
Vietnam J Comput Sci (2015) 2:201–211
DOI 10.1007/s40595-015-0042-0

REGULAR PAPER

Predicting database workloads through mining periodic patterns
in database audit trails

Marcin Zimniak1 · Janusz R. Getta2 · Wolfgang Benn1

Received: 15 June 2014 / Accepted: 6 March 2015 / Published online: 18 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Information about the periodic changes of inten-
sity and structure of database workloads plays an important
role in performance tuning of functional components of
database systems.Discovering the patterns inworkload infor-
mation, such as audit trails, traces of user applications, and
sequences of dynamic performance views, is a complex and
time-consuming task. This work investigates a new approach
to analysis of information included in the database audit
trails. In particular, it describes the transformations of infor-
mation included in the audit trails into a format that can be
used for discovering the periodic patterns in the fluctuations
of database workloads. It presents an algorithm that finds
elementary periodic patterns through nested iterations over a
four-dimensional space of execution plans of SQL statements
and positional parameters of the patterns. It proposes a col-
lection of composition rules for the derivations of complex
periodic patterns from the elementary and other complex pat-
terns and it shows how to use such rules to predict the future
workload levels.

Keywords Periodic pattern · Audit trail · Automated
performance tuning · Online database design

B Janusz R. Getta
jrg@uow.edu.au

Marcin Zimniak
marcin.zimniak@cs.tu-chemnitz.de

Wolfgang Benn
benn@cs.tu-chemnitz.de

1 Faculty of Computer Science, TU Chemnitz, Chemnitz,
Germany

2 School of Computer Science and Software Engineering,
University of Wollongong, Wollongong, Australia

1 Introduction

It is a well-known fact that database workloads periodically
change in time. The workload oscillations are caused by the
recurrent invocations of database applications that access and
change data on behalf of database users operating the typical
real-world processes, like for example customers accessing
bank accounts, stock brokers performing financial opera-
tions, students enrolling course, etc. Discovering the patterns
in a continuously changing database workload may to a large
extent allow for anticipation of the future operations on data
containers. Information about the future levels of workload
can be used to automate performance tuning and to improve
online database design [6]. In particular, estimation of future
query execution timemay have an important impact on query
scheduling and monitoring of query processing [3,4,16,17].
In a typical scenario, information about the periods of low
database workload and about the data containers used by
the applications at the periods of higher workload levels
enables appropriate restructuring of data containers to speed
up the future processing. For example, it is possible to cre-
ate indexes, to pin data containers in a data buffer cache, to
partition data containers, to create materialized views, etc.

Information about the structures and characteristics of
the past database workloads can be collected from a data-
base management system in a form of audit trails, traces
from processing of SQL statements, sequences of snapshots
of internal systems states, dynamic performance views, etc.
Due to a large number of concurrently processed user appli-
cations, a structure of workload trace is very complex and
irregular with no clearly visible patterns in the ways how
data containers are accessed and how database operations
are processed. This is why ad hoc discovery of complex
periodic patterns in a database workload is a difficult and
time-consuming task. On the other hand, many of user appli-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-015-0042-0&domain=pdf

202 Vietnam J Comput Sci (2015) 2:201–211

cations are processed in the regular ways because the same
applications implement the real-world processes, which due
to the business or legal reasons must be periodically per-
formed by the individuals and organizations.

This paper addresses a problem how to discover the
complex periodic patterns from information included in the
database audit trails. We show how to discover the regu-
larities in processing of elementary and complex database
operations in a chaos of hundreds of thousands apparently not
related database operations. A solution proposed in this work
is based on an idea that it would be much easier and faster to
find the simple periodic patterns created through processing
of simple components of user applications like for example
fragments of query processing plans of SELECT statements
and later on to “derive” the complex periodic patterns from
the elementary ones. The idea is justified by the simplicity
of candidate periodic patterns selection process. In a general
case a set of complex candidate periodic patterns is hidden
due to the several dimensions the patterns are defined in and
due to a large size of each dimension. For example, a peri-
odic pattern can be defined in a multidimensional space of
syntax trees of generalized relational algebra expressions that
implement SQL statements, range dimension that determines
the locations of periodic patterns in a workload history, and
periodicity dimension that determines the repetition char-
acteristics of a pattern. For the large workload histories, a
multidimensional space of candidate patterns is still finite,
however, in practice it is too large for the efficient generation
and verification of complex periodic patterns. An approach
proposed in the paper reduces a dimension of complex struc-
tures of periodic patterns to elementary patterns based on
single events, e.g., processing of a single operation of rela-
tional algebra and it also reduces periodicity dimension to
fixed and restricted in size periods between the repetitions of
events. Discovery of elementary periodic patterns is followed
by application of derivation rules to create complex periodic
patterns that span over the longer periods of time and that
have complex repetition characteristics. The derivations pro-
vide both “sure” patterns that do not need to be verified in
an audit trail as well as candidate patterns whose verifica-
tion needs access to the selected parts of workload history.
The outcomes from such derivations can also be compared
with a workload history to eliminate a “noise” created by the
random processing of accidental applications. The system-
atic derivations of elementary and complex periodic patterns,
applications of such patterns to workload historymight at the
end lead to a precisely defined structure of database work-
load.

We consider an environment of a relational database sys-
tem where the user applications are traced and copied into
the anonymized audit trails. A selected audit trail contains
information about the scopes of user applications and about
SQL statements processed by the applications. In the next

stage, a statement EXPLAIN PLAN is used to translate SQL
statements included in the trails within the environments of
the relevant relational schemas into the precise specifica-
tions of execution plans and the estimations of processing
costs. The execution plans are represented as syntax trees of
expressions built over the arguments like relational tables,
relational and/or materialized views and the operators of an
extended relational algebra. The plans are initially stored in
a syntax tree table, which is later on analyzed to identify and
to remove the replicas of the common subtrees as the com-
mon fragments of the plans. Finally, the results are saved
in the “compressed” syntax tree table. Further reduction of
the syntax tree table leads to elimination of subtrees whose
frequencies of execution are the same as their parent syntax
trees. At the end of this process, we obtain a reduced syntax
tree table. Next, an audit trail passes through “data cleaning”
phase which removes the database operations whose impact
on a database workload is minimal. In the same stage, a pre-
defined set of time units is used to create a workload trace
of an audit trail as a sequence of multisets of syntax trees
processed within each time unit. Then, the workload trace is
projected into a collection of traces one for each individual
syntax tree included in a reduced syntax tree table. The set
of traces is used by an algorithm that discovers elementary
periodic patterns. In the final stage, the derivation rules are
used to combine the elementary periodic patterns into the
composite periodic patterns.

The paper is organized in the following way. The next
section reviews the previous works on discovering periodic-
ity in time series and in cyclic association rules. Section 3
defines an environment of relational database and it intro-
duces the concepts of audit trail, time units, syntax tree table,
and reduced syntax tree table. In the same section, we present
an algorithm, that creates a reduced syntax tree table and
reduces it to the smallest set of syntax trees required for the
next stage. A concept of periodic pattern in a database work-
load is defined in Sect. 4. An algorithm for discovering the
elementary periodic patterns is explained in Sect. 5. Section 6
present the derivations rules for periodic patterns. Applica-
tion of the rules to estimation of the future database workload
levels is discussed in Sect. 7. Section 9 concludes the paper.

2 Related work

Data mining techniques that inspired the works on periodic
patterns came from the works on mining association rules
[2] and later on from mining frequent episodes [10] and its
extensions on mining complex events [15].

The problem seems to be very similar to a typical periodic-
ity mining in time series [8,12], where analysis is performed
on the long sequences of elementary data items discretized
into a number of ranges and associated with the timestamps.

123

Vietnam J Comput Sci (2015) 2:201–211 203

In our case, input data are a sequence complex data process-
ing statements, like for example SQL statements and due
to its internal structure cannot be treated in the same way as
analysis of elementary data elements in time series or genetic
sequences. The complex data processing statements form a
lattice whose elements are syntax trees of the statements with
a partial order determined by an inclusion relationship on
syntax trees [14].

The recent approaches, which addressed full periodicity,
partial periodicity, perfect and imperfect periodicity [7], and
asynchronous periodicity [18] are all based on fixed size and
adjacent time units and fixed length of discovered patterns.
In our case, the cycles are pretty well determined by the real-
world events and because of that it may have variable size
and non-contiguous structure.

Our problem is also similar to a problem of mining cyclic
association rules [11] where an objective is to find the peri-
odic executions of the largest sets of items that have enough
support. A sample cyclic association rule states that two data-
base applications are computed in more or less the same
period of time every day just after midnight. In our case, the
largest sets of operations do not necessarily mean the high-
est workload and sometimes a single periodically processed
application significantly contributes to a database workload.
Additionally, mining of cyclic association rules is not able to
discover two or more periodic patterns whose cycles over-
lap on the same period of time due to the same application
processed with different frequencies by two or more users.
Invocation of operation on data along the various points in
time can be easily described by temporal predicates within a
formal scope of temporal programming logic and temporal
deductive database systems [1,5]. The reviews of data min-
ing techniques based on analysis of ordered set of operations
on data performed by the user applications are available in
[9,13]. The model of periodicity considered in this paper is a
significant extension of the model proposed in [19] with the
new concepts of overlapping periodic patterns and deriva-
tions of periodic patterns. A new concept of support used
in the present work allows to represent the cases where the
patterns are randomly weakened due to the fluctuations in
processing of database applications.

3 Database processing model

We consider a typical relational database system where the
relational model of data is used to represent data containers.
Let x be a nonempty set of attribute names later on called
as a relational schema and let dom(a) denotes a domain
of attribute a ∈ x . A tuple t defined over a schema x is a
full mapping t : x → ∪a∈xdom(a) and such that ∀a ∈ x ,
t (a) ∈ dom(a). A relational table r created on a schema x
is a set of tuples over a schema x .

Query processor transforms SQL statements submitted
by the user applications into the query execution plans for-
mulated as the expressions of extended relational algebra.
The operations of extended relational algebra include the
implementation-dependent variants of operations of standard
relational algebra such as selection, projection, join, antijoin,
set operations, and other operations like grouping, sorting,
and aggregate functions. Due to the different implementa-
tion techniques, the operations included in the basic system
of relational algebra, e.g. selection or join contribute to an
number of different elementaryoperations dependingon their
implementations, e.g. index based selection, full scan selec-
tion, hash based join, index based join, etc.

3.1 Audit trail

SQL statements submitted by the user applications a1,…, an
are recorded in an application trace. A trace of an application
ai is a finite sequence of pairs 〈ci :tci , si1 :ti1 , …, sin :tin , di :tdi 〉
where ci is a connect statement, tci is a timestamp when the
statement has been processed, each si j is SQL statement with
a timestamps ti j attached, and di is a disconnect statement
with its timestamp tdi . Processing of an application ai starts
from processing of a connect statement ci , the processing of
SQL statements si j , and it finally ends with processing of a
disconnect statement di .

An audit trail is a sequence of interleaved trails of user
applications. For example, a sequence 〈ci :tci , si1 :ti1 , c j :tc j ,
s j1 :t j1 , si2 :ti2 , di :tdi d j :td j 〉 is a sample audit trail from
the processing of applications ai , and a j . In practice, SQL
statements can be easily extracted from an audit trail and
EXPLAIN PLAN statement can be used in the contexts of
respective user schemas to transform the statements into the
syntax trees of query execution plans over a set of operations
of extended relational algebra. A complete information about
syntax trees obtained from a database audit trail is kept in a
syntax tree table.

3.2 Syntax tree table

Let si and s j be SQL statements included in an audit trail
and let Tsi , Ts j be the syntax trees obtained by application
of EXPLAIN PLAN statement to the statements recorded
in an audit trail. The codes of operations of extended rela-
tional algebra are used as the labels of non-leaf nodes and
the names of data containers processed by the operations are
the labels of leaf nodes in a syntax tree. The operations of
selection on the same arguments are considered as identi-
cal no matter what the predicates are used in the selections.
For example, a selection σa>10(r) is equivalent to a selection
σd=′sales′(r). The same applies to the binary operations of
join an antijoin, i.e. two identical implementations of joins
on the same arguments and with a different join condition

123

204 Vietnam J Comput Sci (2015) 2:201–211

are equivalent because the complexities of computations are
exactly the same. For example, r ��r.a=s.b s is equivalent to
r ��r.c=s.d s.

If there exists a non-leaf node n in a syntax tree Ts j such
that a subtree with a root node n is the same as a syntax tree
Tsi then we say that a syntax tree Tsi is included in or equal
to a syntax tree Ts j , and we denote by Tsi 	 Ts j .

A syntax tree table contains a complete and compressed
information about the syntax trees of SQL statements
extracted from an audit trail. A syntax tree is represented
in a syntax tree table only once no matter how many times
it is included in the other syntax trees. A syntax tree table
is a set of tuples 〈tree, operation, le f t , right , workload,
timestamps〉 where tree is a unique identifier of a syntax
tree, operation is a code of extended relational algebra oper-
ation at the root of syntax tree identified by tree, le f t and
right are the identifiers of left and right argument of syn-
tax tree identified by tree or the names of relational tables,
workload is an average workload required to process a syn-
tax tree, and t imestamps is a set of all timestamps when a
syntax tree tree was processed by a database system.

We say that a subtree tleaf is a leaf level subtree of a syntax
tree Ts if tleaf 	 Ts and both arguments of an operation in a
root node of tleaf are data containers.

A syntax tree table is created in the following way.

Step 1: In the first step, we create an empty syntax tree
table.

Step 2: Next, we iterate over all statements included in
an audit trail starting from the first statement in the trail.
All connect and disconnect statements are ignored. We
collect the next statement s from the trail and we create
its syntax tree Ts . If no more statements are available in
the trail then the process of creating a syntax tree table
stops.
Step 2.1: We iterate from left to right over all leaf level
subtrees in Ts . Let tleaf be the next leaf level subtree in
Ts .
Step 2.1.1: With the current leaf level subtree tleaf , we
search a syntax tree table for a tuple that has a value of
code equal to an operation code in the root node of tleaf
and le f t equal to the left argument of tleaf and right
equal to the right argument of tleaf .
Step 2.1.2: If a tuple is found then it means that a subtree
the same as tleaf has been already recorded in the table
and we append a timestamp of tleaf to timestamps in the
tuple found.
Step 2.1.3: otherwise, we append a new tuple to a syntax
tree table. The new tuple obtains automatically gener-
ated identifier tree, code of operation in the root of tleaf
becomes a value of code in the tuple. The values of left
and right arguments of tleaf become the values of le f t
and right , and these are either the names of relational

p
1

t1:

2: t1p
2

p
2 t 2

t v

3: p
1

r s

1: t 3

p
1

p
1

p
3

vs r

1:

5:

4:

t
4

rr s

Fig. 1 A sequence of syntax trees

Table 1 A sample syntax tree table

Tree Operation Left Right Workload tstamps

1 p1 r s w1 {t1, t3, t4}
2 p2 1 t w2 {t1}
3 p2 t v w3 {t2}
4 p3 r v w4 {t4}
5 p1 1 4 w5 {t4}

tables or the identifiers of syntax trees already recorded
in the table. An average workload needed to process the
syntax tree tleaf is estimated using a workload needed to
process its subtrees an information about an operation in
the root of tleaf . Finally, a timestamp of tleaf is appended
to a set t imestamps in the tuple.
Step 2.1.4: A subtree tleaf is removed from Ts such that a
root node of tleaf is replaced either with an identifier tree
found in Step 2.1.2 or with a new identifier tree created
in a Step 2.1.3.
Step 2.1.5: If Ts still has at least one leaf level subtree then
return to Step 2.1 otherwise processing of Ts is completed
and we return to a Step 2.

As a simple example consider a sequence of syntax trees
processed at the timestamps t1, t2, t3, and t4 given in Fig. 1
above where p1, p2, and p3 are the codes of operations. The
respective syntax tree table is given in Table 1. The syntax
trees 5 and 2 share the common subtree 1. An argument r is
shared by the syntax trees 1 and 4. The arguments t , and v

are shared by the syntax trees 2 and 3.

3.3 Time units

Let 〈tstart, tend〉 be a period of time over which an audit trail is
recorded. The period is divided into a contiguous sequence of
disjoint and fixed-size elementary time units 〈t (i)e , τe〉 where
t (i)e for i = 1, . . . , n is a timestamp when an elementary time
unit starts and τe is a length of the unit. Elementary time
units are distributed over 〈tstart, tend〉 such that tstart = t (1)e

and t (i+1)
e = t (i)e + τe and t (n)

e + τe = tend .
A time unit is a pair 〈t, τ 〉 where t is a start point of a

unit and τ is a length of the unit. A time unit consists of
one or more consecutive elementary time units. A nonempty
sequence U of n disjoint time units 〈t (i), τ (i)〉 i = 1, . . . , n

123

Vietnam J Comput Sci (2015) 2:201–211 205

over 〈tstart, tend〉 is any sequence of time units that satisfies
the following properties: tstart ≤ t (1) and t (i) + τ (i) ≤ t (i+1)

and t (n) + τ(n) ≤ tend.
As a simple example consider an audit trail that starts

on t01:01:2007:0:00a.m. and ends on t31:01:2007:12:00p.m.. Then,
a sequence of disjoint time units 30 min long and usu-
ally called as morning tea time consists of the following
units: 〈t01:01:2007:10:30a.m., 30〉, 〈t02:01:2007:10:30a.m., 30〉, …,
〈t31:01:2007:10:30a.m., 30〉.

3.4 Workload trace

Let U be a nonempty sequence of n disjoint time units over
which an audit trail is recorded and let |U | denotes the total
number of time units inU . Then,U [n] denotes the n-th time
unit in u where n changes from 1 to |U |.

A multiset M is defined as a pair 〈S, f 〉 where S is a set
of values and f : S → N+ is a function that determines
multiplicity of each element in S and N+ is a set of positive
integers [14]. In the rest of the paper, we shall denote a multi-
set 〈{T1, . . . , Tm}, f 〉 where f (Ti) = ki for i = 1, . . . ,m as
(T k1

1 . . . T km
m). We shall denote an empty multiset 〈∅, f 〉 as

∅ and we shall abbreviate a multiset (T k) to T k and T 1 to T .
A workload trace of a syntax tree T is a sequence WT of

|U | multisets of syntax trees such that WT [i] = 〈{T }, fi 〉
and fi (T) = |T .t imestamp(i)| ∀i = 1, . . . , |U |, i.e. fi (T)

is equal to the total number of times a syntax tree T was
processed in the i-th time unit U [i]. A workload trace can
be created from information about time units in U and the
values in a column timestamps in a syntax tree table.

Let T be a set of all syntax trees obtained from an audit
trail A and recorded in a syntax tree table. A workload
trace of an audit trail A is denoted by WA and WA[i] =⊎

T∈T WT [i],∀i = 1, . . . , |U |, i.e. it is a sum of workload
traces of all syntax trees included in a syntax tree table.

4 Periodic patterns

A periodic pattern is a tuple 〈T , U , b, p, e〉 where T is
a nonempty sequence of multisets of syntax trees, U is a
sequence of disjoint time units that partitions the audit trail
into disjoint sequences of SQL statements, b ≥ 1 is a number
of time unit in U where the repetitions of T start, p ≥ 1 is
the total number of time units after which processing of T is
repeated in every processing cycle, e > b is a number of time
unit inU where the processing of T is performed for the last
time. A sequence of multisets T may contain one or more
empty multisets. The positional parameters b, p, and e of a
periodic pattern must satisfy a property (e − b)mod p = 0.
A value c = e−b

p + 1 is called as the total number of cycles
in the periodic pattern.

Let |T | denotes the length of a sequence of multisets T .
Aworkload trace of a sequence of multisets T starting at the
k-th time unit, 1 ≤ k ≤ |U |−|T |+1 and spreading over |U |
time units is denoted by WTk and it is defined as a sequence
of multisets T extended on the left with k − 1 empty sets
and on the right with |U | − k − |T | + 1 empty multisets. For
example, a workload trace of a sequence of multisets ∅T V
starting at the third time unit and spreading over 9 time units
is a sequence of multisets ∅∅∅T V∅∅∅∅.

Then, a workload trace of a periodic pattern 〈T ,U , b, p,
e〉 with the total number of cycles c = e−b

p + 1 is a sequence
of |U | multisets of syntax trees such thatWT [i] = WTb [i]
WTb+p [i]WTb+2∗p [i]. . .WTb+(c−1)∗p [i] for i = 1, . . . , |U |.

As a simple example, consider a periodic pattern 〈∅T V ,
U , 1, 3, 7〉 where processing of a sequence of syntax trees
∅T V starts in the time units 1, 4, and 7. Then, the work-
load traces of ∅T V starting at the time units 1, 4, and 7 and
spreading over all 9 time units inU are the sequences ofmulti
sets ∅T V∅∅∅∅∅∅, ∅∅∅∅T V∅∅∅, and ∅∅∅∅∅∅∅T V . Hence,
a workload trace of a periodic pattern 〈∅T V , U , 1, 3, 7〉 is a
sequence of multisets ∅T V∅T V∅T V . The periodic pattern
has three cycles.

We say that periodic patterns 〈Ti , Ui , bi , pi , ei 〉 and 〈T j ,
Uj , b j , p j , e j 〉 are equivalent when Ui = Uj and the work-
load traces of the patterns are the same.

For example, a periodic pattern 〈∅T V ,U , 1, 3, 7〉 is equiv-
alent to a pattern 〈T V ,U , 2, 3, 8〉which also has three cycles.

When the length of T in a periodic pattern is longer than
a value of parameter p then the cycles of the pattern overlap.
For example, 〈∅T V , U , 1, 1, 3〉 is a periodic pattern where
processing of a sequence of syntax trees ∅T V starts in the
time units 1, 2, and 3 and its workload trace is a sequence
of multisets ∅T (VT)(VT)V . The periodic pattern also has
three cycles.

Let |WT | be the total number of elements in WT . Let v

be the total number of elements in WT such that WT [i] 	
WA[b+ i − 1] for i = 1, . . . , e− b+ |T | where a symbol 	
denotes an inclusion ofmultisets. Then,we say that a periodic
pattern 〈T , U , b, p, e〉 is valid in an audit trail A with a
support 0〈σ ≤ 1 ifWT [1] 	 WA[b] andWT [e−b+|T |] 	
WA[e + |T |] and σ ≤ v/|WT |.

For example, a periodic pattern 〈(T 2V)∅W , U , 1, 3, 7〉
has a workload trace (T 2V)∅W (T 2V)∅W (T 2V)∅W . The
pattern is valid in an audit trail Awith support σ = 1 if every
element of its workload trace is included in a workload trace
WA from position 1 to position 9.

Let (T 2VW)∅W 2(T V)∅W 2(T 2V)∅W be a workload
trace of an audit trail. Then, a periodic pattern 〈(T 2V)∅W ,
U , 1, 3, 7〉 is valid in the audit trail with support 8

9 because a
multiset of syntax trees (T 2V) is not included in a multiset
(T V) of syntax trees processed by a database system in the
fourth time unit.

123

206 Vietnam J Comput Sci (2015) 2:201–211

5 Discovering elementary periodic patterns

We say that a periodic pattern 〈T ,U , b, p, e〉 is an elementary
periodic pattern when a sequence of multisets T consists of
one multiset that consists only of k identical elements, i.e.
T = T k . A periodic pattern which is not elementary is called
as a composite periodic pattern.

In this work, we start from discovering elementary peri-
odic patterns. Then, we show how to create composite
periodic patterns using compositions of elementary and other
composite periodic patterns. Discovering elementary peri-
odic patterns can be done over a number of dimensions such
as syntax trees of all statements included in an audit trail, all
possible partitions of audit time into time units inU , all work-
load levels expressed asmultiplicity coefficients inmultisets,
and the dimensions of positional parameters b, p, and e. In
thiswork, we assume that a sequence of time unitsU does not
change. In the first stage, we perform “data cleaning” of the
contents of workload trace WA. For all multisets included in
WA[i], i = 1, 2, . . . |U |, pre-calculating of threshold work-
load w is proceeded, afterwards it is used to eliminate from
a workload trace WA of an audit trail A created over a fixed
sequence of time units U , all multisets T k such that their
cumulative workload is below a mentioned threshold value
w for all time units. “Cleaning data process” of an audit
trail eliminates SQL statements which do not significantly
contribute to an overall workload, like for example a state-
ment which gets the current date and time or a statement
that creates a new element of a sequence. More precisely,
all multisets T k are removed from all multisets included in
WA[i], i = 1, 2, . . . |U | containing T k if the total contri-
bution to a workload of an multiset Tmax(k) in WA, i.e. the
largest number of times a syntax tree T was processed in a
time unit i measured as k ∗ |T .workload[i]| is less than the
threshold workload w and does not exist at least two mul-
tisets (included in some WA[i],WA[j], i〈〉 j) such that each
of them contains T and their total workload is greater or
equal w. In the other words, “data cleaning” removes from
the multisets in a workload trace all elements representing
syntax trees whose processing has no significant impact on
overall workload and whose processing does not contribute
to any periodic patterns.

5.1 Reduced syntax tree table

Let T be a set of syntax trees that consists of all syntax trees
of statements in a “cleaned” audit trail. Let Tε be an empty
syntax tree and let Tπ be a syntax tree obtained from con-
catenation of all syntax trees from syntax tree table, which
are not included in any other syntax tree. Then, discovering
elementary periodic patters is performed over a lattice 〈T,	〉
implemented as a syntax tree table with a minimum Tε and
maximum Tπ and partial order 	 representing inclusion of

p
1

p
1

p
3

p
2

r s

1:

2: p
2

vt

5:

4: 3:

Fig. 2 Visualization of reduced syntax tree table

syntax trees. The following three rules can be used to reduce
the total number of iterations over the syntax trees. Let A be
an audit trail.

1. If an elementary periodic pattern 〈T k
i ,U , b, p, e〉 is valid

in A then for any syntax tree Tj such that Tj 	 Ti and
k′ ≤ k an elementary periodic pattern 〈T k′

j , U , b, p, e〉
is valid in A.

2. If an elementary periodic pattern 〈T k
i ,U , b, p, e〉 is valid

in A then for any syntax tree Tj such that Ti 	 Tj and
¬∃Tn �= Tj such that Ti 	 Tn an elementary periodic
pattern 〈T k′

j , U , b, p, e〉 where k′ ≤ k is valid in A.

3. If an elementary periodic pattern 〈T k
i , U , b, p, e〉 is not

valid in A then for any syntax tree Tj such that Ti 	 Tj

and k ≤ k′ an elementary periodic pattern 〈T k′
j , U , b, p,

e〉 is not valid in A.
4. If an elementary periodic pattern 〈T k

i , U , b, p, e〉 is not
valid in A then for any syntax tree Tj such that Tj 	 Ti
and¬∃Tn �= Ti such that Tj 	 Tn an elementary periodic
pattern 〈T k′

j , U , b, p, e〉 where k ≤ k′ is not valid in A.

The rules listed above reduce a syntax tree table to a simple
table of pairs 〈tree, t imestamps〉where tree is an identifier
of a syntax tree that is supposed to be verified against peri-
odic patterns and t imestamps is a set of timestamps when
the processing of a syntax tree identified by tree occurred in
an audit trail. A reduced syntax trees table includes iden-
tifiers of all sub-lattices determined by the rules (1)–(4)
above. The table contains only information about the syntax
trees of the statements from an audit trail and about sub-
trees shared by two or more syntax trees. For example, a
syntax tree table given in Table 1 reduces to a set of pairs
{〈1, {t1, t3, t4}〉, 〈2, {t1}〉, 〈3, {t2, t4}〉,〈5, {t4}〉}. There is no
need to include a syntax tree 4 because it is a subtree of
syntax tree 5 and it is not a subtree of any other syntax tree.
Therefore, according to the rules (1) and (4) above any peri-
odic pattern found for a syntax tree 5 will also be valid for a
syntax tree 4, see Fig. 2.

5.2 Iterations

Discovering an elementary periodic pattern 〈T k , U , b, p, e〉
for a given set of time units U , and a given value of support
parameter 0 < σ ≤ 1 is performed through the nested itera-
tions over the syntax trees included in a reduced syntax tree

123

Vietnam J Comput Sci (2015) 2:201–211 207

table and the iterations over the positional parameters b, p,
and e. At the beginning, all syntax trees in a reduced syntax
tree table are marked as “not processed yet” and a set P of
elementary periodic patterns that occur in an audit trial A is
set to empty. At each level, the iterations are performed in
the following way.

Algorithm 1

Step 1: At the outermost level we pick a syntax tree
T from a reduced syntax tree table such that it is not
included in any other “not processed yet” syntax tree. If
such tree does not exist then the iterations are completed.
Otherwise, we create a workload trace WT for T .

Step 1.1: At the first inner level the iterations are per-
formed over the values of positional parameter b. The
parameter b iterates over an increasing sequence of num-
bers 1, 2, 3, . . . , |WT | − 1. Let bc be the current value of
parameter b. IfWT [bc] = ∅ then a value of bc is increased
by one and the same condition is tested again. If no more
iterations over the values of parameter b are possible then
we move to a Step 1.2 below.

Step 1.1.1: At the next inner level, the iterations are per-
formed over the values of parameter e for a fixed value bc
set at outer level. A parameter e iterates over a decreasing
sequence of numbers |WT |, |WT |−1 . . . , bc +2, bc +1.
Let ec be the current value of parameter e. IfWT [ec] = ∅
then we take the next value of parameter e the same con-
dition is tested again. If nomore iterations over the values
of parameter e are possible we return to Step 1.1.

Step 1.1.1.1: At the lowest level, the iterations are
performed over an increasing sequence of values of para-
meter p such that (ec − bc)mod p = 0 and bc + p〈ec.
If no more iterations over the values of parameter p are
possible we return to Step 1.1.1. Otherwise, we set the
current value of parameter p to pc.

Step 1.1.1.2:Next, we create a candidate elementary peri-
odic pattern 〈Tmin(k),U ,bc, ec, pc〉wheremin(k)denotes
the smallest value of k in all instances of element T k in
workload trace WT in a range [bc, ec].
Step 1.1.1.3: We use a trace WT to check whether the
candidate pattern is valid in an audit trail with a given
support σ . We compute c = ec−bc

p + 1 and v as the total

number of times Tmin(k) is valid in WT at the positions
bc,bc + pc,…,ec. Then, the candidate pattern 〈T k ,U , bc,
pc, ec〉 is valid in an audit trail with a support σ when
Tmin(k) 	 WT [bc] and Tmin(k) 	 WT [ec] and σ ≤ v/c.
If the candidate pattern is not valid in an audit trail then
we return to Step 1.1.1.1 to collect the next value of para-
meter p.

Step 1.1.1.4: If the candidate pattern is valid in an audit
trail then we append 〈Tmin(k), U , bc, pc, ec〉 to a set
P . Then, we modify the entries of trace WT such that
WT [i] := WT [i] − Tmin(k) for all ∀i = bc, bc +
pc, . . . , ec. Next, we return to Step 1.1.1.1 to collect the
next value of parameter p.

Step 1.2: At the end of iterations over the positional
parameters,we are leftwith the single elements in awork-
load trace WT , which are not attached to any elementary
periodic pattern in P . If there exists a periodic pattern
〈T k,U, b, e, p〉 ∈ P and an element WT [n] = Tm such
that n ≥ e + p and m ≥ k then we split the pattern
into 〈T k,U, b, e− p, p〉 and 〈T k,U, e, n, n− e〉 and we
modify trace WT [n] := WT [n] − Tmin(k). Splitting of
elementary periodic patterns is repeated until no more
single elements in WT can be used. When finished we
mark a syntax tree T as “processed” in a reduced syntax
tree table and we return to Step (1) above.

It is important to note, that support of all elementary peri-
odic patterns found by an algorithm described above is equal
to 1.

6 Derivation rules for periodic patterns

The derivation rules presented in this section form a basis
for the logical reasoning about periodic patterns and for cre-
ation of complex patterns through the derivations from the
elementary and/or complex ones. We start from a rule that
normalizes a sequence of multi sets in a periodic pattern.

Rule 0 (Normalization): If a periodic pattern 〈T , U , b,
p, e〉 is valid in an audit trail A with a support σ then a
periodic pattern 〈T ′, U , b′, p, e′〉 such that T ′ is obtained
from T through elimination of all i leading empty multisets
and all trailing empty multisets such that and b′ = b+ i and
e′ = e + i is valid in an audit trail A with a support σ .

For example, if a periodic pattern 〈∅∅(T 2V)∅,U , 1, 3, 7〉
is valid in an audit trail A then a periodic pattern 〈(T 2V),U ,
3, 3, 9〉 is also valid in an audit trail A.

Next,we have two simple rules that allow to adjust a length
and frequency of periodic pattern.

Rule 1 (Horizontal split): If a periodic pattern 〈T ,U , b, p,
e〉 is valid in an audit trail A with a support σ then a periodic
pattern 〈T , U , b′, p, e′〉 such that b′ = b + (m ∗ p) and
e′ = e − (n ∗ p) and b′〈e′ where m, n ∈ N+ ∪ {0} is valid
in an audit trail A with a support σ ′ ≥ σ .

For example, if a periodic pattern 〈(T 2V)∅W , U , 1, 3, 7〉
is valid in an audit trail A then a periodic pattern 〈(T 2V)∅W ,
U , 1, 3, 4〉 is also valid in an audit trail A.

Rule 2 (Vertical split): If a periodic pattern 〈T ,U , b, p, e〉
is valid in an audit trail A with a support σ then a periodic

123

208 Vietnam J Comput Sci (2015) 2:201–211

pattern 〈T , U , b, p′, e′〉 such that p′ = n ∗ p and e′ ≤ e and
(e′ − b)mod p′ = 0 where n ∈ N+ ∪ {0} is valid in an audit
trail A with a support σ ′ ≥ σ .

For example, if a periodic pattern 〈(T 2V)∅W , U , 1, 3, 7〉
is valid in an audit trail A then a periodic pattern 〈(T 2V)∅W ,
U , 1, 6, 7〉 is also valid in an audit trail A.

The horizontal and vertical split rules rules can be used to
increase a value of support for a periodic pattern at an expense
of length and frequency of the pattern and also to adjust
the parameters of periodic pattern such that the extension
and composition rules can be applied to build the complex
patterns from the simple ones.

Rule 3 (Decomposition): If a periodic pattern 〈T ,U , b, p,
e〉 is valid in an audit trail A with a support σ and T ′[i] ⊆
T [i] for all i = 1 . . . |T | then a periodic pattern 〈T ′, U , b,
p, e〉 is valid in an audit trail A with a support σ .

For example, if a periodic pattern 〈(T 2V)∅W , U , 1, 3, 7〉
is valid in an audit trail A then the periodic patterns 〈T∅W ,
U , 1, 3, 7〉 is also valid in an audit trail A.

The next group of rules shows how to derive the new peri-
odic patterns from information about two periodic patterns
valid in an audit trail.

Rule 4 (Horizontal extension): Let the periodic patterns
Pi = 〈Ti , U , bi , pi , ei 〉 and P j = 〈T j , U , b j , p j , e j 〉 such
that Ti = T j and pi = p j and b j = ei + pi are valid
in an audit trail A with the respective supports σi and σ j .
Then a periodic pattern Pk = 〈Tk , U , bk , pk , ek〉 such that
Tk = Ti = T j and bk = bi and pk = pi = p j and ek = e j
is valid in an audit trail A with a support σk = σi∗ci+σ j∗c j

ci+c j

where ci = ei−bi
pi

+ 1 and c j = e j−b j
p j

+ 1.

For example, if the periodic patterns 〈(T 2V)∅W ,U , 1, 3,
7〉 and 〈(T 2V)∅W , U , 10, 3, 13〉 are valid in an audit trail A
then a periodic patterns 〈(T 2V)∅W ,U , 1, 3, 13〉 is also valid
in an audit trail A.

Rule 5 (Vertical extension): Let the periodic patternsPi =
〈Ti , U , bi , pi , ei 〉 and P j = 〈T j , U , b j , p j , e j 〉 such that
Ti = T j and pi = p j and pi mod 2 = 0 and b j = bi + pi/2
and e j = ei + pi/2 are valid in an audit trail A with the
respective supports σi and σ j . Then a periodic pattern Pk =
〈Tk , U , bk , pk , ek〉 such that Tk = Ti = T j and bk = bi
and pk = pi/2 and ek = e j is valid in an audit trail A

with a support σk = σi∗ci+σ j∗c j
ci+c j

where ci = ei−bi
pi

+ 1 and

c j = e j−b j
p j

+ 1.

For example, if the periodic patterns 〈(T 2V)∅W ,U , 1, 4,
5〉 and 〈(T 2V)∅W , U , 3, 4, 7〉 are valid in an audit trail A
then a periodic pattern 〈(T 2V)∅W , U , 1, 2, 7〉 is also valid
in an audit trail A.

Rule 6 (Composition): Let the periodic patterns Pi = 〈Ti ,
U , bi , pi , ei 〉 and P j = 〈T j ,U , b j , p j , e j 〉 such that bi ≥ b j

and ci
c j

= p j
pi

where ci = ei−bi
pi

+ 1 and c j = e j−b j
p j

+ 1 are
valid in an audit trail A with the respective supports σi and

σ j . Then a periodic pattern Pk = 〈Tk , U , bk , pk , ek〉 such
that

(i) bk = bi and
(ii) pk = LCM(pi , p j) and
(iii) ek = ei and

(iv) Tk = W (ki)
Ti

 W
(k j)
T j

where W (ki)
Ti

is a workload trace of

the first ki cycles of Ti and W
(k j)
T j

is a workload trace

of the first k j cycles of T j where ki = ci∗pi
LCM(pi ,p j)

and

k j = c j∗p j
LCM(pi ,p j)

where LCMmeans the Least Common
Multiple is valid in an audit trail A with a support σk
such that (1 − σ ′

i) + (1 − σ ′
j) ≤ σk ≤ max(σ ′

i , σ
′
j)

where σ ′
i = σi∗pi

LCM(pi ,p j)
and σ ′

j = σ j∗p j
LCM(pi ,p j)

.

For example, if the periodic patterns 〈T V ,U , 1, 3, 13〉 and
〈W , U , 2, 2, 18〉 are valid in an audit trail A then a periodic
pattern 〈T (VW)∅(TW)VW , U , 1, 6, 13〉 is also valid in an
audit trail A. To obtain a sequence of multisets for the result
of composition the first two cycles from the workload of the
first periodic pattern T V∅T V must be combined with the
first three cycles of the second periodic pattern ∅W∅W∅W .
As a result, we obtain T (VW)∅(TW)VW .

7 Predicting database workloads

Predicting the future database workloads directly from the
traces of past workloads does not provide precise results
because the traces do not contain information, which work-
loadpeaks are causedby the interferences of periodic patterns
and which one are simply coincidences of randomly com-
puted complex processing tasks. In this section,we showhow
the derivations of periodic patterns can be used do create the
complex periodic patterns and how to use such patterns for
the estimation of future workloads. A process of finding the
periodically occurringworkload peaks consists of two stages.
In the first stage, a set of elementary periodic patternsPe and
a set of derivation rules described earlier are used to discover
a set P of more complex periodic patterns. In the next stage,
a set of time unitsU over which the periodic patterns are dis-
covered is mapped onto a period of time when the workload
levels supposed to be predicted to find workload in the real
time in the future.

The derivations of periodic patterns consist of the follow-
ing steps.

Step 1: A set of elementary periodic patterns Pe discov-
ered by the Algorithm 1 is partitioned into the disjoint
subsetsPT of periodic patterns such that eachPT = {〈T ,
U , b, p, e〉 : T = T k, k = 1, 2, . . .}. In the other words,
partitioning is performed such that all elementary peri-
odic patterns of the same syntax tree are included in the

123

Vietnam J Comput Sci (2015) 2:201–211 209

samepartition. Then, eachpartition is split into the groups
P f
T depending on a value of parameter p. All periodic

patterns such that p = 1 are included in a group P1
T ,

all periodic patterns such that p = 2 are included in a
groupP2

T , …all periodic patterns such that pmod f = 0

where f is a prime number are included in a groupP f
T . At

the end of partitioning step, each P f
T group contains the

elementary periodic patterns of the same syntax tree T
and periods p being the multiplicities of the same prime
number f .

Step 2: In this step, the longest elementary periodic pat-
terns are created from the patterns included in each group.
For each P f

T of periodic patterns the followings actions
are repeated.
Step 2.1: A group P f

T of periodic patterns is analyzed
to find the longest sequence of periodic patterns with
non-overlappingworkload traces and such that a distance
between any two workload traces of periodic patterns in
a sequence is no longer that a given threshold value.
Step 2.2: All periodic patterns included in a sequence are
removed from P f

T .
Step 2.3: Then, if kmin is the smallest multiplicity of
syntax tree T in a sequence than the decomposition and
vertical split rules is used to derive the patterns that have
the same multiplicity kmin and the same period p in the
sequence.
Step 2.4: A sequence is converted to a single periodic
pattern using horizontal and vertical extension rules.
Step 2.5: A sequence created and the periodic patterns
left after application of decomposition and vertical split
rules are returned to a groupP f

T . Then, if it is still possible
to create another sequence, a procedure starting from a
step 2.1 is repeated. Otherwise, the next group of periodic
patterns in considered as an input to step 2.

Step 3: In this step, the composition rule is applied to the
periodic patterns obtained from the extensions of pat-
terns from all P f

T groups to reduce the total number of
patterns. We consider all pairs of periodic patterns such
that a distance between their start points is no longer than
a given threshold value. Then, a horizontal split rule is
used to adjust the length of periodic patterns in each pair
such that composition rule can be applied. The results
from the compositions, i.e. the composed patterns and
the split fragments of patterns not used by composition
rules are returned to an input set of periodic patterns and
step 3 is repeated. When no more composition can be
done the derivations are completed.

In the second stage, a collection of periodic patterns Ps

discovered over a sequence of time unitsU is used to predict
database workloads over a given period of time in the future.
Practically, a problem is how to map a sequence of time units

U onto a sequence of time units that comprise a period of time
in the future. A mapping uses a concept of indexing with the
keywords of a sequence of time units in U and a sequence
of the respective time units in the future. An index entry is
a pair 〈n, Un〉 where n is a unique name of an entry and Un

is a nonempty subset of time units in U . For example, in a
sequence of time unitsU spreading over a period of 2 weeks
where each time units has a length of one day, an index entry
〈Monday, {U [1], U [8]}〉 means giving a name Monday to
the first and the eight time unit in U . Another index entry
〈The first day of a month, {U [1]}〉 names the first time unit
in U as The first day of a month. Together both entries mean
that a sequence of time unitsU spreads over 2 weeks starting
from Monday and also that the first Monday is the first day
of a month.

Let IU be an set of index entries over a sequence of periods
of time U . We partition a period of time over which the
workloads supposed to be found in to a sequence of time units
F with the length of each time unit and distances between
time units the same as in U . A sequence of time units F
obtains a set of index entries IF . Finally, U is mapped onto
F in a way that maximizes the total number of identical
index entries in IU and IF . For example, let IF contains the
index entries 〈Monday, {F[5], F[12], F[19], F[26]}〉 and
〈The first day of a month, {F[11]}〉 and let IU contains the
index entries listed above. Then the best mappings of U are
at position F[12] and later on at position F[26] because a
location F[11] is closer to F[12] and F[5]. The mappings
of U onto F and a set of periodic patterns over U determine
the future workloads in F .

8 Experiments

The main objective of the experiments was to estimate the
quality of algorithms used for identification and derivation of
periodic patterns. As a measure of quality, we used a ratio of
the total number of entries from workload trace not assigned
to any periodic pattern to the total number of entries in a
workload trace. The objective of the process was to discover
as many periodic patterns as it is possible and to include all
entries in a workload trace into at least one periodic pattern.
The other measure of quality was a ratio of the total number
of periodic patterns obtained after all derivations to the total
number of elementary periodic patterns obtained from the
first algorithm. The objective was to create as complex peri-
odic patterns as it is possible and to reduce the total number
of patterns found. These two measures are somewhat con-
tradictory as application of extension and composition rules
usually creates some “left-overs”, i.e. single-entry multisets
of syntax trees, which must be returned to a workload trace.

Due to the privacy concerns, we did not use the real audit
trails for testing of the algorithms. Instead, we used an audit
trail obtained from a synthetic database load generator. It

123

210 Vietnam J Comput Sci (2015) 2:201–211

allowed us to generate the periodic processing of database
tasks with the pre-specified parameters such that the created
periodic patterns and their traces could be compared with
the outcome of the discovery and derivation algorithms. The
main component of a synthetic workload generator was a
process that iteratively executed a given sequence of SQL
statements in a given period of time. For example, a given
sequence of SELECT, UPDATE, SELECT statements was
iteratively processed in a period of 10min. The process could
be nested such that practically any combination of periodic
processing of SQL statement could be obtained in a multi-
processing Unix environment.

To get an audit trace, we used as a database server an
“off-the-shelf” commercial relational database management
system. All softwarewerewritten in SQL embedded in a host
language of the database management system. The clients
created the synthetic database workload against a sample
TPCHbenchmark relational database and an audit trace for a
particular single database user was saved in a relational table.
When an audit session was completed, the relational table
with audit entries was processed such that SQL statements
that had no significant impact on performance were filtered
out and the remaining statements were used to generate SQL
script with EXPLAIN PLAN statement together with infor-
mation about their timestamps. In the next stage, SQL script
with EXPLAIN PLAN statements and time stamps attached
to the statements was used to create a syntax tree table and
later on reduced syntax tree table in a way described earlier
in the paper. At the end of data generation and preparation
stage, a period of time over which an audit trail was collected
was divided into a given number adjacent time units U and
a relational table with a workload trace WA was created and
loaded with data.

In the first step of periodic pattern discovery, we used a
parameterized procedure that found the elementary periodic
patterns for the values of parameter p = 1, 2, 3, . . . that do
not exceed a given threshold value. The procedure discovered
and saved the elementary periodic patterns starting from the
lowest values of parameters p. The experiments conducted
with several different strategies of choosing the values of
parameter p provided different final sets of periodic patterns
depending on the order of the values of parameter p.

In the next step, a set of elementary periodic patterns was
passed through the procedures that apply first the vertical
and horizontal extension rules to derive periodic patterns that
expand over the longer period of time. Later on, a composi-
tion rule was applied to the results of extensions to reduce the
total number of periodic patterns and to derive the periodic
patterns with longer sequences of multisets T . At this stage,
the application the vertical extension and composition rules
created the non-elementary periodic patterns. The horizontal
and vertical split rules were used to adjust the parameters of
periodic patterns such that extension and composition rules

could be applied. The new periodic patterns obtained from
the application of the derivation rules were appended to a set
of periodic patterns such that they could be used in the next
applications of extensions and compositions. The periodic
patterns created into a single periodic patterns were removed
from a set of periodic patterns such that the set always rep-
resents the same workload trace. A negative side effect of
split operation was the “left-overs” which consisted of sin-
gle processing of syntax trees not covered by the present
collection of periodic patterns and saved in a “trash” work-
load trace. A collection of periodic patterns obtained from
the derivations and the contents of “trash” workload trace
were equivalent to the original workload trace.

The implemented software is parameterized in a number
dimensions. First, a period of time over which an audit is
performed can be divided into a given number of disjoint
and adjacent time units. A synthetic workload can be very
easily reconfigured by adding and/or removing Unix shell
scripts running periodically processed SQL scripts. An initial
generation on elementary periodic patterns can be controlled
by appropriate selection of the values of a parameter p for
each pattern and an order inwhich value of p can be changed.
It is possible to enforce a lower limit for the total number of
cycles of periodic patterns obtained from the applications of
vertical split rule such that periodic patterns with the total
number of cycles less than a given threshold value are not
created. Finally, it is possible to enforce the upper limit for
an offset between the first cycles of the composed periodic
pattern. Such parameter eliminates the composition between
periodic patterns whose first cycles are not close enough.

The experiments performed on the synthetically gener-
ated workloads show that on average it is possible to reduce
the initial number of elementary periodic patterns obtained
directly from a workload trace to total 10% of the total num-
ber of elementary patterns. The total number of “leftovers”,
i.e. executions of syntax trees not assigned to any pattern is
not larger than 5% of the total size of workload trace. Appli-
cation of the composition rule allows for creation of complex
periodic patterns, however, frequent application of compo-
sitions increases the length of T and in the same moment
reduces the total number of cycles. Further application of a
rule that find cycles within T allows to restore the original
patterns of the synthetic workloads.

9 Summary and conclusions

Discovering the complex periodic patterns in the data-
base audit trails is a difficult and time-consuming task. An
approach investigated in the paper finds the elementary peri-
odic patterns and composes them into the complex ones
instead of directly searching for all complex patterns. Direct
discovery of complex patterns from the audit trails faces a
difficult problem of finding appropriate candidate patterns in

123

Vietnam J Comput Sci (2015) 2:201–211 211

a huge space of theoretically possible sequences of multisets
of syntax trees and the values of parameters that determine
a scope and periodicity of the patterns. The approach pre-
sented in this work is conceptually consistent with many
other approaches to discovery of regularities in large data
sets. For example, discovery of frequent item sets also starts
from the single item candidate item sets, which is later on
verified and extended with more items. While the logical
inference rules are applied to discard the items which do not
satisfy the constraints like support and confidence. An impor-
tant advantage of the presented approach is the reduction of
the total number of times the admit trails must be accessed.
The derivation rules which of the periodic patterns satisfy a
support constraint and which can be discarded without veri-
fication in the smaller components of an audit trail.

A data preparation stage of the process starts fromdefining
the time units and partitioning an audit trail over time units.
Next, the syntax trees are obtained from an audit trail, and
then the trees are compressed, reduced, and not important
ones are eliminated. The discovery stage consists of finding
elementary periodic patterns and applying the composition
rule to derive the required complex periodic patterns. The
computational complexity of search for elementary periodic
patterns is approximately O(k ∗ n3) where 0 < k < 1/8
and n is the total number of partitions in an audit trail. Com-
plexity of search over syntax trees is hard to estimate as it
depends on the total number of access methods to relational
tables, complexity of SQL statements, and a level of sharing
common components among SQL statements.

The periodicity of databaseworkload provides very useful
information for many functional components of a database
management system, like transaction scheduler, data buffer
cache controller, and automated performance tuner. Usually,
such functional components need only partial information
about the behavior of selected database applications. An
approach in which only some of elementary periodic pat-
terns are discovered and later on composed is more practical
as it targets only the specific SQL statements in an audit trail.
Another advantage of the proposed approach is the possibil-
ity to use the discovered periodic patterns to model future
workload after the old applications are replaced with the new
ones or the new applications are added to a system. It is also
easier to reconcile the new audit trails with the collections
of periodic patterns discovered from the previous audit trails
than to integrate the complete trails.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Abadi, M., Manna, Z.: Temporal logic programming. J. Symb.
Comput. 8(3), 277–295 (1989)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules
between sets of items in large databases. In: Proceedings of the
1993 ACM SIGMOD international conference on management of
data, pp. 207–216 (1993)

3. Ahmad, M., Duan, S., Aboulnaga, A., Babu S.: Predicting com-
pletion times of batch query workloads using interaction-aware
models and simulation. In: Proceedings of EDBT, pp. 449–460
(2011)

4. Akdere M., Çetintemel U., Riondato M., Upfal E., Zdonik B.:
Learning-based query performance modeling and prediction. In:
Proceedings of ICDE, pp. 390–401 (2012)

5. Baudinet, M., Chomicki, J., Wolper, P.: Temporal deductive data-
bases. In: Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev,
A., Snodgrass, R (eds) Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, pp 294–320 (1993)

6. Bruno, N.: Automated Physical Database Design and Tuning. CRC
Press Taylor and Francis Group, Boca Raton (2011)

7. Huang, K.Y., Chang, C.H.: SMCA: a general model for mining
asynchronous periodic patterns in temporal databases. IEEE Trans
Knowl Data Eng 17(6), 774–785 (2005)

8. Han, J.W., Gong, W., Yin, Y.W.: Mining segment-wise periodic
patterns in time-related databases. In: Proceedings of international
conference on knowledge discovery and data mining, pp. 214–218
(1998)

9. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sad-
hana Acad Proc Eng Sci 31(2), 173–198 (2006)

10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent
episodes in event sequences. Data Min Knowl Discov 1, 259–289
(1997)

11. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association
rules. In: Proceedings of the 14th international conference on data
engineering, pp. 412–421 (1998)

12. Rasheeed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity min-
ing in time series databases using suffix trees. IEEE Trans Knowl
Data Eng 23(1), 79–94 (2011)

13. Roddick, J.F., Society, I.C., Spiliopoulou,M.: A survey of temporal
knowledge discovery paradigms and methods. IEEE Trans Knowl
Data Eng 14(4), 750–767 (2002)

14. Simovici, D.A., Djeraba, C.: Mathematical Tools for Data Mining:
Set Theory, Partial Orders, Combinatorics. Advanced Information
and Knowledge Processing. Springer, London (2008)

15. Wojciechowski, M.: Discovering frequent episodes in sequences
of complex events. In: Proceedings of enlarged 4th East-European
conference on advances in databases and information systems
(ADBIS-DASFAA), pp. 205–214 (2000)

16. Wu, W., Chi, Y., Hacıgümüş, H., Naughton, J.F.: Towards pre-
dicting query execution time for concurrent and dynamic database
workloads. Proc VLDB Endow 6(10), 925–936 (2014)

17. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacıgümüş, H., Naughton,
J.F.: Predicting query execution time: are optimizer cost models
really unusable? In: Proceedings of ICDE, pp. 1081–1092 (2013)

18. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic pat-
terns in time series data. IEEE Trans Knowl Data Eng 15(3),
613–628 (2003)

19. Zimniak, M., Getta, J.R., Benn, W.: Discovering periodic patterns
in database audit trails. In: Proceedings of international conference
on interdisciplinary research theory and technology, pp. 365–367
(2013)

123

	Predicting database workloads through mining periodic patterns in database audit trails
	Abstract
	1 Introduction
	2 Related work
	3 Database processing model
	3.1 Audit trail
	3.2 Syntax tree table
	3.3 Time units
	3.4 Workload trace

	4 Periodic patterns
	5 Discovering elementary periodic patterns
	5.1 Reduced syntax tree table
	5.2 Iterations

	6 Derivation rules for periodic patterns
	7 Predicting database workloads
	8 Experiments
	9 Summary and conclusions
	References

