http://research.nii.ac.jp/src/en/JVPD.html

	Speech classification using SIFT features on spectrogram images
	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Scale-invariant feature transform (SIFT)
	3.2 Local naïve Bayes nearest neighbor

	4 Our approach
	5 Experiments
	5.1 Experiment set
	5.2 Experiment with LNBNN in combination  with SIFT and MFCC
	5.3 Experiments with LNBNN and other classifiers
	5.4 Increment update training in LNBNN

	6 Conclusion
	References




