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Abstract Mining association rules with constraints allow
us to concentrate on discovering a useful subset instead of the
complete set of association rules. With the aim of satisfying
the needs of users and improving the efficiency and effec-
tiveness of mining task, many various constraints and min-
ing algorithms have been proposed. In practice, finding rules
regarding specific itemsets is of interest. Thus, this paper
considers the problem of mining association rules whose
left-hand and right-hand sides contain two given itemsets,
respectively. In addition, they also have to satisfy two given
maximum support and confidence constraints. Applying pre-
vious algorithms to solve this problem may encounter dis-
advantages, such as the generation of many redundant can-
didates, time-consuming constraint check and the repeated
reading of the database when the constraints are changed.
The paper proposes an equivalence relation using the closure
of itemset to partition the solution set into disjoint equiva-
lence classes and a new, efficient representation of the rules
in each class based on the lattice of closed itemsets and their
generators. The paper also develops a new algorithm, called
MAR-MINSC, to rapidly mine all constrained rules from the
lattice instead of mining them directly from the database.
Theoretical results are proven to be reliable. Because MAR-
MINSC does not meet drawbacks above, in extensive exper-
iments on many databases it obtains the outstanding perfor-
mance in comparison with some of existing algorithms in
mining association rules with the constraints mentioned.
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1 Introduction

For the aim of not only reducing the burden of storage and
execution time but also rapidly responding to the demand of
users, constraint-based data mining has attracted much inter-
est and attention from researchers. At the beginning, they
have designed algorithms to mine data with primitive con-
straints. A typical example is the one of the frequent itemset
discoveries in a transaction databasewhere the primitive con-
straint is a minimum frequency constraint. Based on frequent
itemsets, association rules are mined, where the minimum
confidence constraint is other primitive one.More concretely,
let T = (O,A,R) be a binary database, where O is a non-
empty set that contains objects (or transactions), A is a set
of attributes (or items) appearing in these objects and R is
a binary relation on O × A. The cardinalities of A and O
are denoted as m = |A| and n = |O|, respectively (m and
n are often very large). Let us denote s0 as the minimum
support threshold and c0 as minimum confidence threshold,
where s0, c0 ∈ (0; 1]. The task is to mine frequent item-
sets and association rules from T . A basic problem, named
(P1), is that the cardinalities of frequent itemset class FS(s0)
and association rule set ARS(s0, c0) in the worst case are
of exponent, i.e., Max(#FS(s0)) = 2m − 1 = O(2m) and
Max(#ARS(s0, c0)) = 3m −2m+1+1 = O(3m). Therefore,
extant algorithms remain riddled with limitations regarding
the mining time and the main memory in case the size of T is
quite large.Moreover, for rules that were discovered, it is dif-
ficult for users to quicklyfind the quite small subset of interest
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if there only have the constraints about support and confi-
dence. To solve this problem (P1), many more complicated
constraints have been introduced into algorithms to only gen-
erate association rules related directly to the user’s true needs,
and to reduce the cost of the mining. Monotonic and anti-
monotonic constraints, denoted as Cm and Cam respectively,
are considered by Nguyen et al. [25]. They are pushed into
an Apriori-like algorithm, named CAP, to reduce the fre-
quent itemsets computation. In [7], the problem is restricted
in two constraints that are the consequent and the minimum
improvement. Srikant et al. [30] present the problem of min-
ing association rules that include the given items in their two
sides. A three-phase algorithm is proposed for mining those
rules. First, the constraint is integrated into the Apriori-like
candidate generation procedure to find only candidates that
contain the selected items. Second, an additional scanning
of the database is executed to count the support of the sub-
sets of each mined frequent itemset. Finally, an algorithm
based on Apriori principle is applied to generate rules. The
concept of convertible constraint is introduced and pushed
within the mining process of an FP-growth based algorithm
[28]. The authors show that, since frequent itemset mining is
based on the concept of prefix-itemsets, it is very easy to inte-
grate convertible constraints into FP-growth-like algorithms.
They also state that pushing these constraints into Apriori-
like algorithms is not possible. Due to huge input databases,
Bonchi et al. [8] propose data reduction techniques and they
have been proven to be quite effective in cases of pushing
convertible constraints into a level-wise computation. The
authors in [21] design the algorithms for discovering associ-
ation rules with multi-dimension constraints.

By combining the power of the condensed representation
(closed itemsets and generators) of frequent itemsets with
the properties of Cm and Cam constraints, in [2,3,16,17], we
consider somedifferent itemconstraints andpropose efficient
algorithms to mine-constrained frequent itemsets. In detail,
the work in [2] is to mine all frequent itemsets contained in a
specific itemset. An algorithm, calledMINE_FS_CONS, has
been proposed to do this task. In [3], the efficient algorithms
MFS-CC andMFS-IC for mining frequent itemsets with the
dualistic constraints are presented. They are built basedon the
explicit structure of frequent itemset class. The class is split
into two sub-classes. Each sub-class is found by applying the
efficient representation of itemsets to the suitable generators.
And in [16,17], we consider the problem of mining frequent
itemsets that (i) include a given subset and (ii) contain no
items of another specific subset, or only satisfy the condition
(i). Mining frequent itemsets that satisfy both (i) and (ii) is
quite complicated because there is a tradeoff among these
constraints. However, with a suitable approach, the papers
propose efficient algorithms, named MFS-Contain-IC and
MFS_DoubleCons, for discovering frequent itemsets with
the constraints mentioned.

It is noted that, our results above only relate directly to
frequent itemsets. We, in this paper, are interested in extend-
ing the result presented in [16] to association rule mining
with many different constraints. The approach based on fre-
quent closed itemset and their generators is still used but the
problem is much more complicated. Firstly, let us state our
problem as in sub-section below.

1.1 Problem statement

Before stating the problem of our study, we present some
common concepts and related notations. Given T = (O,A,

R), a set X ⊆ A is called an itemset. The support of an
itemset X, denoted by supp(X), is the ratio of the number
of transactions containing X and N, the number of transac-
tions in T . Let s0, s1 be the minimum and maximum support
thresholds, respectively, where 0 < 1/n ≤ s0 ≤ s1 ≤ 1
and n = |O|. A non-empty itemset A is called frequent iff1

s0 ≤ supp(A) ≤ s1 (if s1 is equal to 1, then the traditional fre-
quent itemset concept is obtained). For any frequent itemset
S′, we take a non-empty, proper subset L ′ from S′ (∅ �=
L ′ ⊂ S′) and R′ ≡ S′\L ′. Then, r : L ′ → R′ is a rule
created by L ′, R′ (or by L ′, S′) and its support and con-
fidence are determined by supp(r) ≡ supp(S′) and conf(r)
≡ supp(S′)/supp(L ′), respectively. The minimum and maxi-
mum confidence thresholds are denoted by c0 and c1, respec-
tively, where 0 < c0 ≤ c1 ≤ 1. The rule r is called an asso-
ciation rule in the traditional manner iff c0 ≤ conf(r) and
s0 ≤ supp(r) and the set of all association rules is denoted by
ARS(s0, c0) ≡ {r : L ′ → R′ |∅ �= L ′, R′ ⊆A, L ′ ∩ R′ = ∅,
S′ ≡ L ′ + R′, s0 ≤ supp(r), c0 ≤ conf(r)}

The present study considers the problems that comprise
many constraints about support, confidence and sub-items.
Such a problem is stated as follows. For additional constraints
on two sides of rule, L0, R0 ⊆ A, the goal is to discover all
association rules r : L ′ → R′ so that their supports and
confidences meet the conditions, s0 ≤ supp(r) ≤ s1, c0 ≤
conf(r) ≤ c1, and their two sides contain the itemconstraints,
L ′ ⊇ L0, R′ ⊇ R0, called minimum single constraints. The
problem can be described formally as follows.

ARS⊇L0,⊇R0(s0, s1, c0, c1) ≡ {r : L ′ → R′ ∈
ARS(s0, s1, c0, c1)|L ′ ⊇ L0, R

′ ⊇ R0} (ARS_MinSC),

where ARS(s0, s1, c0, c1) ≡ {r : L ′ → R′ ∈ ARS(s0, c0)|
supp(r) ≤ s1, conf(r) ≤ c1}.

For discussing about the constraints of the problem, it is
noted that if s1 = c1 = 1 and L0 = R0 = ∅, we obtain the
problem ofmining association rule set ARS(s0, c0) in the tra-
ditional meaning. Otherwise, the mined rules may be signif-
icant in different application domains such as market-basket

1 Iff is denoted as if and only if.
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analysis, network traffic domain and so on. For instance, the
managers or leaders want to increase the turnover of their
supermarket based on high valuable items such as gold and
iPad. To this aim, a solution is to find an interesting associ-
ation among two of these items. The proposed problem may
help them to answer the question if there is an association or
not by setting the constraints L0 = {gold} and R0 = {iPad}. If
there has at least a found rule, it means that the association is
existent. Then, it can be used to support for attaining the aim
such as showing two of these items on close places which
may encourage the sale of the items together and do discount
strategies. At the beginning, the confidences of mined rules
may be not high because such exceptional rules only have
a few their instances. If the mining task received the high
value of the maximum confidence threshold, it may gener-
ate a large number of rules. This makes it easy to miss the
low confidence rules but they are of potential significance.
Thus, in order to realize and monitor them easily, we should
use the small value ofmaximum confidence threshold. After a
time, if these rules have higher confidences and becomemore
important, then foreseeing these associations of the items at
the early period of the rulesmay bring about the higher profits
for the supermarket.

In the other meaning, using amaximum confidence thresh-
old is more general than the fixed value that is always equal
to 1. For the maximum support threshold, when the value of
s1 is quite low and that of c0 is very high, ARS(s0, s1, c0, c1)
comprises association rules with the high confidences, dis-
covered from low frequent itemsets. This problem is of
importance and practical significance. For instance, we want
to detect fairly accurate rules from new, abnormal yet signif-
icant phenomena despite their low frequency.

Extant algorithms tomine ruleswithminimum single con-
straints might encounter problem, named (P2), such as the
generation of many redundant candidate rules and the dupli-
cates of solutions that are then eliminated. The current inter-
est is to find an appropriate approach for mining-constrained
association rule set (the rules satisfy minimum single con-
straints) without (P2).

1.2 Paper contribution

The contributions of the paper are as follows. First, we
present an approach based on the lattice [26,34,37] of closed
itemsets and their generators to efficiently mine associa-
tion rules satisfying the minimum single constraints and
the maximum support and confidence thresholds mentioned
above. To this approach, we propose a equivalence rela-
tion on constrained rule set based on the closure opera-
tor [26]. It helps to partition the set of constrained rules,
ARS⊇L0,⊇R0(s0, s1, c0, c1), into disjoint equivalence rule
classes. Thus, each class is discovered independently and
the duplication of the solution may be reduced considerably.

Moreover, the partition also helps to decrease the burden of
saving the supports and confidences of all rules in the same
class and be a reliable theoretical basis for developing parallel
algorithms in distributed environments. Second, we point out
the necessary and sufficient conditions so that the solution of
the problemor a certain rule class is existent. If the conditions
are not satisfied, theminingprocess does not need to uselessly
take up time for finding the solution. Thismakes an important
contribution to the efficiency of the approach. Third, a new
representation of constrained rules in each class is proposed
with many advantages as follows: (1) it helps us to have a
clear sight about the structure of constrained rule set; (2) the
duplication is completely eliminated; (3) all constrained rules
are rapidly extracted without doing any direct check on the
constraints, L ′ ⊇ L0 and R′ ⊇ R0. Finally, according to the
proposed theoretical results, we design a new, efficient algo-
rithm, named MAR_MinSC (Mining all Association Rules
with Minimum Single Constraints) and related procedures to
completely, quickly and distinctly generate all association
rules satisfying the given constraints.

1.3 Preliminary concepts and notations

Prior to presenting an appropriate approach to discover the
rules with minimum single constraints without (P2), let us
recall some of the following basic concepts about the lattice
of closed itemsets and the task of association rule mining.

Given T = (O,A,R), we consider two Galois con-
nection operators λ : 2◦ → 2A and ρ : 2A → 2◦
defined as follows: ∀O, A : ∅ �= O ⊆ O, ∅ �=
A ⊆ A, λ(O) ≡ {a ∈ A|(o, a) ∈ R,∀o ∈ O} , ρ(A) ≡
{o ∈ O|(o, a) ∈ R, ∀a ∈ A} and, as convention, λ(∅) =
A, ρ(∅ = O). We denote h(A)≡ λ(ρ(A)) as the closure of A
(h is called the closure operation in 2A).An itemsetA is called
closed itemset iff h(A) = A [26]. We only consider non-trivial
items inAF ≡ {a ∈ A : supp({a}) ≥ s0}. LetCS be the class
of all closed itemsets together with their supports. With nor-
mal order relation “⊇” over subsets of A, the lattice of all
closed itemsets that is organized by Hass diagram is denoted
by LC ≡ (CS,⊇). Briefly, we use FS(s0, s1) ≡ {L ′:∅ �= L ′
⊆ A, s0 ≤ supp(L ′)≤ s1} to denote the class of all frequent
itemsets and FCS(s0, s1) ≡ FS(s0, s1) ∩ CS to denote the
class of all frequent closed itemsets. For any two non-empty
itemsetsG andA, where∅ �= G ⊆ A ⊆ A,G is called a gen-
erator [23] ofA iff h(G) = h(A) and (h(G ′)⊂ h(G),∀G ′:∅ �=
G ′ ⊂ G ). The class of all generators of A is denoted by G(A).
Since G(A) is non-empty and finite [5], |G(A)| = k, all gen-
erators of A could be indexed as G(A) = {A1, A2, . . . , Ak}.
Let LCG ≡ {(S, supp(S),G(S))|(S, supp(S)) ∈ LC} be
the lattice LC of closed itemsets together their generators
and FLCG(s0, s1) ≡ {(S, supp(S),G(S)) ∈ LCG|S ∈
FS(s0, s1)} be the lattice of frequent closed itemsets and their
generators.
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From now on, we shall assume that the following con-
ditions are satisfied, 0 < s0 ≤ s1 ≤ 1, 0 < c0 ≤ c1 ≤
1, L0, R0 ⊆ A. (H0).

Paper organization The rest of this paper is organized as fol-
lows. In Sect. 2, we present some approaches to the problem
(ARS_MinSC) and the related works. Section 3 shows a par-
tition and a unique representation of constrained association
rule set based on closed itemsets and their generators. An
efficient algorithm MAR_MinSC to generate all association
ruleswithminimumsingle constraints is also proposed in this
section. Experimental results are discussed in Sect. 4. Finally,
conclusions and future works are presented in Sect. 5.

2 Approaches to the problem and related works

2.1 Approaches

Post-processing approaches To find association rule set with
minimum single constraints ARS⊇L0,⊇R0(s0, s1, c0, c1), the
approaches often perform two phases: (1) association rule
set ARS(s0, c0)without the constraints is discovered; (2) the
procedures for checking and selecting rules r : L ′ → R′ that
satisfy the constraint ≡ supp(r) ≤ s1, conf(r) ≤ c1 and
L ′ ⊇ L0, R′ ⊇ R0} are executed. In the phase (1), the rule
set, ARS(s0, c0), is able to be mined based on the following
simple two methods. One is that it is found by definition,
i.e., the class of frequent itemsets FS(s0) with the thresh-
old s0 needs to be mined by a well-known algorithm, such
as Apriori [1,23] or Declat [37]. Then, for ∀ S′ ∈ FS(s0),
all rules r : L ′ → R′ ∈ ARS(s0, c0), where ∅ �= L ′ ⊂ S′,
R′ ≡ S′ \ L ′ are discovered by an algorithm based on the
Apriori principle, such as Gen-Rules [26]. The time for find-
ing ARS(s0, c0) is often quite long because of the reasons
as follows: (i) the phase of finding frequent itemsets may
generate too many candidates and/or scan the database many
times; (ii) the association rule extracting phase often pro-
duces many candidates and takes time a lot to calculate the
confidences (since the supports of the left-hand sides of the
rules may be undetermined). Let us call this post-processing
algorithmPP-MAR-MinSC-1 (PostProcessing-MiningAsso-
ciation Rule with Minimum Single Constraints-1). The other
is to find ARS(s0, c0) based on the lattice FLCG of frequent
closed itemsets and the partition of ARS(s0, c0) as presented
in cotemoh4. Instead of exploiting all frequent itemsets, we
only need to extract frequent closed itemsets and partition
ARS(s0, c0) into equivalence classes. The rules in each class
have the same support and confidence that are calculated only
once (see in Sect. 3.1.1 for more details).We namePP-MAR-
MinSC-2 for the algorithm of the second method. PP-MAR-
MinSC-2 seems to be more efficient than PP-MAR-MinSC-1
because it is more suitable in cases support and confidence
thresholds are often changed.

Post-processing approaches have the advantage of being
simple, but they also have several disadvantages. Due
to the enormous cardinality of ARS(s0, c0), the algo-
rithms take a long time to search, but then there might
be only a few or even no association rules in ARS(s0, c0)
which are of ARS⊇L0,⊇R0(s0, s1, c0, c1) (the cardinality of
ARS⊇L0,⊇R0(s0, s1, c0, c1) is often quite small compared to
that of ARS(s0, c0)). Moreover, after finding ARS(s0, c0)
is completed, post-processing algorithms have to do direct
checks on the constraints, L ′ ⊇ L0, R′ ⊇ R0. This might
be time-consuming. In addition, when the constraints are
changed based on the demands of online users, recalculating
ARS(s0, c0) will uselessly take up time. If, at the beginning,
we mine and store ARS(s0, c0) with s0 = c0 = 1/|O|, then
the computational and memory costs will be very high.

PaperapproachToavoid thedisadvantages of post-processing
approaches and to solve the problem (P2), the paper proposes
a new approach based on three key factors as follows. The
first is the lattice LCG of closed itemsets, their generators
and supports. Using LCG has three advantages: (1) the size
ofLCG is often very small in comparison with that of FS(s0);
(2) LCG is calculated just once by one of the efficient algo-
rithms such as CHARM-L and MinimalGegenators [36,37],
Touch [31] or GenClose [5]; (3) from the latticeLCG, we can
quickly derive the lattice of frequent closed itemsets
satisfying the constraint together with the corresponding
generators whenever appears or changes. The second is
the equivalence relation based on the closure of two sides of
rules (L ≡ h(L ′) ⊆ S ≡ h (L ′+R′)). The third is the explicitly
unique representation of rules in the same equivalence class
AR(L, S) upon the generators and their closures, (L, G (L))
and (S, G (S)). In each class, this representation helps us to
have a clear sight of the rule structure and to completely elim-
inate the duplication. An important note is that our method
does not need to directly check the generated rules on the
constraints, L ′ ⊇ L0, R′ ⊇ R0.

2.2 Related works

To solve the problem (P1) and improve the efficiency of exist-
ing mining algorithms, various constraints have been inte-
grated during themining process to only generate association
rules of interest. The algorithms are mainly based on either
theApriori principle [1] or theFP-growth [18] in combination
with the properties of Cam and Cm constraints. FP-bonsai [9]
uses both Cam and Cm to mine frequent patterns. The advan-
tage of FP-bonsai is that it utilizes Cm to support the process
of pruning candidate itemsets and the database upon Cam. It
is efficient on dense databases but not on sparse ones. Fold-
Growth [29,35] is an improvement of FP-tree using a pre-
processing tree structure, named SOTrielT. The first strength
of SOTrielT is its ability to quickly find frequent 1-itemsets
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and 2-itemsets with a given support threshold. The second
one is that it does not have to reconstruct the tree when the
support is changed. A primary drawback of the FP-growth
based algorithms is to require the large size of main memory
for saving the original database and intermediate projected
databases. Thus, if the main memory is not enough, the algo-
rithms cannot be used. Another important limitation of this
approach is that it is hard to take full advantage of a combi-
nation of different constraints, since each constraint has dif-
ferent properties. For instance, minimum single constraints
above regarding support, confidence and item subsets include
both Cam and Cm constraints whose properties are opposite.
Moreover, the approach could take cost a lot to reconstruct
FP-tree when mining frequent itemsets and association rules
with different constraints. On the contrary, ExAMiner [8] is
an Apriori-like algorithm. It uses input data reduction tech-
niques to reduce the problemdimensions aswell as the search
space. It is good at huge input data.However,ExAMiner is not
suitable with the problem stated in the paper because when
the minimum single constraints are changed, the process of
reducing input data needs to be started from the original data-
base and generating rules may have time-consuming, direct
checks on the constraints.Moreover, the authors in [20] show
that the integration of Cm can lead to a reduction in the prun-
ing of Cam. Therefore, there is a tradeoff between Cam and
Cm pruning.

For other related results, a constraint, named maximum
constraint, is used by [19] to discover association rules with
many minimum support thresholds. Each 1-itemset has a
minimum support threshold of its own. The authors propose
an Apriori-like algorithm for mining large-itemsets and rules
with this constraint. Lee et al. [21] design an algorithm to
mine association rules with multi-dimensional constraints.
An example, max(S.cost) <6 and 200 <min(S.price), is the
one of the multi-dimensional constraints, where S is an item-
set, and each item of S has two attributes, cost and price.
In [14], the CoGAR framework to mine generalized asso-
ciation rules with constraints is presented. Besides the tra-
ditional minimum support and confidence, two new con-
straints, schema and opportunistic confidence, are consid-
ered. The schema constraint is similar to that shown in [2]
but the approach to solve the problem is different. An algo-
rithm is proposed to discover generalized rules satisfying
both these constraints in three phases: (1) the algorithm CI-
Miner is used to extract schema constrained itemsets; (2) the
generalized association rules are exploited by the Apriori-
like rule mining algorithm, RuleGen; (3) a post-processing
filtering algorithm, named CR-Filter, is designed to get the
rules satisfying the opportunistic confidence constraint. The
concept of periodic constraints is given in [32,33] and new
algorithms for mining association rules with this constraint
are mentioned. The mining task, firstly, abstracts the variable

and then eliminates the solutions falling outside at axiom
constraints. The authors in [24] consider the problem of dis-
covering multi-level frequent itemsets with the existent con-
straints that are represented as a Boolean expression in dis-
junctive normal form. A technique to model the constraints
in the context of use of concept hierarchies is proposed and
the efficient algorithms are developed to gain the aim.

Note that most of the previously proposed algorithms for
mining association rules with constraints were designed to
work on their own constraints. Thus, using them to discover
rules based on minimum single constraints may be inef-
ficient. In addition, these algorithms could encounter two
important shortcomings; one is to generate many redundant
candidates and duplicates of the solution that are then elim-
inated (the problem (P2)); the other is that the algorithms
need to be rerun from the initial database whenever the
constraints are changed. This reduces the mining speed for
users.

While the results above seem to be not suitable with the
stated problem, an approach that is based on the condensed
representation of frequent itemsets might be more efficient.
Instead of mining all frequent itemsets, only the condensed
ones are extracted. Using condensed frequent itemsets has
three primary advantages. First, it is easier to store because its
cardinality ismuch smaller than the size of the class of all fre-
quent itemsets, especially for dense databases. Second, they
are mined only once from the database even when the con-
straints are changed. Third, they can be used to completely
generate all frequent itemsets without having to access the
database. There are two types of condensed representation.
The first type is maximal frequent itemsets [13,22]. Since
their cardinality is very small, they can be discovered quickly.
All frequent itemsets can be generated from the maximal
ones. However, the generation often produces duplicates. In
addition, the frequent itemsets generated can lose informa-
tion about their supports. Therefore, the supports need to be
recomputed when mining association rules. The second type
is closed frequent itemsets, called maximal ones, and their
generators, calledminimal ones [10–12,27]. Each closed fre-
quent itemset represents a class of frequent itemsets. Thus,
together with its generators, it can be used to uniquely deter-
mine all frequent itemsets in the same class without losing
information about their supports.

Among two types of the condensed representation above,
the second one is probably better and has been proven to
be efficient in our previous works. Therefore, in this paper,
we propose a new structure and an efficient representation
of constrained association rule set based on closed itemsets
and their generators. A new corresponding algorithm, named
MAR_MinSC, is also developed for mining association rules
satisfying the minimum single constraint and the maximum
support and confidence thresholds.
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3 Mining association rules with minimum single
constraints

3.1 Partition of association rule set with minimum
single constraints

3.1.1 Rough partition

To considerably reduce the duplication of candidates for the
solution, we should partition the rule set into disjoint classes
based on a suitable equivalence relation. Because the closure
operator h of LCG has some good features, based on it, we
propose the following twoequivalence relations onFS(s0, s1)
and ARS(s0, s1, c0, c1).

Definition 1 (Two equivalence relations on FS(s0, s1) and
ARS(s0, s1, c0, c1)).

(a) ∀ A, B ∈ FS(s0, s1), A ∼A B ⇔ h(A) = h(B).
(b) ∀rk : Lk → Rk ∈ ARS(s0, s1, c0, c1), k = 1, 2,

r1 ∼r r2 ⇔ [h(L1) = h(L2) and h(L1 + R1)

= h(L2 + R2)].
Obviously, these are equivalence relations. For any L ∈
FCS(s0, s1), we use [L]A ≡ {L ′ ⊆ L: L ′ �= ∅, h(L ′) = L} to
denote the equivalence class of all frequent itemsets with the
same closureL. For two arbitrary setsL, S∈ FCS(s0, s1) such
that ∅ �= L ⊆ S, supp(S)/supp(L)∈ [c0; c1], the equivalence
class of all rules r : L ′ → R′ so that h(L ′) = L, h(L ′+R′) = S is
denoted by AR(L , S) ≡ {r : L ′ → R′ ∈ ARS(s0, s1, c0, c1)|
L ′ ∈ [L]A, S′ ≡ L ′+R′ ∈ [S]A}.
Remark 1 (a) Due to the features of h,∀L ∈ FCS(s0, s1),

supp(L ′) = supp(L), ∀ L ′ ∈ [L]A, i.e., all frequent item-
sets in the same equivalence class [L]A have the same
support, supp(L).

(b) With ∀ r : L ′ → R′ ∈ ARS(s0, s1, c0, c1), let us
set L ≡ h(L ′), S′ ≡ L ′+R′, S ≡ h(S′), then we have
∅ �= L ⊆ S, supp(S′) = supp(S) ∈ [s0, s1], conf(r)
≡ supp(S′)/supp(L ′) = supp(S)/supp(L)∈ [c0, c1] and
(L , S) ∈ NFCS(s0, s1, c0, c1), where

NFCS(s0, s1, c0, c1)

≡ {(L , S) ∈ CS2|S ∈ FCS(s0, s1),

∅ �= L ⊆ S, supp(S)/supp(L) ∈ [c0, c1]}.

Thus, for ∀(L , S) ∈ NFCS(s0, s1, c0, c1), all rules in the
same equivalence class AR(L , S) have the same support
supp(S) and confidence supp(S)/supp(L). This helps to
considerably reduce storage needed for the supports of
the frequent itemsets and the confidences of association
rules.

(c) From (a) and (b), we have the partition of rule set
ARS(s0, s1, c0, c1) without the item constraints as fol-
lows.

ARS(s0, s1, c0, c1)

=
∑

(L ,S)∈NFCS(s0,s1,c0,c1)
AR(L , S).

Since ARS⊇L0,⊇R0(s0, s1, c0, c1) ⊆ ARS(s0, s1, c0, c1),
the following rough partition of constrained rule set
ARS⊇L0,⊇R0(s0, s1, c0, c1) is derived.

Proposition 1 (The rough partition of constrained rule
set). We have:

ARS⊇L0,⊇R0(s0, s1, c0, c1)

=
∑

(L ,S)∈NFCS(s0,s1,c0,c1)
AR⊇L0,⊇R0(L , S),

where AR⊇L0,⊇R0(L , S) ≡ {r:L ′ → R′ ∈ AR(L , S)| L ′
⊇ L0, R′ ⊇ R(t)

0 }.
Based on Proposition 1, we can derive the simple

post-processing algorithm PP-MAR-MinSC-2 to generate
ARS⊇L0,⊇R0(s0, s1, c0, c1). However, we find that, on many
values of the constraints, ARS⊇L0,⊇R0(s0, s1, c0, c1) can be
empty. Or there are many pairs of closed frequent item-
sets (L , S) ∈ NFCS(s0, s1, c0, c1) for which the subclasses
AR⊇L0,⊇R0(L , S) are empty. When ∅ �= AR⊇L0,⊇R0(L , S)

⊆ AR(L , S), the cardinality of AR(L , S) might still be too
large and still has many redundant rules as can be seen in
the following example.

Example 1 (Illustrating some disadvantages of PP-MAR-
MinSC-2). The rest of this paper considers database T shown
in Fig. 1a. For the minimum support threshold s0 = 0.28,
Charm-L [37] andMinimalGenerators [36] are used to mine
a lattice of all closed frequent itemsets and their generators.
The result is shown in Fig. 1b. Let us choose the maximum
support threshold s1 = 0.5 and the minimum and maximum
confidence thresholds c0 = 0.4 and c1 = 0.9, respectively.

(a) Let us consider the constraints L0= c and R0 =
f . The PP-MAR-MinSC-2 algorithm first generates
|ARS(s0, s1, c0, c1)| = 134 rules. But after testing them
on constraints L0 and R0, we obtainAR⊇L0,⊇R0(L , S) =
∅ given any rule class of NFCS(s0, s1, c0, c1) for the 15
classes. Thus, ARS⊇L0,⊇R0(s0, s1, c0, c1) = ∅.

(b) For another set of constraints L0 = h and R0 =
b, by using PP-MAR-MinSC-2 to generate 134 rules
and to then check them on the constraints, we obtain
|ARS⊇L0,⊇R0(s0, s1, c0, c1| = 19 rules of 4 rule classes
(L, S) of NFCS(s0, s1, c0, c1), (egh, bcegh), (h,bcegh),
(fh,bfh) and (h,bh). The algorithm generates
|ARS(s0, s1, c0, c1)\AR⊇L0,⊇R0(s0, s1, c0, c1)| = 115
redundant candidate rules corresponding to
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Fig. 1 a Example dataset and b
the corresponding lattice of
closed itemsets

(b)

Trans Items
1 bcegh

2 bcegh
3 bcd
4 defgh
5 bcefgh
6 bfh
7 fh

(a) 

bfh2/7bcegh3/7

be,bg,ce,  
cg, ch

efgh2/7

ef, fg

fh4/7

d2/7

d

egh4/7

e, g
bh4/7

bh

h6/7

h

b5/7

b

bc4/7

c

|NFCS(s0, s1, c0, c1)| − 4 = 11 rule classes (L, S) of
NFCS(s0, s1, c0, c1) so that AR⊇L0,⊇R0(L , S) = ∅.
Consider the class (bc, bcegh) ∈ NFCS(s0, s1, c0, c1),
there are 21 candidate rules in AR(bc, bcegh) enumer-
ated byPP-MAR-MinSC-2. However, after they are tested
on the conditions L0 ⊆ L ′ and R0 ⊆ R′, the solution sub-
set is empty, AR⊇L0,⊇R0(bc, bcegh) = ∅.

(c) For L0 = f and R0 = h, the algorithm PP-MAR-
MinSC-2 generates |ARS(s0, s1, c0, c1)| = 134 rules
of 15 pairs (L, S)∈ NFCS(s0, s1, c0, c1), but there are
only 4 rules corresponding to two pairs, (L1 = fh, S1

= efgh) and (L2 = fh, S2 = bfh) ∈ NFCS(s0, s1, c0, c1)
so that AR⊇L0,⊇R0(L

i , Si ) �= ∅, i = 1, 2. For (L1

= fh, S1 = efgh), it is noted that the number of can-
didate rules generated in AR(L1, S1) is 9. But there
are only 3 rules satisfying the constraints L0 and
R0,AR⊇L0,⊇R0(L

1, S1) = {f → eh, f → egh, f → gh}.
Thus, there exist 6 redundant candidate rules generated
in AR(L1, S1)\AR⊇L0,⊇R0(L

1, S1).

With the aim of overcoming these disadvantages, we need to
find the necessary conditions for the constraint set and the
pairs (L , S) so that ARS⊇L0,⊇R0(s0, s1, c0, c1) is not empty.
As such, we have another representation AR+

⊇L0,⊇R0
(L , S)

of AR⊇L0,⊇R0(L , S) and then obtain a better partition of
ARS⊇L0,⊇R0(s0, s1, c0, c1).

3.1.2 Necessary conditions for the non-emptiness of
ARS⊇L0,⊇R0(s0, s1, c0, c1) and AR⊇L0,⊇R0(L , S)

Before presenting necessary conditions so that ARS⊇L0,⊇R0

(s0, s1, c0, c1) and ARL0,R0(L , S) are not empty, let us use
some additional notations as follows. Assign that

.S∗
0 ≡ L0 + R0,C0 ≡ L0,C1 ≡ A\R0, s∗

0 ≡
max(s0; c0.supp(C1)), s∗

1 ≡ min(s1; c1.supp(L0));

.S′ ≡ L ′ + R′, S ≡ h(S′), FCS⊇S∗
0
(s∗

0 , s
∗
1 ) ≡ {S ∈

FCS(s∗
0 , s

∗
1 )|S ⊇ S∗

0 };
.s′
0 ≡ s′

0(S) ≡ supp(S)/c1, s′
1 ≡ s′

1(S) ≡ min(1; supp
(S)/c0), L ≡ h(L ′), LC1 ≡ L ∩C1 = L\R0,GC1(L)

≡ {Li ∈ G(L) |Li ⊆ C1},FCSC0⊆C1(s
′
0, s

′
1) ≡

{LC1 ≡ L ∩ C1|L ∈ FCS(s′
0, s

′
1), L ⊆ C0,GC1(L) �=

∅},FSC0⊆LC1 ≡ {L ′ ⊆ LC1 |C0 ⊆ L ′, L ′ �= ∅,

h(L ′) = h(LC1)};
.R∗

0 ≡ R0, R∗
1 ≡ R∗

1(L
′) ≡ S\L ′,FS(S\L ′)L ′,R∗

0⊆R∗
1

≡
{R′ ⊇ R∗

0 |∅ �= R′ ⊆ R∗
1 , h(L ′ + R′) = S};

.NFCS⊇L0,⊇R0(s0, s1, c0, c1) ≡ {(L , S) ∈ CS2|S ∈
FCS⊇S∗

0
(s∗

0 , s
∗
1 ), ∅ �= L ⊆ S, LC1 ∈ FCSC0⊆C1(s

′
0, s

′
1)}.

Then, ∀(L, S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), we have

AR+
⊇L0,R0

(L , S)

≡ {r : L ′ → R′|L ′ ∈ FSC0⊆LC1 , R
′ ∈ FS(S\L ′)L ′,R∗

0⊆R∗
1
}.

We obtain the following proposition.

Proposition 2 (Necessary conditions for the non-emptiness
of ARS⊇L0,⊇R0(s0, s1, c0, c1) and AR⊇L0,⊇R0(L , S), and an
another representation of AR⊇L0,⊇R0(L , S)).

(a) (Necessary conditions for ARS⊇L0,⊇R0(s0, s1, c0, c1) �=
∅)

If r : L ′ → R′ ∈ ARS⊇L0,⊇R0(s0, s1, c0, c1) �= ∅, then

(L , S) ∈ NFCS(s0, s1, c0, c1), r ∈ AR⊇L0,⊇R0(L , S)

�= ∅, whereL = h(L ′), S = h(L ′ + R′)

and the following necessary conditions are satisfied:

L0 ∩ R0 = ∅, s∗
0 ≤ s∗

1 , supp(S
∗
0 )

≥ s∗
0 , supp(A) ≤ s∗

1 . (H1)
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Thus, from now on, it is always assumed that (H1) is
satisfied.

(b) (Necessary conditions for AR⊇L0,⊇R0(L , S) �= ∅). For
each pair (L, S) ∈ NFCS(s0, s1, c0, c1), then for any rule
r : L ′ → R′ ∈ AR⊇L0,⊇R0(L , S) �= ∅, the following
necessary conditions are satisfied:

S ∈ FCSS⊇S∗
0
(s∗

0 , s
∗
1 ), LC1 ∈ FCSC0⊆C1(s

′
0, s

′
1),

L ′ ∈ FSC0⊆LC1 , R′ ∈ FS(S\L ′)L ′,R∗
0⊆R∗

1
.

Thus, (L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1) �= ∅ and
AR⊇L0,⊇R0(L , S) ⊆ AR+

⊇L0,⊇R0
(L , S).

Andwehave the result,AR⊇L0,⊇R0(L , S) ⊆ ARS⊇L0,⊇R0

(s0, s1, c0, c1).
(c) (Another representation of AR⊇L0,⊇R0(L , S)). For each

(L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1) �= ∅, then
FSC0⊆LC1

�= ∅ and

AR+
⊇L0,⊇R0

(L , S) = AR⊇L0,⊇R0(L , S).

Corollary 1 (Necessary and sufficient conditions for the
non-emptiness of ARS⊇L0,⊇R0(s0, s1, c0, c1)).

(a) If one or more conditions in (H1) are not satisfied, then
ARS⊇L0,⊇R0(s0, s1, c0, c1) = ∅ .

(b) r : L ′ →R′ ∈ ARS⊇L0,⊇R0(s0, s1, c0, c1) �= ∅ ⇔
there exist (L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), L

′ ∈
FSC0⊆LC1 , R

′ ∈ FS(S\L ′)L ′,R∗
0⊆R∗

1
and r : L ′ →R′ ∈

AR+
⊇L0,⊇R0

(L , S) �= ∅.

Proof The assertion (a) and the dimension “⇒” of (b)
are the obvious consequences of Proposition 2(a) and
(b). The reverse dimension “⇐” of (b) is derived from
AR+

⊇L0,⊇R0
(L , S) ⊆ AR⊇L0,⊇R0(L , S) ⊆ ARS⊇L0,⊇R0

(s0, s1, c0, c1). ��
From Proposition 2 and Corollary 1, we have the follow-

ing smooth partition of the constrained rule set ARS⊇L0,⊇R0

(s0, s1, c0, c1).

3.1.3 Smooth partition of association rule set with
minimum single constraints

Theorem 1 (Smooth partition of constrained rule set)
Assume that the conditions of (H1) are satisfied, then we
have:

ARS⊇L0,⊇R0(s0, s1, c0, c1)

=
∑

(L ,S)∈NFCS⊇L0,⊇R0 (s0,s1,c0,c1)
AR+

⊇L0,⊇R0
(L , S).

This partition is the theoretical basis for the parallel algo-
rithms that independently mine each rule class AR+

⊇L0,⊇R0

(L, S) in the distributed environments. This is an interest-
ing feature when we apply the suitable equivalence relations
of mathematics into computer science, a simple yet efficient
application of the principle “divide and conquer”.

Example 2 (Illustrating the emptiness ofARS⊇L0,⊇R0(s0, s1,
c0, c1) or AR⊇L0,⊇R0(L , S) when one of the necessary con-
ditions in (H1 ) is not satisfiedor (L,S) /∈ NFCS⊇L0,⊇R0(s0, s1,
c0, c1)).

(a) If one of the necessary conditions in (H1) is not satisfied,
we immediately obtain ARS⊇L0,⊇R0(s0, s1, c0, c1) = ∅.
For instant, in Example 1a, we have S∗

0 = cf, C1 =
abcdegh, supp(S∗

0 ) = 1/7 ≈ 0.14 and s∗
0 = 0.28, the nec-

essary condition supp(S∗
0 ) ≥ s∗

0 is not satisfied. Thus,
ARS⊇L0,⊇R0(s0, s1, c0, c1) = ∅ and we do not need
to generate |ARS(0.28, 0.5, 0.4, 0.9)| = 134 candidate
rules in ARS(s0, s1, c0, c1), if only to discard them all
afterwards. Another example, for L0 = d, R0 = g, then
C0 =d, C1 = abcdefh, s∗

0 = 0.28, s∗
1 = 0.26, we find

that the necessary condition s∗
0 ≤ s∗

1 is not satisfied. Thus,
ARS⊇L0,⊇R0(s0, s1, c0, c1) = ∅ and 134 redundant can-
didate rules are not generated.

(b) If (L,S)∈ NFCS(s0, s1, c0, c1)\NFCS⊇L0,⊇R0(s0, s1, c0,
c1), the result AR⊇L0,⊇R0(L , S) = ∅ is derived imme-
diately and the pair (L, S) is discarded. In Example 1(b),
consider the class (L = bc, S = bcegh), we have S∗

0 = bh,
C0 = h, C1 = acdefgh, G(L)={c} and (GC1(L) �= ∅ and
C0 � L). The condition LC1 ∈ FCSC0⊆C1(s

′
0, s

′
1) is not

satisfied, so (bc,bcegh) /∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1).
Thus, we have AR⊇L0,⊇R0(L , S) = ∅. Moreover, we
also have 10 other redundant candidate classes (L ′, S′)
∈ NFCS(s0, s1, c0, c1)\NFCS⊇L0,⊇R0(s0, s1, c0, c1) so
that AR⊇L0,⊇R0(L

′, S′) = ∅.

We realize that the number of candidate classes (L, S)
in NFCS(s0, s1, c0, c1)(⊇ NFCS⊇L0,⊇R0(s0, s1, c0, c1)) can
still be quite large and there remain many redundant candi-
dates that do not satisfy the constraints.

The algorithmMFCS_FromLattice (LCGS ,C0,C1, s′
0, s

′
1)

shown in Fig. 2 aims to find frequent closed itemsets
FCSC0⊆C1(s

′
0, s

′
1) satisfying the constraints from the lat-

tice LCGS (the restricted sub-lattice of LCG with the
root node S). And, especially, we have FCS⊇S∗

0
(s∗

0 , s
∗
1 ) =

MFCS_FromLattice(LCG, S∗
0 ,A, s∗

0 , s
∗
1 ).

It is important to note that, from the Hass diagram on the
lattice LCG, if the concepts of positive and negative borders
[23], concerning the anti-monotonic and monotonic prop-
erties of the support and item constraints, are added to the
algorithm, then the sub-lattices whose closed itemsets satisfy
the corresponding constraints will be generated quickly. For
instance, with the monotonic property (supp(L) ≤ s′

1 and L
⊇ C0)

(M), we illustrate the creation of negative border in the
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algorithm as follows. At line 3, with the movement from up
to down in the lattice, starting at node S, when considering
a node N for which one of the conditions in (M) has been
violated, we eliminate all sub-branches of N and supplement
N into the negative border of the sub-lattice containing the
class FCSC0⊆C1(s

′
0, s

′
1). More specifically, in example 1, we

have S = bfg, supp(S) = 2/7, s0 = 2/7, s1 = 1, c0 = 3/4, c1 = 1,
and C0 = L0 = e in the sub-lattice LCGS . S has two direct
sub-nodes L ∈{bh, fh}; consider the sub-node L = bh, then
s(L) = 4/7 > s′

1 = min(1; (2/7)/(3/4))=8/21, thus, we elimi-
nate all sub-branches that started at L; consider the sub-node
L =fh, then C0 � L; therefore, we also do this. Hence,
FCSC0⊆C1(s

′
0, s

′
1) = {bfg} (only one frequent closed itemset

S).
For ∀(L , S)∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), each rule r :

L ′ → R′ in the rule class AR+
⊇L0,⊇R0

(L , S) = {r : L ′ →
R′|L ′ ∈ FSC0⊆LC1 , R

′ ⊆ FS(S\L ′)L ′,R∗
0⊆R∗

1
} has the left-

hand and right-hand sides that do not have an explicit repre-
sentation, and mining them might still generate many redun-
dant candidates.

3.2 Distinctly generating all association rules in each
equivalence class AR+

⊇L0,⊇R0
(L , S)

To completely eliminate the generation of duplicate can-
didates for the solution, based on each class (L , S) ∈
NFCS⊇L0,⊇R0(s0, s1, c0, c1) and the generators G(L), G(S),
we will propose an explicitly unique representation of rules
in AR+

⊇L0,⊇R0
(L , S). It will also demonstrate how to com-

pletely and distinctly generate all rules in each class.
For that, first of all, we need to show a structure and a

unique representation for an extended class of frequent item-
sets that are restricted by X and contain an item constraint.
Thereby, explicitly unique representations and structures of
the right-hand side R′ ∈ FS(S\L ′)L ′,R∗

0⊆R∗
1
and the left-hand

side L ′ ∈ FSC0⊆LC1 of rules r : L ′ → R′ in each equivalence
class AR⊇L0,⊇R0(L , S) are derived.

3.2.1 The explicitly unique representation and the structure
of an extended class

To briefly present the results regarding the representation of
the rule sides, we first consider a fairly general representa-
tion of frequent sub-items of Y that are restricted on X with
minimum single constraint.

Let Y , X , Z0 ⊆ A: Y �= ∅, Y ∩ X = ∅, Z0 ⊆ Y , we
denote FS(Y )X,⊇Z0 ≡ {R′ ⊇ Z0|∅ �= R′ ⊆ Y, h(X + R′) =
h(X + Y )},
Rmin ≡ Minimal{Rk ≡ Sk\(X + Z0), Sk ∈ G(X + Y )},

Rk
U ≡⋃

R j∈Rmin, j≤k R j , and RU,k ≡
{
Rk−1
U \Rk, i f k≥1

∅, i f k=0
,

where Rk ∈ Rmin and R−,k ≡ Y\(Z0 + Rk
U ).

Note that if Y =∅ or X ∩Z0 �= ∅, then FS(Y )X,⊇Z0 �= ∅.
Otherwise, let us set

FS∗(Y )X,⊇Z0 ≡ {R′ ≡ Z0 + Rk + R′
k + R∼

k |Rk ∈ Rmin,

R′
k ⊆ RU,k, R

∼
k ⊆ R−,k, (R j �⊂Rk + R′

k,∀R j ∈ Rmin :
1 ≤ j < k)(∗), R′ �= ∅}.

Proposition 3 (The unique representation of sets in FS
(Y )X,⊇Z0) ∀ X, Y , Z0 ⊆ A: Y �= ∅, Y ∩ X = ∅,
Z0 ∩ X = ∅, Z0 ⊆ Y , then

(a) The elements of FS∗(Y )X,⊇Z0 are generated distinctly.
(b) FS(Y )X,⊇Z0 = FS∗(Y )X,⊇Z0 .

(c) FS∗(Y )X,⊇Z0 �= ∅. (H2)

Remark 2 See in ”Appendix”.

For special values of Y, X and Z0 in FS(Y )X,⊇Z0 , we
obtain the structures of FSC0⊆LC1 and FS(S\L ′)L ′,R∗

0⊆R∗
1
as

they are presented in the following section.

3.2.2 Structure and unique representation of sets in
FSC0⊆LC1 and FS(S\L ′)L ′,R∗

0⊆R∗
1

Assume that the class (L, S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1),
S ∈ FCS⊇S∗

0
(s∗

0 , s
∗
1 ), LC1 ∈ FCSC0⊆C1(s

′
0, s

′
1) and L ′ ∈

FSC0⊆LC1 , since LC1 ∈ FCSC0⊆C1(s
′
0, s

′
1), we have GC1 (L)

�= ∅ and ∃Li ∈ G(L) so that ∅ ⊂ Li ⊆ LC1 and LC1 �= ∅.

Lemma 1 ∀ L, C1 ⊆ A, if LC1 ≡ L ∩C1 �= ∅ and
GC1(L) �= ∅, then G(LC1) = GC1(L).

Proof .“⇐”: ∀Lk ∈ GC1(L): Lk ∈ G(L), Lk ⊆ C1,
then Lk ⊆ LC1 ⊆ L, L = h(Lk) = h(LC1 ), thus Lk ∈
G(LC1).
.“⇒”: Otherwise, ∀Lk ∈ G(LC1), then Lk ⊆ LC1 ⊆ C1,
h(Lk) = h(LC1 ), since GC1 (L) �= ∅, so ∃Li ∈ G(L):
Li ⊆ C1, Li ⊆ LC1 ⊆ L and L = h(Li ) = h(LC1 ) =
h(Lk), i.e., Lk ∈ G(L) and Lk ⊆ C1 or Lk ∈ GC1(L).

��

(a) When Y ≡ LC1 , X ≡ ∅ and Z0 ≡ C0. As LC1 ∈
FCSC0⊆C1(s

′
0, s

′
1), C0 ⊆ C1, then L ⊇ C0,C0 ⊆ LC1 ,

and LC1 �= ∅. We have:

FS(LC1)∅,⊇C0 = {L ′ ⊇ C0|∅ �= L ′ ⊆ LC1 , h(L ′)
= h(LC1)} ≡ FSC0⊆LC1 .

Based on the representation of Rmin in FS∗(Y )X,⊇Z0

and Lemma 1, we set Kmin ≡ Minimal {Ki ≡ Li\C0,
Li ∈ GC1 (L)}, Ki

U ≡ ⋃
Kk∈Kmin,k≤i Kk , KU,i ≡{

K i−1
U \Ki , i f i ≤ 1

∅, i f i = 0
and K−,i ≡ LC1\(C0 + Ki

U ), and

obtain the result as follows.
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Fig. 2 MFCS_FromLattice
algorithm

FS∗
C0⊆LC1

≡ {L ′ ≡ C0 + Ki + K ′
i + K∼

i |Ki ∈ Kmin,

K ′
i ⊆ KU,i , K

∼
i ⊆ K−,i and (Kk �⊂Ki + K ′

i ,∀Kk

∈ Kmin : 1 ≤ k < i)(∗∗), L ′ �= ∅}. (1)

Since LC1 �= ∅ and Proposition 3(c), we have FS∗
C0⊆LC1�= ∅.

(b) When Y≡ R∗
1 = S\L ′, X ≡ L ′, Z0 ≡ R∗

0 = R0, and
assume that S\L ′ �= ∅. Since S∈ FCS⊇S∗

0
(s∗

0 , s
∗
1 ) and

L ′ ∈ FSC0⊆LC1 , then S⊇ S∗
0 ⊇ R0, L ′ ⊆ LC1 ⊆ C1 ≡

A\R0 and R0 ⊆ S\L ′. We have

FS(S\L ′)L ′,⊇R∗
0

≡ FS(S\L ′)L ′,R∗
0⊆R∗

1

= {R′ ⊇ R∗
0 |∅ �= R′ ⊆ R∗

1 , h(L ′ + R′) = S}.

We assign Rmin ≡ Minimal {Rk ≡ Sk\ (L ′+R∗
0), Sk ∈

G(S)}, Rk
U ≡ ⋃

R j∈Rmin, j≤k R j and RU,k ≡{
Rk−1
U \Rk, i f k ≥ 1

∅, i f k = 0
, where Rk ∈ Rmin, and R−,k ≡

S\(L ′+R∗
0 + Rk

U ), we derive the following result.

FS∗(S\L ′)L ′,R∗
0⊆R∗

1
≡ {R′ ≡ R∗

0 + Rk + R′
k + R∼

k |Rk

∈ Rmin, R
′
k ⊆ RU,k, R

∼
k ⊆ R−,k, (R j �⊂Rk + R′

k,∀R j

∈ Rmin : 1 ≤ j < k)(∗), R′ �= ∅} (2)

As S\L′ �= ∅ and Proposition 3(c), we obtain FS∗
(S\L ′)L ′,R∗

0⊆R∗
1

�= ∅.

The general procedureMFS-ExtendedMinSC (mining fre-
quent itemsets—Extended Minimum Single Constraints),
shown in Fig. 3, distinctly generate the elements of FS∗
(Y )X,⊇Z0 :

FS∗(Y )X,⊇Z0 = MFS-ExtendedMinSC(Y, X , Z0,G(X + Y )).

When using Remark 2, we add lines 4–10 and 25 to the
procedure.

In each equivalence class, two cases, FS∗
C0⊆LC1

= MFS-
ExtendedMinSC (LC1, ∅,C0,G(LC1)) and FS∗
(S\L ′)L ′,R∗

0⊆R∗
1
=MFS-ExtendedMinSC(S\ L ′, L ′, R∗

0 ,G(S)),
are to distinctly generate the left-hand sides L ′ and the
right-hand sides R′ of constrained rules, respectively. In
addition, two cases, FS∗(L)= MFS-ExtendedMinSC(L, ∅,
∅, G(L)) and FS∗(S\L ′)L ′ = MFS-ExtendedMinSC(S\ L ′,
L ′,∅,G(S)), are used to produce the sets L ′ ∈ FS∗(L) and R′
∈ FS∗(S\L ′)L ′ in each class AR(L , S)without the item con-
straints, as the post-processing algorithm PP-MAR-MinSC-2
presented in Sect. 3.1.1.

According to Proposition 3, we have the following result.

Corollary 2 (Uniquely representing and distinctly generat-
ing two sides of rules in each equivalence class AR+

⊇L0,⊇R0
(L , S)). ∀(L,S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), then

(a) The elements of FS∗(S\L ′)L ′,R∗
0⊆R∗

1
and FS∗

C0⊆LC1
are

generated distinctly.
(b) FS(S\L ′)L ′,R∗

0⊆R∗
1

= FS∗(S\L ′)L ′,R∗
0⊆R∗

1
,FSC0⊆LC1 =

FS∗
C0⊆LC1

.
(c) FS∗

C0⊆LC1
�= ∅

(d) ∀L′ ∈ FS∗
C0⊆LC1

, then FS∗(S\L ′)L ′,R∗
0⊆R∗

1
�= ∅ ⇔

S/L ′ �= ∅.

3.2.3 Structure and unique representation of rules in
AR+

⊇L0,⊇R0
(L , S)

For ∀(L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), let us denote

AR∗⊇L0,⊇R0
(L , S) ≡ {r : L ′ → R′|L ′

∈ FS∗
C0⊆LC1

, R′ ∈ FS∗(S\L ′)L ′,R∗
0⊆R∗

1
}

and Suff_FS∗
C0⊆LC1

(S) ≡ {L ′ ∈ FS∗
C0⊆LC1

|S\L ′ �= ∅}.
From Corollary 2, we have the following corollary.

Corollary 3 (Necessary and sufficient conditions for the
non-emptiness of AR+

⊇L0,⊇R0
(L , S and its representation).

For ∀(L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), then
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Fig. 3 MFS-ExtendedMinSC
algorithm

(a) The rules of AR∗⊇L0,⊇R0
(L , S) are generated distinctly.

(b) AR+
⊇L0,⊇R0

(L , S) = AR∗⊇L0,⊇R0
(L , S).

(c) AR∗⊇L0,⊇R0
(L , S) �= ∅ ⇔ Suff_FS∗

C0⊆LC1
(S) �= ∅.

(d) AR∗⊇L0,⊇R0
(L , S) = ∑

L ′∈Suff_FS∗
C0⊆LC1

(S){r : L ′R′ :
R′ ∈ FS∗(S\L ′)L ′,R∗

0⊆R∗
1
}.

Remark 3 (a) The result (1) is an improvement fromour pre-
vious one (see Theorem 2(+) in [17]). Since KU,i (that
is used to check the condition K ′

i ⊆ KU,i ) is smaller
than KU,C0,C1,i and K−,i is larger than K−,C0,C1 in

(+),
checking the condition (∗∗) in (1) is simpler.

(b) When considering FS∗(S\L ′)L′,R∗
0⊆R∗

1
, if S ≡ L ∈

G(L), then ∃!L ′ ≡∈ [L] and S\L ′ = L\L ′ = ∅. Thus,
FS∗(L\L ′)L ′,R∗

0⊆R∗
1

= ∅ and AR∗⊇L0,⊇R0
(L , L) = ∅.

Hence, if L ≡ S, we always assume that L /∈ G(L).

The algorithm MAR-MinSC-OneClass, shown in Fig. 4,
distinctly generates all constrained rules in each class
AR∗⊇L0,⊇R0

(L , S)basedoneachpair (L , S) ∈ NFCS⊇L0,⊇R0

(s0, s1, c0, c1).

Example 3 Illustrating the advantages of the algorithm
MAR-MinSC-OneClass for distinctly generating rules in
each equivalence class AR∗⊇L0,⊇R0

(L , S)).

Fig. 4 MAR-MinSC-OneClass algorithm

(a) For the constraints L0, R0 in Example 1(b), we consider
the rule class (L , S) = (egh, bcegh) ∈ NFCS(s0, s1, c0,
c1),G(L) = {e, g} and G(S) = {be, bg, ce, cg, ch}. We
have S∗

0 = bh,C0 = h,C1 = acdefgh, S ⊇ S∗
0 , s

∗
0 =

0.28, s∗
1 = 0.5, s∗

0 ≤ supp(S) = 2/7 ≤ s∗
1 . Thus,

SFCS⊇s∗0 (s
∗
0 , s

∗
1 ). On the other hand, since L ⊇ C0 and

∃e ∈ G(L) so that e ⊆ C1, then s′
0 = 0.32, s′

1 = 0.71
and s′

0 ≤ supp(L) = 4/7 ≤ s′
1. Therefore, LC1 =

egh ∈ FCSC0⊆C1(s
′
0, s

′
1) and GC1(L) = {e, g}. First

is to generate the left-hand sides of rules, FS∗
C0⊆LC1

.
We have the result, Kmin = {K1 = e, K2 = g}. For
K1 = e, since K 1

U = e, KU,1 = ∅, and K−,1 = g,
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Fig. 5 MAR-MinSC algorithm

we obtain the left-hand sides: h + e + ∅ + ∅ and
h+ e+∅+ g. For K2 = g, as K 2

U = eg, KU,2 = e, and
K−,2 = ∅, then, an additional left-hand side is derived,
h+g+∅+∅. Note that, without checking the condition
K1 ⊂ g + e, the left-hand side, h + g + e + ∅, mak-
ing a duplicate will be generated. Thus, FS∗

C0⊆LC1
≡

{he, heg, hg}. Second is to generate the right-hand sides
of rules based on (2) as follows. For L ′ = he, since
S\L ′ = bcg �= ∅ ⇔ FS∗(S\L ′)L ′,R∗

0⊆R∗
1

�= ∅, where
R∗
0 = b and R∗

1 = bcg, we have Rmin = {R1 ≡
∅}, R1

U = RU,1 = ∅ and R−,1 = {bcegh}\{he + b} =
cg. Therefore, FS∗(S\L ′)L ′,R∗

0⊆R∗
1

≡ {R′ = R∗
0 +

Ri + R′
i + R′′| Ri ∈ Rmin, R′

i ⊆ RU,i , R′′ ⊆
R−,i } = {b, bc, bg, bcg} and the constrained rules
are derived: {he → b, he → bc, he → bg, he → bcg}.
Similarly, for L ′ = heg and L ′ = gh, we obtain the rules
{heg → b, heg → bc} and {hg → b, hg → bc, hg → be,
hg → bce}, respectively. Finally, using Corollary 3, the
rules that satisfy minimum single constraints are found:
AR∗⊇L0,⊇R0

(L , S) = {he → b, he → bc, he → bg, he
→ bcg, heg → b, heg → bc, hg → b, hg → bc, hg →
be, hg → bce}.

(b) For the constraints L0, R0 in Example 1(c), we con-
sider the rule class (L = fh, S = efgh), where G(L) =
{ f },G(S) = {ef, fg},C0 = f,C1 = abcdefg and
LC1 = f . Then, FS∗

C0⊆LC1
= { f }. For L ′ = f ,

then S\L ′ = egh, R∗
0 = h and R∗

1 = egh, we obtain
Rmin = {R1 = e, R2 = g}. With R1 = e, since R1

U =
e, RU,1 = ∅ and R−,1 = {efgh}\{f + h + e} = g, the
following right-hand sides are derived: h + e + ∅ + ∅

and h + e + ∅ + g. For R2 = g, as R2
U = eg, RU,2 = e

and R−,1 = {efgh}\{f + h + eg} = ∅, an additional
right-hand side is derived, h + g + ∅ + ∅. The subset
h+g+e+∅ is not generated due to K1 ⊂ g+e. Hence,
AR∗⊇L0,⊇R0

(L , S) = {f → he, f → heg, f → hg}.

Table 1 Dataset characteristics

Dataset #Items #Records Avg. length

Connect (Co) 129 67,557 43

Mushroom (M) 119 8,124 23

Pumsb (P) 7,117 49,046 74

Chess (Ch) 75 3,196 37

T10I4D100K (T10) 1,000 100.000 40

It is important to note that MAR-MinSC-OneClass com-
pletely and exactly discovers constrained rule set AR∗⊇L0,⊇R0
(L , S) without generating any the redundancy of candidate
rules as well as the duplication of the solution. Thus, MAR-
MinSC-OneClass is much more efficient than PP-MAR-
MinSC-2 and PP-MAR-MinSC-1.

3.3 Completely and distinctly generating all association
rules in ARS⊇L0,⊇R0(s0, s1, c0, c1)

From Theorem 1 and Proposition 3, we obtain the Theorem
2 below.

Theorem 2 (Generating all rules of ARS⊇L0,⊇R0(s0, s1, c0,
c1) completely and distinctly) Assume that (H1) is satisfied,
we derive the result

ARS⊇L0,⊇R0(s0, s1, c0, c1)

=
∑

(L ,S)∈NFCS⊇L0,⊇R0 (s0,s1,c0,c1)
AR∗⊇L0,⊇R0

(L , S),

whereAR∗⊇L0,⊇R0
(L , S) = ∑

L ′Su f f _FS∗
C0⊆LC1

(S){r : L ′ →
R′ : R′ ∈ FS∗(S\L ′)L ′,R∗

0 R
∗
1
}.

Then, we design an algorithm, named MAR-MinSC,
shown inFig. 5, to distinctly generate all rules inARS⊇L0,⊇R0

(s0, s1, c0, c1) without producing any candidate.
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4 Experimental results

We implemented the PP-MAR-MinSC-1, PP-MAR-MinSC-2
and MAR-MinSC algorithms in C# on Windows platforms.
Experiments were performed on a PC with an i5-2400 CPU,
3.10GHz@ 3.09GHz PC and 3.16GB of main memory. The
source code for Charm-L, MinimalGenerators and dEclat
algorithms [6] was converted to C#. Charm-L and Mini-
malGenerators were used to mine the lattice of the closed
itemsets and their generators. dEclat was used to exploit
all frequent itemsets. To evaluate the proposed algorithm,
we compare its performance to those of PP-MAR-MinSC-
2 and PP-MAR-MinSC-1 algorithms. PP-MAR-MinSC-1
includes three phases: (1) executing dEclat to mine fre-
quent itemsets; (2) integrating the constraints satisfying the
monotone and anti-monotone properties intoGen-Rules [26]
(using Apriori principle [1]) to generate candidate rules;
(3) filtering the ones satisfying the remained constraints
in a post-processing step. PP-MAR-MinSC-2 also includes
three phases as PP-MAR-MinSC-1. But, in phase 2, PP-
MAR-MinSC-2 uses MFS-ExtendedMinSC(L, ∅, ∅,G(L))

and MFS-ExtendedMinSC(S\L ′, L ′, ∅,G(S)) to generate
the left-hand and right-hand sides of rules, respectively, with-
out the item constraints.

For the performance test, five benchmark datasets in
FIMDR [15] were chosen. Connect, Mushroom, Pumsb and
Chess are real and dense datasets, i.e., they produce many
long frequent itemsets even for very high support values.
T10I4D100K is synthetic and sparse. Table 1 shows their
characteristics.

For each tested dataset, the thresholds of s1 and c1 are
fixed at 0.9 and 0.95, respectively. With a pair of minimum
confidence (MC) and minimum support (MS), the size of L0

and R0 constraints ranges from 4 to 22% of |AF | (step 2%).
For a pair of L ′

0s size and R′
0s size, we choose 10 values

of (L0, R0) (each (L0, R0) comprises of items taken ran-

domly fromAF ). Let T-MAR-MinSC, T-PP-MAR-MinSC-
2 and T-PP-MAR-MinSC-1 be the average execution times
of MAR-MinSC, PP-MAR-MinSC-2, and PP-MAR-MinSC-
1 , respectively, for 100 constraint pairs (L0, R0). For each
tested dataset together with two minimum thresholds of sup-
port and confidence, we execute three algorithms and find
that their outputs are the same. The average running times of
the algorithms are shown in Figs. 6, 7 and 8.

As can be seen from the figures,MAR-MinSC outperforms
PP-MAR-MinSC-2 andPP-MAR-MinSC-1, especially for the
lower values of minimum support and confidence.

To explain the efficiency of MAR-MinSC in comparison
with those of PP-MAR-MinSC-2 and PP-MAR-MinSC-1, we
also take into account the percent ratio of the number of
redundant candidate rules (not satisfying the constraints)
to the total of all generated rules after executing PP-MAR-
MinSC-2 and PP-MAR-MinSC-1 on a given triple of dataset,
minimum support and minimum confidence, called DS-MS-
MC. The results are shown in Table 2.

Table 2 shows the average execution times of MAR-
MinSC, PP-MAR-MinSC-2, and PP-MAR-MinSC-1, where
columns R-OvPP2 and R-OvPP1 represent the ratios of
T-MAR-MinSC to T-PP-MAR-MinSC-2 and T-PP-MAR-
MinSC-1, respectively, and columns RR-PP2 and RR-PP1
show the ratios of the number of redundant rules, which do
not satisfy the constraints, to the total of generated rules
when PP-MAR-MinSC-2 and PP-MAR-MinSC-1 are used,
respectively. Compared to PP-MAR-MinSC-2 and PP-MAR-
MinSC-1, MAR-MinSC is faster for all tested datasets. The
time is reduced by 48.23 to 17.77% in column R-OvPP2 and
by 6.86 to 0.12% in column R-OvPP1. The reason for the
reduction is that there are a large number of generated redun-
dant rules (RR-PP2 and RR-PP1 range from 94.5 to 99.96%
and from98.7 to 99.98%, respectively) that fail the last test of
PP-MAR-MinSC-2 and PP-MAR-MinSC-1, leading to lower
performance.

Fig. 6 Performance of MAR-MinSC, PP-MAR-MinSC-2 and PP-MAR-MinSC-1 on Chess and T10I4D100K
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Fig. 7 Performance of MAR-MinSC, PP-MAR-MinSC-1 and PP-MAR-MinSC-2 on Mushroom and Pumsb

Fig. 8 Performance of MAR-MinSC, PP-MAR-MinSC-1 and PP-
MAR-MinSC-2 on Connect

Table 2 The time reduction of MAR-MinSC

DB-MS-MC R-OvPP2 (%) R-OvPP1 (%) RR-PP2 (%) RR-PP1 (%)

Co-97-80 45.52 0.47 94.5 98.7

Co-96-60 43.28 0.26 99.8 99.9

Ch-85-50 33.62 6.86 99.92 99.95

Ch-80-35 20.38 4.72 99.91 99.944

P-95-80 48.23 1.53 98.57 99.62

P-90-65 21.11 0.12 99.89 99.96

M-30-70 20.41 0.27 99.96 99.98

M-25-45 17.77 0.29 99.95 99.98

5 Conclusions and future works

The paper proposed a new, efficient algorithm called MAR-
MinSC for mining association rules with minimum single
constraints. It uses the lattice of closed itemsets and their
generators as the input data.MAR-MinSC neither leads to the
redundancy of generated rules nor directly checks rules with
the constraints. Thus, it obtains the high performance. Our

method that is based on the lattice and suitable equivalence
relations reveals many significant implications in theory and
practice.

In theory, the method demonstrates the explicit structure
and unique representation of the solution set based on essen-
tially basic factors such as closed itemset, support and gen-
erator. Therefore, this is the representation without losing
information. The correctness of the theoretical results was
proven.

In practice, the method is a basis to design parallel algo-
rithms for efficiently mining the solution set in distributed
environments. Moreover, the efficiency of the algorithm is
minimally affected by the frequent change of the constraints
in online systems.

In the future, we will use this method to study problems
with other extended constraints.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix: Proofs and Remarks

Proposition 4

Proof Since ARS⊇L0,⊇R0(s0, s1, c0, c1) ⊆ ARS(s0,
s1, c0, c1), we obtain ARS⊇L0,⊇R0(s0, s1, c0, c1) =∑

(L ,S)NFCS(s0,s1,c0,c1) AR⊇L0,⊇R0(L , S), where AR⊇L0,⊇R0

(L , S) = ARS⊇L0,⊇R0(s0, s1, c0, c1) ∩ AR(L , S) = {r : L ′
→ R′ ∈ AR(L , S) | L ′ ⊇ L0, R′ ⊇ R0}. Moreover, with
S′ ≡ L ′+R′, since (L , S) ∈ NFCS(s0, s1, c0, c1), so s0 ≤
supp(S′)=supp(S)≤ s1, c0 ≤ supp(S′)/supp(L ′)=supp(S)/
supp(L)≤ c1.
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Proposition 5

Proof (a) Since r : L ′ → R′ ∈ ARS⊇L0,⊇R0(s0, s1, c0, c1),
we have L ′, R′ �= ∅, L ′ ∩ R′ = ∅, S′ ≡ L ′+R′,
L0 ⊆ L ′, R0 ⊆ R′. Let L ≡ h(L ′), S ≡ h(L ′+R′),
since L ′ �= ∅, so ∅ �= L ⊆ S (if L = ∅, then ∅ ⊂
L ′ ⊆ h(L ′) ⊆ h(L) = ∅!), supp(S) = supp(S′) ∈
[s0, s1], supp(S)/supp(L) = supp(S′)/supp(L ′) = c(r) ∈
[c0, c1]. Thus, (L , S) ∈ NFCS(s0, s1, c0, c1) and r ∈
AR⊇L0,⊇R0(L , S).
Due to L0 ⊆ L ′, R0 ⊆ R′, L ′ ∩ R′=∅, so L0 ∩ R0 =
∅, S∗

0 ⊆ S′ ⊆ A, L ′ = S′ \ R′ ⊆ A\R0, L ′ ⊆ L,
therefore, L0 ⊆ L ′ ⊆ L\R0 = LC1 ⊆ C1, supp(C1)
≤ supp(L ′)≤ supp(L0), supp(C1).c0 ≤ supp(L ′).c0 ≤
supp(S′) ≤ supp(L ′).c1 ≤ supp(L0).c1 và s∗

0 ≤ supp(S′)
= supp(S) ≤ s∗

1 . Thus, s
∗
0 ≤ s∗

1 and supp(S∗
0 ) ≤ supp(S′)

≤ s∗
0 , supp(A) ≤ supp(S′) ≤ s∗

1 .
(b) With ∀(L,S)∈ NFCS(s0, s1, c0, c1), ∀ r : L ′ → R′

∈ AR⊇L0,⊇R0(L , S), we have ∅ �= L ⊆ S, L ′, R′ �= ∅,
L ′ ∩ R′ = ∅, h(L ′) = L , h(S′) = S, s0 ≤ supp(S′) =
supp(S) ≤ s1, c0 ≤ supp(S)/supp(L) ≤ c1, R0 ⊆ R′,
L0 ⊆ L ′. Since L ′ = S′ \ R′ ⊆ A\R0 = C1, L0 ⊆ L ′
⊆ LC1 ⊆ L, L = h(L ′) = h(LC1), so L ′ ∈ FSC0⊆LC1 .
On the other hand, since supp(S)/c1 ≤ supp(L ′) =
supp(L) ≤ supp(S)/c0, s′

0 ≤ supp(L ′) ≤ s′
1, S ⊇ S′ ≡

L ′+R′ ⊇ S∗
0 , supp(C1).c0 ≤ supp(L ′).c0 ≤ supp(S′) =

supp(S) ≤ supp(L ′).c1 ≤ supp(L0).c1, so s∗
0 ≤ supp(S)

≤ s∗
1 . Due to G(L ′) �= ∅ [5], we take Li ∈ G(L ′)⊆ G

(L), then Li ⊆ L ′ ⊆ C1, thus GC1(L) �= ∅, LC1 ∈
FCSC0⊆C1 ⊆ (s′

0, s
′
1), S ∈ FCSS∗

0⊆S∗
1
(s∗

0 , s
∗
1 ) or (L,

S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1). Since R∗
0 ≡ R0 ⊆

R′=S′ \ L ′ ⊆ S \ L ′=R∗
1 , so R′ ∈ FS(S\L ′)L ′,R∗

0⊆R∗
1
, r ∈

AR+
⊇L0,⊇R0

(L , S) andAR⊇L0,⊇R0(L , S) ⊆ AR+
⊇L0,⊇R0

(L , S). Finally, due to c0 ≤c(r) = supp(S′)/supp(L ′) =
supp(S)/supp(L)≤ c1, so r∈ ARS⊇L0,⊇R0(s0, s1, c0, c1).
Hence,AR⊇L0,⊇R0(L , S) ⊆ ARS⊇L0,⊇R0(s0, s1, c0, c1).

(c) As (L, S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1), then LC1 ∈
FCSC0⊆C1s

′
0, s

′
1, L⊇ L0 and ∃Li ∈ G(L): Li ⊆ C1 ≡

A\R0. Set L ′ ≡ Li ∪ L0, we have ∅ ⊂ Li ⊆ L ′. Thus,
we obtain Li ⊆ LC1 . Due to L0∩R0 = ∅, then L0 ⊆ C1

and L0 ⊆ LC1 . Therefore, C0 ≡ L0 ⊆ L ′ ⊆ LC1 , Li ⊆
L ′ ⊆ LC1 ⊆ L , L = h(Li )=h(L ′)= h(LC1). Hence, L

′
∈ FSC0⊆LC1 �= ∅.

Since (L , S) ∈ NFCS⊇L0,⊇R0(s0, s1, c0, c1) ⊆ NFCS(s0,
s1, c0, c1) and b., we have AR⊇L0,⊇R0(L , S) ⊆ AR+

⊇L0,⊇R0
(L , S). Therefore, we only need to prove the reverse dimen-
sion, “⊇”. With ∀r: L ′ → R ′ ∈ AR+

⊇L0,⊇R0
(L , S), L ′,

R′ �= ∅, L ′ ∈ FSC0⊆LC1 , R
′ ∈ FS(S\L ′)L ′,R∗

0⊆R∗
1
, we

have L0 ⊆ L ′ ⊆ LC1 ⊆ C1 ⊆ L1, h(L ′) = h(LC1),
R0 ⊆ R′ ⊆ R∗

1 = S\ L ′, L ′ ∩ R′ = ∅, h(L ′+R′)=S.
As LC1 ∈ FCSC0⊆C1(s

′
0, s

′
1), so ∃Li ∈ G(L): Li ⊆ C1,

thus, Li ⊆ LC1 ⊆L, L = h(Li ) = h(LC1) = h(L ′).
Therefore, r ∈ AR⊇L0,⊇R0(L , S) and AR+

⊇L0,⊇R0
(L , S) ⊆

AR⊇L0,⊇R0(L , S). Hence, AR+
⊇L0,⊇R0

(L , S) = AR⊇L0,⊇R0

(L , S). ��
Proposition 6

Proof (a) Assume that there exist two duplicate subsets R′1,
R′2 in FS∗(Y )X,Z0⊆Z1 , i.e.,∃k2>k1≥ 1, R′ j≡Z0+Rkj+
R′
k j + R∼

k j , Rkj ∈ Rmin,R′
k j ⊆ RU,k j , R∼

k j ⊆ R−,k j . , ∀j
=1,2, such that R′1. = R′2. Thus, Rk1 ⊆ Rk1 + R′

k1 + R∼
k1

= Rk2 + R′
k2 + R∼

k2. Since Rk1 ∩ R∼
k2 ⊆ Rk1 ∩ R−,k2 ⊆

Rk1 ∩ R−,k1= ∅ and Rk1, Rk2 are two different minimal
sets in Rmin, so Rk1 ⊂ Rk2 + R′

k2: it contradicts with the
method for selecting R′

k2 in
(∗).

(b) . “⊆”: For any R′ ∈ FS(Y )X,⊇Z0 �= ∅, we have Z0 ⊆
R′ ⊆ Y, R′ �= ∅, S′ ≡ X + R′, h(S′) = h(X + Y ).
Since Y∩X = ∅, so R′ ∩X = ∅, X+Z0 ⊆ S′ ⊆ X+Y.
Since S′ �= ∅, let Sk ∈ G(S′) ⊆ G(X+Y) (see[5]), Sk ⊆
S′, so Rk ≡ Sk\(X+Z0) ⊆ S′ \(X+Z0)=R′ \Z0 ⊆ R′.
Set B≡{Ri ≡ Si\(X+Z0): Si ∈ G(S′)}, C ≡{Ri ≡
Si\(X+Z0): Si ∈ G(X + Y )}, then Rk ∈ B. Since B and
C are finite sets and ∅ �= B ⊆ C, there exist the minimal
sets Rmin,S′ ≡ Minimal(B) �= ∅, Rmin ≡Minimal(C) �=
∅. We always have the lowest index k of sets Ri in
Rmin,S′ ≡ Minimal(B). Assume that Rk /∈ Rmin, as Rk ∈
Rmin,S′ , Rk ∈ C , so ∃R j ∈ Rmin: R j ⊂ Rk , where R j ≡
S j\(X + Z0), S j ∈ G(X + Y ) and h(S j ) = h(X + Y ),
S j ⊆(X + Z0)∪ S j= (X + Z0)+ R j ⊆(X + Z0)+ Rk ⊆
X + R′=S′ ⊆ X + Y, h(X + Y ) = h(S j )=h(S′). Then,
S j ∈ G(S′), R j ∈B∩Rmin. Thus R j ∈ Rmin,S′ and
R j ⊂ Rk ∈ Rmin,S′ : it is contradictory because Rk is
a minimal set in B, Hence, Rk ∈ Rmin �= ∅.
Then, it is realized that, if Rmin = ∅ then FS(Y )X,⊇Z0 =
∅ �= FS∗(Y )X,⊇Z0 .
. We have S′ = Sk + S′′

k , where S
′′
k ≡ S′ \Sk . Since S′ ⊇

X+Z0, so S′ = X+Z0+Rk +R′
k +R∼

k . = X+R′, where
R′ ≡ Z0 + Rk + R′

k + R∼
k , Rk ≡ Sk\(X + Z0) ∈ Rmin,

R′
k ≡ [S′′

k \(X+Z0)]∩Rk
U= [S

′ \(X+Z0)\Sk]∩Rk−1
U ⊆

Rk−1
U \Sk ⊆ Rk−1

U \Rk ≡ RU,k (since Rk∩ [S′ \(X +
Z0)\Sk] ⊆ Rk\Sk=∅), R∼

k ≡ [S′′
k \(X + Z0)]\Rk

U ⊆ (S′
\ X)\(Z0 + Rk

U ) ⊆ Y \(Z0 + Rk
U ) ≡ R−,k . Assume

that ∃R j ≡ S j\(X + Z0) ∈ Rmin: 1 ≤ j < k and R j ⊂
Rk + R′

k , then h(S j ) = h(X +Y ), S j ⊆ (X + Z0)∪ S j =
(X + Z0)+ R j ⊆(X + Z0)+ Rk + R′

k ⊆ X + R′ ≡ S′ ⊆
X +Y, h(X +Y ) = h(S j ) = h(S′). Thus, S j ∈ G(S′) and
R j ∈ Rmin,S′ but j < k: it is contradictory to the method
for selecting the index k. Hence, R′ ∈ FS∗(Y )X,⊇Z0 .
. “⊇”: For any R′ ∈ FS∗(Y )X,⊇Z0 , we have R′ = Z0 +
Rk + R′

k + R∼
k , where Rk ≡ Sk\(X + Z0) ∈ Rmin and

Sk ∈ G(X + Y ), h(Sk) = h(X + Y ), R′ �= ∅, Rk ⊆
(X+Y )\(X+Z0)=Y \Z0 ⊆Y .Moreover, R′

k ⊆ RU,k ⊆
Y , R∼

k ⊆ R−,k ⊆ Y , Z0 ⊆ R′ ⊆ Y and R′ ∩ X = ∅. On
the other hand, since X + Y ⊇ X + R′ ⊇ X + Z0 + Rk=
(X + Z0) ∪ Sk ⊇ Sk , so h(Sk) = h(X + R′)=h(X + Y ).
Therefore, R′ ∈ FS(Y )X,⊇Z0 .
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(c) Since Y ∩ X =∅ and Z0 ⊆ Y , so Z0∪ X =∅. Set R∗ ≡Y
and ∀Rk ≡ Sk\(X + Z0)∈ Rmin �= ∅: Sk ∈ G(X + Y ),
Rk ⊆ (X+Y ) \(X+ Z0)=Y \Z0 ⊆ R∗, then R∗ �= ∅ and
Z0 ⊆ R∗ ⊆ Y , Sk ⊆ Sk∪(X + Z0) = (X + Z0) + Rk ⊆
X + R ∗ = X + Y . Therefore, h(X + Y ) = h(Sk) =
h(X + R∗). Hence, ∃ R∗ ∈ FS(Y )X,⊇Z0 = FS∗(Y )X,⊇Z0

�= ∅. ��

Remark 4. From the proof of Proposition 3, we have remark
as follows.

(a) For ∀ R′ ∈ FS∗(Y )X,⊇Z0 with the representation R′ ≡
Z0+ Rk + R′

k + R∼
k . If ∃R′ = ∅, then Z0 =∅ and ∃Sk ∈

G (X+Y) so that Rk ≡ Sk\(X+ Z0) =∅. Thus, Sk ⊆X⊆
X+Yandh(X+Y ) = h(X) = h(Sk).Moreover, Rmin ≡
{ R1 ≡ ∅}, RU,1 = R1

U = ∅, R−,1 ≡ Y �= ∅ and
R′ = R∼

1 ⊆ R−,1. Therefore, when representing R′in
FS∗(Y )X,⊇Z0 based on the setsRk ∈ Rmin, R′is only
empty in the cases Z0 = ∅, h(X + Y ) = h(X) and Rmin

= {∅}. Then, R′ ∈ FS∗(Y )X,⊇Z0 ⇔ ∅ ⊂ R′ ⊆ Y �= ∅.
In practice, we consider three cases as follows.

· If Rmin = {∅} and Z0 = ∅, then RU,1 = R1
U =

∅, R−,1 ≡ Y �= ∅ and FS∗(Y )X,⊇Z0 ≡ {R′|∅ �=
R′ ≡ R∼

1 , R∼
1 ⊆ Y} ={R′|∅ ⊂ R′ ⊆ Y}.

· If Rmin={ ∅} and Z0 �= ∅, then RU,1 = R1
U =

∅, R−,1 ≡ Y \Z0 and FS∗(Y )X,⊇Z0 ≡ {R′ | R′ ≡
Z0 + R∼

1 , R
∼
1 ⊆Y\Z0}={R′ | Z0 ⊆ R′ ⊆Y }.

· If Rmin �= { ∅}, then FS∗(Y )X,⊇Z0 ≡ {R’ ≡ Z0 +
Rk + R′

k + R∼
k | Rk ∈ Rmin, R′

k ⊆ RU,k , R∼
k ⊆ R−,k ,

(R j �⊂Rk + R′
k , ∀R j ∈ Rmin: 1≤ j < k)}.

For the last two cases, we do not need to check the obvi-
ous condition R′ �= ∅ when generating R′.

(b) (The advantage of the condition (∗)in decreasing redun-
dant candidates accompanying exponential reduction).
In the process of forming set R′, which originated from
R∗
0 + Rk , when finding growing subsets R′

k ⊆ RU,k

and then R∼
k ⊆ R−,k to supplement R′, if the condi-

tion (∗) is violated, then we neither need to continue
considering the supersets R′′ (estimated2|RU,k\R′

k | super-
sets) of R′

k(R
′
k ⊂ R” ⊆ RU,k) nor add all subsets R∼

k
(estimated 2|R−,k | subsets) of R−,k to R′ (i.e., there are
(2|RU,k\R′

k | − 1)*(2|R−,k |) subsets eliminated because all
of them are redundant candidates for R′). Then, we go
on considering other R′′

k sets (R′
k �⊂R′′

k ⊆ RU,k) or other
Rk sets of Rmin. The necessary and sufficient condition
(∗)for distinctly generating the right-hand side R′ of rules
helps to eliminate many redundant candidates for them.
This condition also helps to completely eliminate the
duplication of the solutions, and the checking process
is only based on minimal sets or generators with small
quantity and size. It makes an important contribution to
explain the efficiency of the corresponding algorithms.

c. (Improving the calculation of the border sets). It is
realized that, for each k > 1, to calculate Rk−1

U =
Rk−2
U ∪Rk−1, RU,k ≡ Rk−1

U \Rk , R−,k ≡ R∗\Rk
U , where

R∗ ≡ Y \Z0, we must perform two subtractions and
one union on the generators that cannot be disjoint. To
decrease the calculation of the border sets RU,k and R−,k ,
we note that

·Sk, S′
k, Rk ∈ Rmin, R′

k, R
∼
k , R′ ≡ R∗

0 + Rk + R′
k

+R∼
k ;

Rk
U , RU,k, R−,k, R

∗

RU,k = [(Rk−2
U \Rk−1) + Rk−1]\Rk

= (RU,k−1 + Rk−1)

\Rk, R−,k = R−,k−1\Rk,∀k ≥ 1 and

R0 ≡ RU,0 ≡ ∅, R−,0 ≡ R∗.

Thus, RU,k =
{

(RU,k−1+Rk−1)\Rk, i f k ≥ 1
∅, i f k = 0

, R−,k =
{
R−,k−1\Rk, i f k ≥ 1
Y\Z0, i f k = 0

and R0 ≡ ∅.

For each k≥1, there remains only a disjoint union
RU,k = RU,k−1 + Rk−1 on two small sets in size
(thus, its calculation is faster than that of normal union
Rk−1
U = Rk−2

U ∪ Rk−1 on two sets that may not be
disjoint and have large sizes), and two subtractions,
where one R−,k = R−,k−1\Rk is performed on two sets
R−,k−1 ⊆ R∗ and Rk ⊆ Rk

U that their sizes are less than
those of sets in the subtraction R−,k ≡ R∗\Rk

U .
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