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Abstract Classifying fingerprint images may require an
important features extraction step. The scale-invariant fea-
ture transform which extracts local descriptors from images
is robust to image scale, rotation and also to changes in illu-
mination, noise, etc. It allows to represent an image in term
of the comfortable bag-of-visual-words. This representation
leads to a very large number of dimensions. In this case, ran-
dom forest of oblique decision trees is very efficient for a
small number of classes. However, in fingerprint classifica-
tion, there are as many classes as individuals. A multi-class
version of random forest of oblique decision trees is thus pro-
posed. The numerical tests on seven real datasets (up to 5,000
dimensions and 389 classes) show that our proposal has very
high accuracy and outperforms state-of-the-art algorithms.
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1 Introduction

Due to their uniqueness and consistency over time [1], finger-
print identification is one of the most well-known technique
for person identification. It is successfully used in both gov-
ernment and civilian applications such as suspect and vic-
tim identifications, border control, employment background
checks, and secure facility access [2]. Fingerprint recogni-
tion systems commonly useminutiae (i.e. ridge ending, ridge
bifurcation, etc.) as features since a long time. Recently
a method based on feature-level fusion of fingerprint and
finger-vein has been proposed [3]. Recent advances in tech-
nology make each day easier the acquisition of fingerprints
features. In addition, there is a growing need for reliable per-
son identification and thus fingerprint technology ismore and
more popular.

Fingerprint systemsmainly focus on two applications: fin-
gerprint matching which computes a match score between
two fingerprints, and fingerprint classification which assigns
fingerprints into one of the (pre)defined classes. The state-
of-the-art methods are based on minutiae points and ridge
patterns, including a crossover, core, bifurcation, ridge end-
ing, island, delta and pore [2,4,5]. Useful features and
classification algorithms are found in [6,7]. Most of these
techniques have no difficulty in matching or classifying
good quality fingerprint images. However, dealing with
low-quality or partial fingerprint images still remains a
challenging pattern recognition problem. Indeed a biomet-
ric fingerprint acquisition process is inherently affected
by many factors [8]. Fingerprint images are concerned by
displacement (the same finger may be captured at dif-
ferent locations or rotated at different angles on the fin-
gerprint reader), partial overlap (part of the fingerprint
area fall outside the fingerprint reader), distortion, noise,
etc.
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An efficient feature extraction technique, called the scale-
invariant feature transform (SIFT) was proposed by [9] for
detecting and describing local features in images. The local
features obtained by the SIFT method are robust to image
scale, rotation, changes in illumination, noise and occlu-
sion. Therefore, the SIFT is used for image classification and
retrieval. The bag-of-visual-words (BoVW) model based on
SIFT extraction is proposed in [10]. Some recent fingerprint
techniques [11–13] showed that the SIFT local feature can
improve matching tasks.

Unfortunately, when using SIFT and the BoVW models,
the number of features could be very large (e.g. thousands
dimensions or visual words).We here propose to classify fin-
gerprint images with random forest of oblique decision trees
[15,16] which have shown to have very high accuracy when
dealing with very-high-dimensional datasets for few class
problems. However, for individual identification each person
is considered as a single class. We thus extend this approach
to deal with a very large number of classes. Experiments with
real datasets and comparison with state-of-the-art algorithms
show the efficiency of our proposal.

The paper is organized as follows. Section 2 presents the
image representation using the SIFT and the BoVW model.
Section 3 briefly introduces random forests of oblique deci-
sion trees and then extend this algorithm to multi-classes
classification of very-high-dimensional datasets. The exper-
imental results are presented in Sect. 4. We then conclude in
Sect. 5.

2 SIFT and bag-of-visual-words model

When dealing with images like fingerprint one has to extract
first local descriptors. The SIFT method [9] detects and
describes local features in images. SIFT is based on the
appearance of the object at particular interest points. It is
invariant to image scale, rotation and also robust to changes
in illumination, noise, occlusion. It is thus adapted for fin-
gerprint images as pointed out by [11–13].

Step 1 (Fig. 2) detects the interest points in the image.
These points are either maximums of Laplace of Gaussian,
3D local extremes of Difference of Gaussian [17], or points
detected by a Hessian-affine detector [18]. Figure 1 shows
some interest points detected by a Hessian-affine detector
for fingerprint images. The local descriptors of interest point
are computed on a grey level gradient of the region around
the interest point (step 2 in Fig. 2). Each SIFT descriptor is
a 128-dimensional vector.

A main stage consists of forming visual words from the
local descriptors. Most of approaches perform a k-means
[19] on descriptors. Each cluster is considered as a visual
word represented by the cluster centre [10] (step 3 in Fig. 2).
The set of clusters constitutes a visual vocabulary (step 4 in

Fig. 1 Interest points detected by Hessian-affine detector on a finger-
print

Fig. 2). Each descriptor is then assigned to the nearest cluster
(step 5 in Fig. 2). The frequency of a visual word is the num-
ber of descriptors attached to the corresponding cluster (step
6 in Fig. 2). An image is then represented by the frequencies
of the visual words, i.e. a BoVW.

SIFTmethod has demonstrated very good qualities to rep-
resent images. However, it leads to a very large number
of dimensions. Indeed, a large number of descriptors may
require a very large number of visual words to be efficient.
In addition when dealing with fingerprint classification, the
number of classes corresponds to the number of individuals
in the dataset. In the next section, we investigate machine
learning algorithms for this kind of data.

3 Multi-classes random forest of oblique decision trees

Random forests are one of the most accurate learning algo-
rithms, but their outputs are difficult for humans to inter-
pret [20]. We are here only interested in classification per-
formance.

Reference [21] pointed out that the difficulty of high-
dimensional classification is intrinsically caused by the exis-
tence of many redundant or noisy features. The comparative
studies in [20,22–25] showed that support vector machines
[26], boosting [27] and random forests [28] are appropri-
ate for very high dimensions. However, there are few studies
[29,30] for extremely large number of classes (typically hun-
dreds of classes).

3.1 From random forests to random forests of oblique
decision trees

A random forest is an ensemble classifier that consists of
(potentially) large collection of decision trees. The algo-
rithm for inducing a random forest was proposed in [28].
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Fig. 2 Bag-of-visual-words model for representing images

The algorithm combines bagging idea [31] and the selection
of a random subset of attributes introduced in [32,33] and
[34].

Let us consider a training set D of n examples xi described
by p attributes. The bagging approach generates t new train-
ing sets B j , j = 1 . . . t , known as bootstrap sample, each
of size n, by sampling n examples from D uniformly and
with replacement. The t decision trees in the forest are then
fitted using the t bootstrap samples and combined by voting
for a classification task or averaging the output for regres-
sion task. Each decision tree DTj ( j = 1, . . . , t) in the for-
est is thus constructed using the bootstrap sample B j as fol-
lows: for each node of the tree, randomly choose p′ attributes
(p′ << p) and calculate the best split based on one of these
p′ attributes; the tree is fully grown and not pruned.

A random forest is thus composed of trees having suf-
ficient diversity (thanks to bagging and random subset of
attributes) each of them having low bias (thanks to unprun-
ing). Random forests are known to produce highly accurate
classifier and are thus very popular [20].

However, for each tree only a single attribute is used to
split each node. Such univariate strategy does not take into
account dependencies between attributes. The strength of
individual trees could thus be reduced typically when deal-

ing with very-high-dimensional datasets which are likely to
contain dependencies among attributes.

One can thus use oblique decision trees (e.g. OC1
[35]) or hybridization in a post-growing phase that uses
other classifiers in tree’s node (e.g. genetic algorithm [36],
neural network [37,38], linear discriminant analysis [39,
40], support vector machines [41]). Recently, ensemble of
oblique decision trees has attracted much research inter-
ests. For example proximal linear support vector machines
[42] (PSVM) are used in [14–16] and ridge regression is
proposed in [43] for random forests. The embedded sup-
port vector machines (SVM) in a forest of trees have
shown very high performance especially for very-high-
dimensional datasets [16] and a reasonable number of classes
[15].

We thus here extend these approaches to deal with very
large number of classes. Indeed, the fingerprint application
needs to manage very-high-dimensional points with hun-
dreds of individuals to classify. Furthermore, we provide also
the performance analysis ofmulti-class randomoblique deci-
sion trees in terms of the error bound and the algorithmic
complexity. This theoretical analysis illustrates how our pro-
posed algorithm is efficient in the fingerprint classification
with many classes.

123



6 Vietnam J Comput Sci (2015) 2:3–12

3.2 Multi-class random forests of oblique decision trees

We propose to induce a forest of binary oblique decision
trees. Our approach will thus build a set of trees that will
separate the c classes at each non-terminal node into two
subsets of classes of size c1 and c2 (c1 + c2 = c). In such
a way, the algorithm will reach terminal nodes (leaves). As
proposed in the Random Forest of Oblique Decision Trees
algorithm (RF-ODT) [16] these binary splits are done by
proximal SVM [42].

The state-of-the-artmulti-class SVMs are categorized into
two types of approaches. The first one solves an optimization
problem for multi-class separation [44,45]. This approach
can thus require expensive calculations and parameter tuning.

The second one uses a series of binary SVMs to decom-
pose the multi-class problem (e.g. “One-Versus-All” (OVA
[26]), “One-Versus-One” (OVO [46]) and Decision-Directed
Acyclic Graph (DDAG [47]). Decision-Directed Acyclic
Graph is rather complex and OVO needs to train c(c − 1)/2
classifiers, while OVA needs only to build c classifiers.

Hierarchicalmethods divide the data into two subsets until
every subset consists of only one class. The Divide-by-2
(DB2) [48] proposes three strategies (class centroid-based
division using k-means [19], class mean distances and bal-
anced subsets) to construct the two subsets of classes. The
Dendrogram-based SVM [49] uses ascendant hierarchical
clustering method. The Dendrogram clustering algorithms
have a complexity that is at least cubic in the number of
datapoints compared to the linear complexity of k-means.

Furthermore, the oblique tree construction aims at par-
titioning the data of the non–terminal node into two sub-
sets. In practice, k-means is the most widely used partitional
clustering algorithm because it is simple, easily understand-
able, and reasonably scalable. The partitional clustering algo-
rithm k-means (setting k = 2 due to the data partition at
the non-terminal node into two subsets) is the appropriate
method.

Our proposal consists of an efficient hybrid method using
the previous methods. Multi-Class Oblique Decision Trees
(MC-ODT) are build usingOVA(for small number of classes,
i.e. c ≤ 3) and a DB2-like method (for, i.e. c > 3)
to perform the binary multivariate splits with a proximal
SVM (denoted OVA-DB2-like approach in the later). These
MC-ODT are then used to form a Random Forest of MC-
ODT (MCRF-ODT) as illustrated in Fig. 5. Theoretical con-
siderations supporting our approach are presented in Sect.
3.3.

Figure 3 illustrates the OVA-DB2-like approach for c ≤
3. On the left-hand side, c = 3, the algorithm creates two
super classes (a positive part and a negative part). One super
class groups together 2 classes and the other one matches the
third class. This corresponds to the classical OVA strategy.
Therefore, the algorithm only uses the OVA and the biggest

Fig. 3 Oblique splitting for c classes (c ≤ 3)

margin criteria for performing an oblique binary split PSVM
while dealing with c ≤ 3 (i.e. the plane P1) as illustrated on
the right-hand-side of Fig. 3.

When the number of classes c is greater than 3, a k-means
[19] is used on all the datapoints. This improves the quality of
the two super classes in comparison with Divide-by-2 which
only uses the class centroid (obviously Divide-by-2 is faster,
but the quality of the classes is lower).

Themost impure cluster is considered as the positive super
class, the second cluster as the negative super one. The classes
of this cluster (positive part) are then sorted in descending
order of class size so that around 15 % of the datapoints of
the minority classes are moved to the other cluster (negative
part). This is done to reduce the noise in the positive cluster
and also to balance the two clusters1 (in terms of size and
number of classes). Finally, the proximal SVM performs the
oblique split to separate the two super classes.

These processes (OVA, k-means clustering and PSVM)
are repeated to split the datapoints into terminal nodes (w.r.t.
two criteria: the first one concerns theminimum size of nodes
and the second one concerns the error rate in the node) as
illustrated in Fig. 4. The majority class rule is applied to
each terminal node.

The pseudocode of the random oblique decision tree algo-
rithm for multi-class (MC-ODT) is presented in Algorithm
1 and the MCRF-ODT algorithm is illustrated in Fig. 5.

3.3 Performance analysis

For a non-terminal node D with c classes, the OVO
and DDAG strategies require c(c−1)

2 tests (each test cor-
responds to a binary SVM) to perform a binary oblique
split. These strategies thus become intractable when c is
large.

The OVA-DB2-like approach used in MC-ODT is desig-
nated for separating the data into two balanced super classes.
The OVA-DB2-like approach can be considered as the Two-
ing rule [50].

1 Our empirical tests, from 2 % up to 30 %, showed that 15 % gives
good super classes.

123



Vietnam J Comput Sci (2015) 2:3–12 7

Fig. 4 Oblique splitting for c
classes (c > 3)

Fig. 5 Multi-class random
forest of oblique decision trees

Therefore, the OVA-DB2-like approach tends to pro-
duce MC-ODTs with less non-terminal nodes than the OVA
method. Thus, it requires less tests and lower computational
time.

Error bound

Furthermore, according to [47], if one can classify a ran-
dom n sample of labelled examples using a perceptron (e.g.
a linear SVM) DDAG G (i.e. a DDAG with a perceptron at
every node) on c classes containing K decision nodes (e.g.
non-terminal nodes) with margins γi at node i , then the gen-
eralization error bound ε j (G), with probability greater than
1 − δ, is given by:

ε j (G) ≤ 130R2

n

(
M ′ log(4en) log(4n) + log

(
2(2n)K

δ

))

(1)

where M ′ = ∑K
i=1

1
γ 2

i
and R is the radius of a hypersphere

enclosing all the datapoints.
The error bound thus depends on M ′ (the margin γi ’s) and

K decision nodes (non-terminal nodes). Let, now examine
why our proposal has two interesting properties in compari-
son with the OVA approach:

– as mentioned above a MC-ODT based on the OVA-DB2-
like approach has smaller K than the ones using the OVA
method.

– the separating boundary (margin size) at a non-terminal
node obtained by the OVA-DB2-like approach is larger
than the one by the OVAmethod. As a consequence M ′ is
smaller.

Therefore, the error boundofMC-ODTbasedon theOVA-
DB2-like approach is smaller than the one made by the OVA
strategy.
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Algorithm 1: Random oblique decision tree for
multi-class

input :
D bootstrap sample of n datapoints in p dimensions

with c classes
p′ number of random dimensions used to perform

oblique splits (p′ < p)
ε error_tolerant acceptance at terminal nodes
min_obj minimum size of terminal nodes

output:
ODT model

Learn:
PROC RECURSIVE-ODT(D, p′, ε, min_obj)
begin

1- counting the number of datapoints for each class
2- computing the error rate of D upon the majority class
as the label of D
3- if (n < min_obj) or (error_rate < ε) then

{
- assigning the majority class as the label of D
- return terminal node D

}
else
{

- randomly sampling without replacement p′
dimensions

- if (c ≤ 3) then
{
- PSVM uses One-Versus-All method with the

biggest margin strategy to perform a binary oblique split
D in p′ dimensions into Dpos (positive part) and Dneg
(negative part)

}
else
{
- using k-means algorithm to group datapoints

in D into two clusters, denoted by cluster_1 and
cluster_2

- the most impure cluster is considered as the
candidate of the positive class candidate_class

- around 15% of the datapoints of the minority
classes in candidate_class are moved to the other cluster

- PSVM performs a binary oblique split D in
p′ dimensions (with candidate_class being the positive
class and the rest being the negative class) into Dpos
(positive part) and Dneg (negative part)

}
- RECURSIVE-ODT(Dpos , p′, ε, min_obj)
- RECURSIVE-ODT(Dneg , p′, ε, min_obj)

}
end

In comparison with the OVO and DDAG approaches, our
proposal can reduce the error bound in terms of K . But the
margin size at each decision node (two classes separation)
obtained by OVO and DDAG is larger than the one obtained
by the OVA-DB2-like (two super classes separation). There-
fore, it is not easy to compare the error bound in terms M ′ in
this context. However, an optimal split of two classes in D
obtained by a binary SVM under OVO or DDAG constraints

can not assure efficient separation of the c classes into two
super classes.

Computational costs

According to [47], a binary SVM classification with n train-
ing datapoints has an empirical complexity as follows:

�(n, 2) ≈ αnβ (2)

where β ≈ 2 for binary SVM algorithms using the decom-
position method and some positive constant α.

Let us consider a multi-class classification problem at a
non-terminal node D with n training datapoints and c bal-
anced classes (i.e. the number of training datapoints of each
class is about n/c). The standard OVA approach needs c tests
(binary SVM learning tasks on n training datapoints) to per-
form a binary oblique split. The algorithmic complexity is:

�OVA(n, c) ≈ cαnβ (3)

The OVO or DDAG approaches need c(c − 1)/2 tests
(binary SVM learning tasks on 2n/c training datapoints) to
perform a binary oblique split at a non-terminal node D. The
algorithmic complexity is:

�OVO,DAG(n, c) ≈ c(c − 1)

2
α

(
2n

c

)β

≈ 2(β−1)c(2−β)αnβ (4)

The OVA-DB2-like approach requires only one test
(binary SVM learning tasks on n training datapoints) to
perform a binary oblique split in a non-terminal node D
to separate the two super classes (positive and negative
parts). The algorithmic complexity is the same as for the
binary case (formula 2) which is the smallest complexity.
It must be noted that the complexity of the OVA-DB2-like
approach in formula (2) does not include the k-means clus-
tering used to create two super classes. But this step requires
insignificant time compared with the quadratic programming
time.

Let now examine the complexity of building an oblique
multi-class classification tree with the OVA-DB2-like
approach that tends to maintain, at each node, balanced
classes. This strategy can thus build a balanced oblique deci-
sion tree (i.e. the tree height is �log2 c�) and any i th tree level
has 2i nodes having n/2i training datapoints. Therefore, the
complexity of the multi-class oblique tree algorithm based
on OVA-DB2-like approaches is:

�OVA−DB2−like(n, c) ≈
�log2 c�∑

i=0

α2i
( n

2i

)β

=
�log2 c�∑

i=0

αnβ
(
2(1−β)

)i
(5)
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Due to 2(1−β) < 1 (β ≈ 2), we have:

�log2 c�∑
i=0

(
2(1−β)

)i ≈ 1

1 − 2(1−β)
(6)

Thus, applying formula (6) to the right side of (5) yields
the new algorithmic complexity of the multi-class oblique
tree based on the OVA-DB2-like approach as follows.

�OVA−DB2−like(n, c) ≈ αnβ

1 − 2(1−β)
= αnβ2(β−1)

2(β−1) − 1
(7)

Formula (7) shows that the training task of a MC-ODT
scales O(n2). Therefore, the complexity of a MCRF-ODT
forest is O(t.n2) for training t models of MC-ODT.

4 Numerical test results

Experiments are conducted with seven real fingerprint
datasets (respectively, FPI-57, FPI-78,…, and FPI-389, with
57, 78, …, and 389 colleagues; between 15 and 20 finger-
prints were captured for each individual). Fingerprints acqui-
sition was done with Microsoft Fingerprint Reader (opti-
cal fingerprint scanner, resolution: 512 DPI, image size:
355 × 390, colours: 256 levels greyscale). Local descrip-
tors were extracted with the Hessian-affine SIFT detector
proposed in [18]. These descriptors were then grouped into
5,000 clusters with k-means algorithm [19] (the number of
clusters/visual words was optimized between 500 and over
5,000, 5,000 clusters was the optimum). The BoVW model
was thus calculated from these 5,000 visual words. Last, the
datasets were splitted into training set and testing set. The
datasets are described in Table 1.

The training set was used to tune the parameters of
the competitive algorithms including MCRF-ODT (MCRF-
ODT is implemented in C++, using the Automatically Tuned
Linear Algebra Software [51]), SVM [26] (using the highly
efficient standard SVM algorithm LibSVM [52] with OVO
formulti-class), kNN [53], C4.5 [54],AdaBoost [27] ofC4.5,
RF-CART [28]. The Weka library [55] was used for the four
last algorithms.

Table 1 Description of seven fingerprint image datasets

Datasets # Classes # Dimensions # Images (train–test)

FPI-57 57 5,000 700–352

FPI-78 78 5,000 950–422

FPI-120 120 5,000 1,438–480

FPI-153 153 5,000 1,700–672

FPI-185 185 5,000 2,000–765

FPI-235 235 5,000 2,485–1,000

FPI-389 389 5,000 4,306–2,000

We tried to use different kernel functions of the SVM
algorithm, including a polynomial function of degree d,
a RBF (RBF kernel of two datapoints xi , x j , K [i, j] =
exp(−γ ‖xi − x j‖2)). The optimal parameters for accu-
racy are the following: RBF kernel (with γ = 0.0001,
c = 10,000) for SVM, one neighbour for kNN, at least
two example in a leave for C4.5, 200 trees and 1,000 ran-
dom dimensions for MCRF-ODT, RF-CART, 200 trees for
AdaBoost-C4.5.We remark thatMCRF-ODT andRF-CART
used the out-of-bag samples (the out of the bootstrap sam-
ples) during the forest construction for finding the parameters
(with p′ = 1, 000, ε = 0, min_obj = 2 and t = 200), corre-
sponding to the best experimental results.

Given the differences in implementation, including the
programming language used (C++ versus Java), a compari-
son of computational time is not really fair. Table 2, Fig. 6
report average computational times for the faster algorithms
to illustrate thatMCRF-ODT is very competitive. Obviously,
the univariate algorithm RF-CART is faster.

The accuracies of the seven algorithms on the seven
datasets are given in Table 3 and Fig. 7.

The experimental results showed that our proposal using
SIFT/BoVW andMCRF-ODT has achieved more than 93 %
accuracy for fingerprint images classification.

As it was expected, firstly 1-NN, C4.5 and NB methods
which are based on an unique classifier are overmatched by
LibSVM and ensemble methods, secondly the performance
of these methods dramatically decreases with the number of
classes. 1-NN, C4.5 andNB are always bottom of the ranking
for each of the seven datasets (7th, 6th and 5th position)
and they lose a lot of accuracy when the number of classes
increases (from 57 to 389), especially 1-NN and C4.5 which,
respectively, decrease from 59.9 to 28.75 % and from 75.0
to 45.8 %, while NB decreases only from 85.2 to 74.6 %.

RF-CART andAdaboost-C4.5, which are among themost
common ensemble-based methods, occupy an intermediate
position, with a slight superiority of RF-CART onAdaboost-
C4.5 (mean rank score of, respectively, 3.1 and 3.9). The
accuracies of these methods are already somewhat less
affected by the increase in the number of classes, decreasing
from 93.5 to 86.3 % for RF-CART and from 91.5 to 82 %
for Adaboost C4.5.

The best results are always obtained by LibSVM and
above all by our multi-class MCRF-ODT, the new proposed
method. LibSVM holds the rank 2 on each experimented
dataset, with a mean accuracy of 93.4 %, while MCRF-ODT
gets the best result on each of the seven datasets with an aver-
age accuracy of 95.89 %, which corresponds to an improve-
ment of 2.49 percentage points comparedwithLibSVM.This
superiority ofMCRF-ODTonLibSVM is statistically signif-
icant, in so far as according to the sign test, the p value of the
observed results (7 wins of MCRF-ODT on LibSVM with
7 datasets) is equal to 0.0156. In addition, these two meth-
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Table 2 Average time
calculation (s/tree, PC-3.4 GHz) Algorithm FPI-57 FPI-78 FPI-120 FPI-153 FPI-185 FPI-235 FPI-389

MCRF-ODT 2.5 3.5 6.0 8.5 12.0 15.0 26

AdaBoost-C4.5 4.0 6.0 10.5 14.0 18.5 26.5 90.0

RF-CART 0.7 1.0 2.0 3.0 4.3 6.3 17.0

LibSVM 3.5 6.2 14.3 21.7 30.0 46.0 120.0

Fig. 6 Training time (s/tree)

Table 3 Classification results in
terms of accuracy (%)

Bold values indicate the best
algorithm and italic values
indicate the second best

Algorithms FPI-57 FPI-78 FPI-120 FPI-153 FPI-185 FPI-235 FPI-389

MCRF-ODT 97.44 97.60 96.04 95.24 95.29 94.60 95.00

LibSVM 95.46 94.79 92.50 92.86 93.46 92.10 92.65

AdaBoost-C4.5 91.48 89.34 89.17 84.52 85.10 84.10 81.95

RF-CART 93.47 92.42 88.33 91.67 89.02 87.50 86.30

C4.5 75.00 69.19 61.67 59.23 55.16 53.60 45.80

NB 85.23 81.52 78.33 75.15 78.30 74.90 74.60

1NN 59.94 51.19 46.88 41.52 36.99 33.20 28.75

Fig. 7 Classification results in terms of accuracy (%)
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ods lose only little efficiency when the number of classes
increases, since the corresponding accuracies decrease from
97.60 to 94.60 % for MCRF-ODT and from 95.5 to 92.1 %
for LibSVM.

5 Conclusion and future works

We presented a novel approach that achieves high perfor-
mances for classification tasks of fingerprint images. It asso-
ciates the BoVW model (induced from the SIFT method
which detects and describes local features in images) and
an extension of random forest of decision trees to deal with
hundreds of classes and thousands of dimensions. The exper-
imental results showed that the Multi-class RF-ODT algo-
rithm is very efficient in comparison with C4.5, random for-
est RF-CART, AdaBoost of C4.5, support vector machine
and k nearest neighbours.

A forthcoming improvement will be to extend this algo-
rithm to deal with extremely large number of classes (e.g.
up to thousands of classes). A parallel implementation can
greatly speed up learning and classifying tasks of the multi-
class RF-ODT algorithm.

Open Access This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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