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Abstract Nonconvex optimization becomes an indispens-
able and powerful tool for the analysis and design ofCommu-
nication Systems (CS) since the last decade. As an innovative
approach to nonconvex programming, Difference of Convex
functions (DC) programming and DCAlgorithms (DCA) are
increasingly used by researchers in this field. The objective
of this paper is to show that many challenging problems in
CS can be modeled as DC programs and solved by DCA-
based algorithms. We offer the community of researchers
in CS promising approaches in a unified DC programming
framework to tackle various applications, such as routing,
power control, congestion control of the Internet, resource
allocation in networks, etc.

Keywords Communication systems · DC programming ·
DCA · Exact penalty · DC constraint · Mixed 0–1 DC
programs

1 Introduction

Optimization plays a key role in communication systems
sincemost of issues of this domain are related to optimization
problems. Convex programming has been studied for about a
century. It has provided both a powerful tool and an intrigu-
ing mentality for the analysis and design of communication
systems over several years in the past. During the last decade,
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an increasing amount of effort has been put into nonconvex
optimization to deal with challenge problems appeared in
many applications of this filed (in fact, most real-life prob-
lems are of nonconvex nature). The absence of convexity
creates a source of difficulties of all kinds, in particular, the
distinction between the local and globalminima, the nonexis-
tence of verifiable characterizations of global solutions, etc.,
that causes all the computational complexity while passing
from convex to nonconvex programming. In general, unlike
the convex programming, there is no iterative algorithm con-
verging directly to a global solution of a nonconvex program.
Finding a global solution of a nonconvex program, especially
in the large-scale setting, is the holy grail of optimizers.

The special context of practical problems in CS, along
with the dramatic progress of novel technologies, requires
well-adapted optimization techniques. For example, solution
methods to network management in the context of mobile
service should take into account the following questions:

• The topology of networks is dynamic and real-time data
transmissions are needed. Hence, real-time algorithms are
expected.

• Self-organization and self-configuration require all proto-
cols in mobile networks to be distributive and collabora-
tive. By the way, distributed algorithms are necessary.

• Location/tracking management, in addition to the han-
dovermanagement and routing. In the case of hybrid com-
munication networks, the choice of the best access gate-
way among a number of available access technologies
becomes one of the important considerations. Routing in
hybrid networks should be handled by finding a suitable
mathematical model and efficient algorithms.

• Multi-user communications service involves large scale
setting optimization problems. Therefore, the algorithms
should be able to solve large-size problems.
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Many challenging issues arise from nonconvex optimiza-
tion in communication systems, especially how to design
suitable models and develop efficient, fast, scalable and dis-
tributed algorithms to tackle large-scale practical problems
in the areas of wireless networking, internet engineering,
mobile services in self-organized hybrid networks.

Avariety of nonconvex optimization techniques have been
recently developed by researchers in optimization on one side
and in communications systems on another side for studying
communication theory as well as for solving practical prob-
lems in CS (see e.g, [1–9,12,14–21,24–33,38–54]. Gener-
ally, there are two different, but complementary approaches:
global approaches such as Cutting Plane (CP), Branch and
Bound (B&B), Branch and Cut (B&C) can guarantee the
globality of the solutions but they are very expensive, and
cannot handle problems of high dimensionality; and local
approaches, on the contrary, are much faster while only local
minima are available. Many current approaches are not gen-
erally effective for practical large-scale problems. Finding
efficient algorithms that realize a compromise to overcome
these drawbacks is a challenge of nonconvex programming.
Such algorithms must exploit domain-specific structures of
the problems being considered.

As an innovative approach to nonconvex programming,
Difference of Convex functions (DC) programming and
DC Algorithms (DCA) are increasingly used by researchers
in CS (see e.g. [1,2,16,22,45,54] and references therein).
The objective of this paper is to show that many challeng-
ing problems in CS can be modeled as DC programs and
solved by DCA-based algorithms. We offer the community
of researchers in CS promising approaches in a unified DC
programming framework to tackle various applications such
as routing, power control, congestion control of the Internet,
resource allocation in networks, etc.

1.1 Nonconvex optimization problems in CS

In terms of optimization, nonconvex problems appeared in
CS can be divided into three classes:

– minimizing a nonconvex function on a convex set;
– minimizing a convex/nonconvex function on a nonconvex
set;

– minimizing a convex/nonconvex function on a con-
vex/nonconvex set with integer variables.

The reader will see that these classes of nonconvex pro-
grams in CS can be formulated or reformulated as DC pro-
grams and solved by DCA.

1.2 Why DC programming and DCA?

DC programming is an extension of convex programming
which is sufficiently large to cover almost all nonconvex

optimization problems, but not much to still allow using
the arsenal of powerful tools in convex analysis and con-
vex optimization. DC programming and DCA constitute the
backbone of nonconvex programming and global optimiza-
tion. The use of DCA for solving nonconvex optimization
problems in CS is motivated by the following facts:

• DCA is a philosophy rather than an algorithm. For each
problem, we can design a family of DCA-based algo-
rithms.Theflexibility ofDCAon the choice ofDCdecom-
position offers DCA schemes having the potential to out-
perform standard methods.

• By exploiting the nice effect of DC decomposition of the
objective function we can build distributed algorithms.
This issue is very important in communication networks
that involve multi-users, in particular in the purpose of
personalized mobile services.

• Convex analysis provides powerful tools to prove the con-
vergence of DCA in a generic framework. Hence, any
DCA-based algorithm enjoys (at least) general conver-
gence properties of the generic DCA scheme that are
already available.

• DCA is an efficient, fast and scalable method for smooth/
nonsmooth nonconvex programming. To the best of our
knowledge, DCA is actually one of the rare algorithms
for nonsmooth nonconvex programming which allows to
solve large-scale DC programs. DCA was successfully
applied to a lot of different and various nonconvex opti-
mization problems to which it quite often gave global
solutions and proved to be more robust and more effi-
cient than related standard methods. In particular, DCA
has already efficiently solved large-scale DC programs in
network optimization (see [1,2,24–27,29–31,45–51,54]
and the list of references in [22] ).

Wewill show how to solve these three classes of problems
in CS by DC programming and DCA. For beginning, let us
give in Sect. 2, a brief introduction of DCA programming
and DCA. The solution methods of each class of problem
will be presented in Sects. 3, 4, and 5 where, in addition
to development of generic models and algorithms, methods
for typical applications in CS will be illustrated. In Sect. 6,
we mention another issue in CS for which DCA can also be
investigated. Section 7 concludes the paper.

2 DC programming and DCA

2.1 A brief introduction

We are working with the space X = R
n which is equipped

with the canonical inner product 〈·, ·〉 and the corresponding
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Euclidean norm ‖ · ‖, thus the dual space Y of X can be
identified with X itself. We follow [13,37], for definitions of
usual tools inmodern convex analysis, where functions could
take the infinite values +∞. A function θ : X → R∪ {+∞}
is said to be proper if it is not identically equal to +∞. The
effective domain of θ , denoted by dom θ , is

dom θ = {x ∈ X : θ(x) < +∞}.
The indicator function χC of a nonempty closed convex C
set is defined by χC (x) = 0 if x ∈ C,+∞ otherwise. The
set of all lower semicontinuous proper convex functions on
X is denoted by �0(X). Let θ ∈ �0(X), then the conjugate
function of θ , denoted θ∗, is defined by

θ∗(y) = sup{〈x, y〉 − θ(x) : x ∈ X}.
We have θ∗ ∈ �0(Y ) and θ∗∗ = θ .

Nonsmooth convex functions are handled using the con-
cept of subdifferentials. For θ ∈ �0(X) and x0 ∈ dom θ,

∂θ(x0) denotes the subdifferential of θ at x0, and is defined
by

∂θ(x0):={y ∈ Y : θ(x) ≥ θ(x0) + 〈x − x0, y〉, ∀x ∈ X}.
(1)

Each y ∈ ∂θ(x0) is called a subgradient of θ at x0. The
subdifferential ∂θ(x0) is a closed convex set in Y. It gener-
alizes the derivative in the sense that θ is differentiable at x0
if and only if ∂θ(x0) ≡ {∇θ(x0)}. Recall the well-known
properties related to subdifferential calculus of θ ∈ �0(X):

y0 ∈ ∂θ(x0) ⇔ x0 ∈ ∂θ∗(y0)⇔〈x0, y0〉 = θ(x0) + θ∗(y0);
(2)

∂θ∗(y0) = argmin{θ(x) − 〈x, y0〉 : x ∈ X}. (3)

A function θ ∈ �0(X) is said to be polyhedral convex if

θ(x) = max{〈ai , x〉 − βi : i = 1, . . . , m} + χC (x)∀x ∈ X,

where C is a nonempty polyhedral convex set in X .
A DC program is of the form

(Pdc) α = inf{ f (x) := g(x) − h(x) : x ∈ X}, (4)

with g, h ∈ �0 (X). Such a function f is called a DC func-
tion, and g − h, a DC decomposition of f , while the convex
functions g and h are DC components of f. In (Pdc) the
nonconvexity comes from the concavity of the function—
h (except the case h is affine since (Pdc) then is a convex
program). It should be noted that a convex constrained DC
program can be expressed in the form (4) by using the indi-
cator function on C , that is

inf{ f (x) := g(x) − h(x) : x ∈ C}
= inf{ϕ(x) − h(x) : x ∈ X},withϕ := g + χC .

Hence, throughout this paper, DC program of the form (4) is
referred to as “standard DC program”.

Polyhedral DC programs (Pdc) (i.e., when g or h are poly-
hedral convex) play a key role in nonconvex programming
(see [25,34,35] and references therein), and enjoy interesting
properties related to local optimality andDCA’s convergence.

The DC duality is based on the conjugate functions and
the fundamental characterization of a convex function θ ∈
�0(X) as the pointwise supremum of a collection of affine
minorants:

θ(x) = sup{〈x, y〉 − θ∗(y) : y ∈ Y }, ∀x ∈ X. (5)

That associates the primal DC program (4) (Pdc)with its dual
DC program (Ddc) defined by

(Ddc) α = inf{h∗(y) − g∗(y) : y ∈ Y }, (6)

and investigates their mutual relations. We observe the per-
fect symmetry between primal and dual DC programs: the
dual to (Ddc) is exactly (Pdc).

It is worth noting the wealth of the vector space DC(X) =
�0(X) − �0(X) spanned by the “convex cone” �0(X) [34,
35]: it containsmost realistic objective functions and is closed
under operations usually considered in optimization.

The complexity of DC programs resides, of course, in the
lack of verifiable globality conditions. Lets recall the general
local optimality conditions in DC programming (subdiffer-
ential’s inclusion): if x∗ is a local solution of (Pdc) then

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (7)

The condition (7) is also sufficient (for local optimality) in
many important classes of DC programs (see [34,35]).

A point x∗ is said to be a critical point of g—h (or gen-
eralized KKT point for (Pdc)) if

∂h(x∗) ∩ ∂g(x∗) �= ∅. (8)

Note that, by symmetry, the dual part of (7) and (8) are
trivial.

DC Programming and DCA were introduced by Pham
Dinh Tao in their preliminary form in 1985. These theoret-
ical and algorithmic tools are extensively developed by Le
Thi Hoai An and Pham Dinh Tao since 1994 to become now
classic and increasingly popular. DCA is a continuous pri-
mal dual subgradient approach based on local optimality and
duality in DC programming for solving standard DC pro-
grams (Pdc).

DCA’s philosophy

The key idea behind DCA is to replace in (Pdc), at the current
point xk , the second component h with its affine minorant
defined by

hk(x) := h(xk) + 〈x − xk, yk〉, yk ∈ ∂h(xk)
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to give birth to the primal convex program of the form

(Pk) inf{g(x) − hk(x) : x ∈ X}
⇐⇒ inf{g(x) − 〈x, yk〉 : x ∈ X}

whose solution set is ∂g∗(yk).The next iterate xk+1 is taken
in ∂g∗(yk).

Dually, a solution xk+1 of (Pk) is then used to define the
dual convex program (Dk+1) obtained from (Ddc) by replac-
ing g∗ with its affine minorant

(g∗)k(y) := g∗(yk) + 〈y − yk xk+1〉
to obtain the convex program

(Dk+1) inf{h∗(y) − [g∗(yk) + 〈y − yk, xk+1〉] : y ∈ Y }
⇔ inf{h∗(y) − 〈y, xk+1〉 : y ∈ Y }
whose solution set is ∂h(xk+1). The next iterate yk+1 is cho-
sen in ∂h(xk+1).

DCA scheme

Initialization: Let x0 ∈ R
n be a guess, k ← 0.

Repeat

– Calculate yk ∈ ∂h(xk)

– Calculate xk+1 ∈ ∂g∗(yk), which is equivalent to

xk+1 ∈ argmin{g(x) − 〈x, yk〉 : x ∈ R
n} (Pk)

– k ← k + 1

Until convergence of
{

xk
}
.

DCA’s convergence properties:

Convergence properties of DCA and its theoretical basis can
be found in [25,34,35]. For instance, it is important to men-
tion that

i) DCA is a descent method without linesearch but with
global convergence: the sequences {g(xk) − h(xk)} and
{h∗(yk) − g∗(yk)} are decreasing.

ii) If the optimal value α of problem (Pdc) is finite and
the infinite sequences {xk} and {yk} are bounded, then
every limit point x∗ (resp. y∗) of the sequence {xk} (resp.
{yk}) is a critical point of g − h (resp. h∗ − g∗), i.e.
∂h(x∗) ∩ ∂g(x∗) �= ∅ (resp. ∂h∗(y∗) ∩ ∂g∗(y∗) �= ∅).

iii) DCA has a linear convergence for DC programs.
iv) DCA has a finite convergence for polyhedral DC pro-

grams.

For a complete study of DC programming and DCA, the
reader is referred to [25,34,35] and the references therein.
Without going into details, let us mention the key properties
of DCA.

2.2 Key properties of DCA

a. Flexibility the construction of DCA is based on g and
h but not on f itself, and there are as many DCA as
there are DC decompositions. This is a crucial fact in DC
programming. It is important to study various equivalent
DC forms of a DC program, because each DC function f
has infinitely many DC decompositions which have cru-
cial implications for the qualities (speed of convergence,
robustness, efficiency, globality of computed solutions,
etc.) of DCA.

b. DCA is a descent method without linesearch, with global
convergence (i.e. DCAconverges from an arbitrary initial
point).

c. Return from DC programming to convex programming
DCA consists in an iterative approximation of a DC pro-
gram by a sequence of convex programs that will be
solved by appropriate convex optimization algorithms.
This property is called successive convex approximation
(SCA) in some recent works in CS.

d. Versatility With suitable DC decompositions DCA gen-
erates most standard algorithms in convex and noncon-
vex optimization. Hence DCA offers a wide framework
for solving convex/nonconvex optimization problems. In
particular, DCA is a global approach to convex program-
ming, i.e., it converges to optimal solutions of convex
programs reformulated as DC programs. Consequently,
it can be used to build efficient customized algorithms
for solving convex programs generated by DCA.

2.3 How to apply DCA for solving practical problems

It would be wrong to think that using DCA for solving a
practical problem is a simple procedure. Indeed, the generic
DCA scheme is an overall philosophical idea rather than a
single algorithm. There is not only one DCA but a family
of DCAs for a considered problem. While DC decomposi-
tions exist for a very large class of functions, there are no
general procedure for determining such DC decompositions.
The design of an efficient DCA for a concrete problem is
an art which should be based on theoretical tools and on its
special structure. It consists of the five steps :

a. Find a DC formulation of the considered optimization
problem: this can be done if the feasible domain C is
a convex set and the objective function f is DC, oth-
erwise we must use the approximation or reformulation
technique based on relevant theoretical tools.

b. Design a DCA scheme for (Pdc). This consists of i)
computing a subgradient of h and ii) solving the con-
vex program of the form (Pk). In the ideal case (what is
not always possible, especially for nondifferentiable DC
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programs) an optimal solution of (Pk) is explicitly deter-
mined, which corresponds to the explicit computation
of a subgradient of g∗. Otherwise one should find effi-
cient convex optimization algorithms suitably adapted to
(Pk)’s specific structures in order to save computation
time.

c. Search for “good” DC decompositions. If the computa-
tions in i) and ii) are not satisfactory (costly, computed
solutions by DCA are not sufficiently good, …) then one
has to findmore suitableDCdecomposition. That is a dif-
ficult issue and should be done by exploiting distinctive
features of the class of DC programs at hand. Here refor-
mulation techniques play a key role to obtain suitable
models. Reformulation techniques should be diversified
and have recourse to good mathematical backgrounds in
numerical analysis and optimization.

d. Search for “good” starting points. That can be done
by combining with other approaches (heuristic or local
search methods, solutions of convex relaxation problems
in global optimizationmethods). Another efficientway in
finding a convex minorant consists of the objective func-
tion on the feasible setC and solving the resulting convex
program whose solution is used to initialize DCA. This
strategy must be developed in depth and specifically, by
exploiting the structure of the problem (Pdc).

e. Globalize DCA : to guarantee globality of sought solu-
tions or to improve their quality it is advised to combine
DCA with global optimization techniques.

It goes without saying that the two steps (c) and (d) and
solution methods for convex programs (Pk) (if necessary)
constitute the key issues for successful applications of DC
programming and DCA.

We show below how to use DCA for solving the three
classes of nonconvex problems in CS.

3 Minimizing a nonconvex function under a convex
constraint set

The mathematical formulation of this class of problem is
given by

(P) inf{ f (x) : x ∈ C} (9)

where C ⊂ R
n is a closed nonempty convex set and

f is a nonconvex function on R
n . Many applications in

CS can be formulated in the form of (P) whose typical
examples are Network Utility Maximization (NUM) [9,30],
power control problem [2,6,48,54]), dynamic spectrumman-
agement in DSL systems [27,53] MIMO relay optimiza-
tion [15], sum-rate maximization, proportional-fairness and
max–min optimization of SISO/MISO/MIMO ad hoc net-
works [14,17,43,44].

We will consider two examples of applications of DCA
on NUM [30] and DSL [27]. Complete works on NUM and
power control using DCA can be found in [24,48,31].

3.1 Can one get a DC formulation for any problem
in this class?

The answer is “yes”, one can always formulate (P) as a stan-
dard DC program of the form (Pdc). In fact, as indicated
above, the vector spaceDC(X) contains most realistic objec-
tive functions. In the rare cases where f is not DC (for exam-
ple, when f is a discontinous function), one can approximate
f by a DC function or use reformulation techniques to get
an equivalent DC program.

3.2 Useful DC decompositions and corresponding DCA

To illustrate the way to construct DC decompositions and
design the resulting DCA, let us show the two useful DC
decompositions of the problem (P) in (9) and discuss on their
effectiveness.

Assume that there exists a nonnegative number η (resp. ρ)
such that the function 1

2η‖x‖2+ f (x) (resp. 12ρ‖x‖2− f (x))
is convex. We can now write (P) in the form of DC program
(Pdc) with, for example, two following DC decompositions:

g(x) := χC (x) + 1

2
η‖x‖2 + f (x); h(x) := 1

2
η‖x‖2

(10)

and

g(x) := χC (x) + 1

2
ρ‖x‖2; h(x) := 1

2
ρ‖x‖2 − f (x).

(11)

The DCA applied to (P) with decomposition (10) and/or
(11) can be described as follows.

Algorithm DCAP1 Let x0 be given in Rn . Set k ← 0.
Repeat

– Calculate xk+1 by solving the convex program

min

{
1

2
η‖x‖2 + f (x) − 〈x, ηxk〉 : x ∈ C

}
, (12)

– k ← k + 1

Until convergence of
{

xk
}
.

Algorithm DCAP2: Let x0 be given in R
n . Set k ← 0.

Repeat

– Calculate yk ∈ ∂
( 1
2ρ‖.‖2 − f (.))(xk

)
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– Calculate xk+1 by solving the convex program

min

{
1

2
ρ‖x‖2 − 〈x, yk〉 : x ∈ C

}
, (13)

i.e. xk+1 = ProjC (yk/ρ).

– k ← k + 1

Until convergence of
{

xk
}
.

Here, ProjC stands for the orthogonal projection on C .
As indicated above, we are greatly interested in the choice

of DC decompositions: what is “the best’ among (10) and
(11)? The answer depends on C and f . In fact, the perfor-
mance of the DCA depends upon that of the algorithm for
solving convex programs (12) and (13). For certain problems,
for example, box constrained quadratic programming and
ball constrained quadratic programming, Algorithm DCAP2
is greatly less expensive than Algorithm DCAP1, because
the orthogonal projection onto C in these cases is given in
explicit form (see for example [35]). In practice, when f
is differentiable and the computation of its gradient is not
difficult, and the projection on C can be inexpensively deter-
mined, the use of DCAP2 is very recommended.

For using the above DC decompositions the crucial ques-
tion is how to determine a nonnegative number η (resp. ρ)
such that the function 1

2η‖x‖2+ f (x) (resp. 12ρ‖x‖2− f (x))
is convex. In many practical problems such η and ρ exist and
can be computed according to the properties of the function
f . For example, when f is a smooth function with Lipschitz
continuous gradient ρ is nothing but the Lipschitz constant
of ∇ f.

3.3 DCA for network utility maximization

Network utility maximization (NUM) has many applications
in network rate allocation algorithms and Internet congestion
control protocols. Consider a communication network with
L links, each with a fixed capacity of cl bps, and S sources
(i.e., end users), each transmitting at a source rate of xs bps.
Each source s emits one flow, using a fixed set L(s) of links
in its path, and has a utility function Us(xs). Each link l is
shared by a set of sources denoted S(l), (the set of users using
link l). NUM, in its basic version, consists of maximizing the
total utility of the network

∑
s Us(xs) over the source rates

x , subject to linear flow constraints for all links l:

maximize
∑

s∈S
Us(xs)

s.t
∑

s∈S(l)

xs ≤ cl ∀l, xs ≥ 0 ∀s ∈ S, (14)

where S denotes the set of users. Here the vector variable is
x = (xs)s∈S∈RS and the constraint set is a well-defined

convex polytope. There are many nice properties of the
basic NUM model due to several simplifying assumptions
of the utility functions and flow constraints, which provide
the mathematical tractability of problem (14) but also limit
its applicability. In particular, the utility functions Us are
usually assumed to be concave increasing. In such a case,
the optimization problem (14) is a convex program, and so
far is easy to solve. In the past, maximization of concave
utility functions and the resulting distributed rate allocation
for elastic traffic have gained extensive attention. Based on
the concavity and continuity assumptions on utility functions
and the elasticity assumption on application traffic, rigorous
mathematical frameworks for standard price-based distrib-
uted algorithms have been investigated.

However, it is known that for many multimedia applica-
tions, user satisfaction may assume nonconcave shape as a
function of the allocated rate. Furthermore, in some other
models of utility functions, the concavity assumption on
Us(xs) is also related to the elasticity assumption on rate
demands by users. When demands for xs are not perfectly
elastic, Us(xs) may not be concave. In this case, the result-
ing NUM becomes nonconvex and significantly harder to be
analyzed and solved. Since inelastic flows with nonconcave
utility functions represent important applications in practice,
today solving the NUM problem with nonconcave utility
function is a challenge of the analysis and design of com-
munication systems by nonconvex optimization techniques.

As an illustrative example, we consider the NUM prob-
lemwith Sigmoidal-like utility functions [30] that are used in
many multimedia applications and Internet congestion con-
trol (for example, the utility for voice applications ismodeled
by a Sigmoidal function with a convex part at low rate and a
concave part at high rate). Other useful utility functions can
also be solved by DCA-based algorithms (see [24]).

Consider Sigmoidal utilities in a standard form:

Us(xs) = 1

1 + e−(as xs+bs )
,

where as > 0, bs < 0 and as, bs are integers. The Sig-
moidal function is neither convex nor concave, but it is DC
(difference of convex functions). Then the resulting NUM
problem is a DC program. We are going to present a DC
decomposition for the Sigmoidal function.

We have

Us(xs) = e(as xs+bs ) − e2(as xs+bs )

1 + e(as xs+bs )
.

It is easy to verify that the functions

hs(xs) := e(as xs+bs ) and gs(xs) := e2(as xs+bs )

1 + e(as xs+bs )

are convex (their derivative is increasing). Therefore, Us is a
DC function, and so is −Us .
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Let K be the set defined by the constraints of Problem
(14), say

K :=
⎧
⎨

⎩

∑

s∈S(l)

xs ≤ cl ∀l ∈ {1 . . . L} , xs ≥ 0 ∀s ∈ S
⎫
⎬

⎭

and denote by χK the indicator function on K . Then the
Sigmoidal NUM problem can be expressed as

max
x∈K

{

U (x) :=
∑

s∈S
Us(xs)

}

= −min
x∈K

{
∑

s∈S

e2(as xs+bs )

1 + e(as xs+bs )
− e(as xs+bs )

}

= −min {g(x) − h(x) : x ∈ K } where g(x)

:=
∑

s∈S
gs(xs), h(x) :=

∑

s∈S
hs(xs).

Since gs and hs are convex functions, the function g and h are
convex too (note also that g and h are differentiable). Hence
the Sigmoidal NUM problem is a DC program that can be
written in the standard form as

min
{
[χK (x) + g(x)] − h(x) : x ∈ R

S
}

. (15)

According to the general DCA scheme, applying DCA to
(15) amounts to computing two sequences {yk} and {xk} in
the way that

yk = ∇h(xk),

xk+1 ∈ argmin

{
[χK (x) + g(x)] − 〈x, yk〉 : x ∈ R

S
}
.

Hence the algorithm can be described as follows.

Algorithm: DCA for Sigmoidal utility maximization:

1. Choose x0 ∈ R
S as the initial point. Let ε > 0 be suffi-

ciently small, k ← 0.
2. Repeat
Set yk = (a1ea1xk

1+b1, . . . , aseas xk
1+b1).

Set xk+1 as an optimal solution of the convex program

min

{
∑

s∈S

e2(as xs+bs )

1 + e(as xs+bs )
− 〈x, yk〉 : x ∈ K

}

(16)

k ← k + 1
until ||xk+1 − xk || ≤ ε(1 + ||xk ||).
Note that the convex problem (16) can be distribut-

edly implemented using the Lagrangian dual decomposition
method as shown in [30].

3.4 Spectrum management problem (SMP)

Discrete multitone (DMT) [42] has been adopted as stan-
dard in various DSL applications such as asymmetric DSL
(ADSL) and more recently for very-high-bit-rate digital
subscriber line (VDSL) by International Telecommunica-
tion Union (ITU). For a sufficiently large number of sub-
carriers, DMT transmission over a frequency-selective fad-
ing channel can be modeled as a set of K parallel indepen-
dent flat-fading sub-carrier AWGN channels (Additive white
Gaussiannoise).Under thisGaussian assumption, the achiev-
able bit-loading rate of user n on tone k is

rn
k = log2

(

1 + 1

�

∣
∣gn,n

k

∣
∣2 pn

k
∑

m �=n

∣
∣gn,m

k

∣
∣2 pm

k + ωn
k

)

= log2

(

1 + 1

�

pn
k∑

m �=n hn,m
k pm

k + σ n
k

)

,

where pn
k denotes user n’s transmit power spectral density

(PSD) on tone k; ωn
k denotes user n’s transmit noise power

on tone k; gn,m
k is the channel path gain from user m to user n

on tone k; hn,m
k = |gn,m

k |2
|gn,n

k |2 is the normalized interference path

power gain from user m to user n on tone k ; σ n
k = ωn

k
|gn,n

k |2 is

the noise variance of user n on tone k, and � is the SNR-gap
to capacity. The data rate of user n is Rn = fs

∑K
k=1 rn

k ,

where fs is the DMT symbol rate.
The goal of spectrum management problem is to achieve

best possible user rates tradeoff among users in the network,
i.e., to find the boundary of rate region.Assume that each user
is subject to an individual total transmissionpower constraint.
One way to define the SMP in the literature is consider the
following optimization problem

max
p1,p2,...,pK

{
R1 : Rn ≥ Tn, ∀n ≥ 1;

∑

k

pn
k ≤ Pn,∀n, k;

pn
k ≤ pn,mask

k , ∀n, k

}
, (17)

where Tn is minimum target rates of user n and Pn is maxi-
mum total transmission power of user n. The SMP (17) aims
to maximize the rate of user 1 while guarantees the achiev-
able rates of other users higher than their required minimum
target rates Tn . Pn denotes the maximum total transmission
power of user n. Spectral mask constraints pn,mask

k may also
be applied if needed.

Among various Dynamic Spectrum Management (DSM)
techniques, centralized Optimal Spectrum Balancing (OSB)
achieves the maximum data rates by computing the optimal
PSDs (power spectral density) for all modems in DSL sys-
tems. The centralized algorithmbased ondual decomposition
forOSB, proposed in [3], decouples joint optimization across
all tones to make the problem solvable per-tone basis. If the
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rate region is convex (the assumption that the rate region is
convex is justified in [3] for two-user in DSL system, and the
same logic for two-user can be applied to justify the convex-
ity of rate region for multiple-user case), solving the prob-
lem (17) amounts to solving the following weighted sum rate
optimization problem [5]:

max
p1,...,pK

{ ∑

n

ωn Rn :
∑

k

pn
k ≤ Pn ∀n; 0 ≤ pn

k

≤ pn,mask
k ∀k, n

}
, (18)

where the weight for user 1,ω1, is set to unity, resulting in the
maximization of the rate of user 1; whereas ωn ≥ 0, n �= 1
can be adjusted to guarantee the target rate of user n. In [27],
we have investigated DC programming and DCA for solving
(18).

3.4.1 A nice DC formulation of SMP (18)

First, we write Problem (18) in the form of a minimization
program

min
p=(p1,...,pK )

{

f (p) := −
N∑

n=1

ωn Rn :
K∑

k=1

pn
k ≤ Pn ∀n;

0 ≤ pn
k ≤ pn,mask

k ∀k=1 . . . K , n=1 . . . N

}

.

(19)

A natural DC decomposition of f (easily deduced from the
definition of rn

k ) has been given in [27].However, as indicated
in [27], from numerical point of views, the DCA scheme
corresponding to this DC decomposition is not interesting
because it requires an iterative algorithm for solving a convex
program at each iteration. In an elegant way we introduced
in [27] a nice DC reformulation of the problem (19) (based
on the second DC decomposition discussed in Sect. 2) for
which the resulting DCA is explicitly determined via a very
simple formula. Such a DC decomposition of f is inspired
by the following result.

Theorem 1 There exists ρ > 0 such that the function

h(p) := 1

2
ρ||p||2 − f (p) (20)

is convex on C, the feasible set of (19), say C := {p ∈
R

K×N | ∑K
k=1 pn

k ≤ Pn, 0 ≤ pn
k ≤ pn,mask

k ∀n =
1, 2, . . . , N ; k = 1, 2, . . . , K }.
Proof See [27]. ��

Using the theorem above, we get the next DC decompo-
sition of f :

g(p) = 1

2
ρ||p||2, h(p) = 1

2
ρ||p||2 − f (p), (21)

and Problem (19) can be now written in the form

min{ f (p) := g(p) − h(p) | p ∈ C}
or again, in the standard form of DC program:

min{χC (x) + f (p) ) | p ∈ RN×K }.
Then, DCA apply to Problem (19) is described as follows.

DCA-SMP

Initialization: Let ε > 0 be given, p(0) ∈ C be an initial
point, set r := 0;

Repeat: set

q(r) = ∇h(p(r)) = ρ p(r) − ∇ f (p(r))

and calculate p(r+1) ∈ ∂(g+χC )∗(q(r)) by solving the linear
constrained quadratic program

min

{
1

2
ρ||p||2 − 〈p, q(r)〉|p ∈ C

}
(22)

Set r + 1 ← r
until either ||p(r+1)−p(r)|| ≤ ε(||p(r)||+1) or | f (p(r+1))

− f (p(r))| ≤ ε(| f (p(r))| + 1).

The advantage of the DC decomposition (21) is that the
resulting DCA-SMP requires, at each iteration, the compu-
tation of the projection of a point on the set C (having very
specific structure) forwhich efficient algorithms are available
(see [27]).

4 Nonconvex constraint set

A typical application of this class of problems is Internet
routing (see for example [5]).Mathematically, the nonconvex
constraint set is expressed as

E := {x ∈ C, fi (x) := gi (x) − hi (x) ≤ 0, i = 1, . . . , m}
where C is a closed nonempty convex set in R

n, gi , hi ∈
�0(R

n), i = 0, . . . , m, and fi (x) ≤ 0 are called DC con-
straints. The generic formulation of this class of problems
takes the form

α = inf { f0(x) := g0(x) − h0(x) : x ∈ E (Pdcg) (23)

where E is assumed to be nonempty.
This class of nonconvex programs (called general DC pro-

grams) is the most general in DC Programming and, a for-
tiori, more difficult to treat than that of standardDCprograms
(Pdc) because of the nonconvexity of the constraints. It is not
new and has been addressed in [34]. Its renewed interests is
due to the fact that this class appears, increasingly, in many
models of nonconvex variational approaches.

We can solve (Pdcg) byDCAvia penalty techniques. First,
we transform (Pdcg)-(23) into (Pdc) via penalty techniques
in DC programming.
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Let the functions p and p+ be defined by

p(x) := max{ fi (x) : i = 1, . . . , m};
I (x) := {i ∈ {1, . . . , m} : fi (x) = p(x)}
p+(x) := max{0, p(x)},
which are DC functions with the following DC decomposi-
tions (in case gi , hi are finite on C for i = 1, . . . , m,(see,
e.g., [34] ), obtained directly from those of fi , i = 1, . . . , m.

p(x) = max
i=1,...,m

⎧
⎨

⎩
gi (x) +

m∑

j=1, j �=i

h j (x)

⎫
⎬

⎭
−

m∑

j=1

h j (x)

(24)

p+(x) = max
i=1,...,m

⎧
⎨

⎩

m∑

j=1

h j (x), gi (x) +
m∑

j=1, j �=i

h j (x)

⎫
⎬

⎭

−
m∑

j=1

h j (x). (25)

The general DC program (Pdcg)-(23) can then be formu-
lated as

α = inf{ f0(x) := g0(x) − h0(x) : x ∈ C, p+(x) ≤ 0}
(26)

and its penalized is a standard DC program

α(τ) = inf{ϕτ (x) := f (x) + τp+(x) : x ∈ C}. (Pτ )

(27)

Let DC decompositions of f0 and p+ be given by

f0(x) = g0(x) − h0(x); (28)

p+(x) = p1(x) − p2(x), (29)

where g0, h0 , p1, p2 are convex functions defined on the
whole space. Then,we have the followingDCdecomposition
for ϕτ

ϕτ (x) = gτ (x) − hτ (x), (30)

where,

gτ (x):=g0(x) + τp1(x); hτ (x):=h0(x) + τp2(x). (31)

Exact penalty (relative the constraint p+(x) ≤ 0) for (26)
means that there is τ0 ≥ 0 such that for all τ > τ0 both
DC programs (Pdcg)-(23) and (Pτ )-(27) are equivalent in
the sense that α(τ) = α and (Pdcg)-(23) et (Pτ )-(27) have
the same (global) solution set. In this case, the solution of
(Pdcg)-(23) can be achieved by applying DCA to a standard
DC program (Pτ )-( 27) with τ > τ0.

Exact penalty techniques in DC programming have been
widely investigated in our works [25,28,34]. However, from
a computational point of view, an inconvenience of this exact
penalty method is that the penalty parameter is generally

unknown. Moreover, there are practical optimization prob-
lems for which the exact penalization is not satisfied. In [28],
we proposed to develop theDCA for solving general DC pro-
gram (Pdcg)-( 23) by using a penalty technique with updated
parameter.

The generalized DCA can be deduced from DCA as fol-
lows: instead of fixing the penalty parameter τ , DCA is
applied to the sequence of (Pτk )with an increasing sequence
of penalty parameters {τk} given by a updating rule from
the current iteration xk such that xk+1 is the next iteration
of DCA applied to (Pτk ) from xk . Our work consists in the
statement of appropriate updating rules for the sequence {τk}
and the refinement of constraint qualifications used, in order
to ensure global convergence (to a critical point of (Pdcg)-
(23)) and efficiency of DCA1. It is also important that the
sequence {τk} is constant after a certain rank. The penalty
introduced uses l∞- norm, but we can also consider the l1
-norm where q(x) := ∑m

i=1 f +
i (x) replaces p+(x).

Some other DCA-based algorithms for (Pdcg)-(23) have
been developed in [36].

5 Integer variables

Several applications in CS can be formulated as an optimiza-
tion problem with (mixed) integer variables. Here we men-
tion some classes of problems which have been successfully
solved by DCA.

5.1 Cross-layer optimization in multi-hop time division
multiple access (TDMA) networks

Efficient design of wireless networks is a challenging task
due to the interference nature of shared wireless medium.
Recently, the concept of cross-layer design has been inves-
tigated extensively. In [26,29] a cross-layer optimization
framework, i.e., joint rate control, routing, link scheduling
and power control for multi-hop TDMA networks, has been
considered. Particularly, we studied a centralized controller
that coordinates the routing process and transmissions of
links such that the network lifetime ismaximized [29] and the
quality of-service (QoS) constraints on the minimum source
rates are satisfied.Alternatively, the energy consumption is an
important design criterion for a multi-hop wireless network.
In [26], we considered the energy minimization-based cross-
layer design problem.Wewill show below that the aforemen-
tioned problems can be formulated as mixed integer-linear
programs (MILP) and then efficiently solved by DCA.

In the considered TDMA network, time is partitioned into
fixed-length frames, and each frame is further divided into J
time slots with unit duration. Since the resource allocation is
the same in all frames, we concentrate our design on a single
frame. A node may need to transmit in one or more slots for
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its own traffic and/or relay traffic from other nodes. If a node
transmits in a slot, while its transmission power can be varied
from [0, Pmax], its transmission rate is fixed at a unit rate. In
the TDMA-based network, a channel is specified by two ele-
ments ( j, l), j ∈ J , l ∈ L, where J = {1, 2, . . . , J }. For
the channel, the resource allocation is denoted by (sl

j , Pl
j ),

where sl
j = 1 means link l is active at slot j while sl

j = 0

otherwise, and Pl
j > 0 denotes the transmission power of

link l at slot j if sl
j = 1, Pl

j = 0 otherwise.
At each node, the difference of its outgoing traffic and its

incoming traffic should be the traffic generated by itself, i.e.,

∑

l∈O(n)

J∑

j=1

sl
j −

∑

l∈I(n)

J∑

j=1

sl
j = rn, n ∈ N (32)

whereO(n) and I(n) are the set of outgoing links and incom-
ing links at node n, respectively. The values of sn for the
non-source nodes are set to zero, or equivalently all the traf-
fic entering such nodes must be routed.

The energy consumption at node n ∈ N can be written as

En =
∑

l∈O(n)

J∑

j=1

Pl
j +

∑

l∈O(n)

J∑

j=1

εl s
l
j

+
∑

l∈I(n)

J∑

j=1

εl s
l
j , n ∈ N (33)

where εl and εl denote the energy needed to transmit and
receive a unit of traffic over link l, respectively. Note that
εl , εl include the energy consumed by the signal processing
blocks at the link ends.

Interference Model
Wireless channel is a shared medium and interference-
limited where links contend with each other for chan-
nel use. Moreover, interference relations among the nodes
and/or links can be modeled in various ways, for example,
by using the signal-to-interference-plus-noise-ratio (SINR)-
based model [32,52]. Specifically, if the link l ∈ L is active
at slot j (i.e., sl

j = 1), the following inequality should hold
so as to guarantee the transmission quality of the link

SINRl
j = Pl

j hll
∑

k �=l Pk
j hkl + ηl

≥ γ th (34)

where SINRl
j is the SINR for link l at slot j , hkl is the path

gain from the transmitter of link k to the receiver of link l , ηl

is the noise power at receiver of link l, and γ th is the required
SINR threshold for accurate information transmission.

We assume that all wireless nodes are low-mobility
devices and/or the topologyof the network is static or changes
slowly allowing enough time for computing the new sched-
uler. An example of such networks is a wireless sensor net-
work for environmental monitoring with fixed sensor loca-

tions. In this case, the need for distributed implementation is
not necessary.

From the preceding discussions, the energyminimization-
based cross-layer design, i.e., joint rate control, routing, link
scheduling, and power allocation problem can be mathemat-
ically formulated as

min
rn ,Pl

j , sl
j

∑

n∈N
En (35a)

subject to:

∑

l∈O(n)

J∑

j=1

sl
j −

∑

l∈I(n)

J∑

j=1

sl
j = rn, n ∈ N (35b)

rn ≥ rmin
n , n ∈ N (35c)

∑

l∈I(n̂)

J∑

j=1

sl
j =

∑

n∈N
rn (35d)

∑

l∈O(n)

sl
j +

∑

l∈I(n)

sl
j ≤ 1, ∀n ∈ {N ∪ n̂}, j=1, . . . , J

(35e)

hll Pl
j ≥ γ th

∑

k �=l

Pk
j hkl + γ thηl + D(sl

j − 1),

∀l ∈ L, j = 1, . . . , J (35f)

0 ≤ Pl
j ≤ Pmaxsl

j , ∀l ∈ L, j = 1, . . . , J (35g)

sl
j ∈ {0, 1}, ∀l ∈ L, j = 1, . . . , J (35h)

where n̂ denotes the common sink node for all data gen-
erated in the network, D is a very large positive constant.
The objective function is the energy consumption in the net-
work.1 Constraints (35b) ensure that the data generated by
source nodes are routed properly. Constraints (35c ) guaran-
tee that the rate for each node is no less than a minimum rate.
The minimum rates are possibly different for nodes and are
usually determined by the network QoS. Nodes which do not
generate traffic have rn = rmin

n = 0. Constraint (35d) is the
flow conservation at the traffic destination for all the sources.
Constraints (35e) state that a node can not receive and trans-
mit simultaneously in one particular time slot. Constraints
(35f) make sure the SINR requirement is met: if a link l is
active in time slot j , then the SINR at receiver of link l must
be larger than the given threshold γ th which also depends on
the system implementation. Constraint (35f) is automatically
satisfied if link l is not scheduled in time slot j . Constraint
(35g) states that if a link l is scheduled for time slot j , i.e.,
sl

j = 1 , then the corresponding power value Pl
j must be less

than Pmax. Otherwise, Pl
j obviously equals to zero. We also

impose binary integer constraints on sl
j .

It can be seen that the cross-layer optimization problem
(35a)–(35h) belongs to a class of well-known mixed-integer

1 The traffic sink node consumes a fixed amount of energy within a
frame for receiving data.
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linear programs (MILPs). The combinatorial nature of the
optimization (35a)–(35h) is not surprising and it has been
shown in some previousworks, albeit with different objective
functions and formulations [7,32,52]. Theoretically, MILPs
are NP-hard which is clearly inviable for practical scenarios
when the dimension is large. It has been shown in [26] that,
at optimality, the source rate constraints (35c) must be met
with equalities for all sources.

Note that by considering (35a), one aims to minimize the
total energy consumption, itmay cause someparticular nodes
spendingmore energy than the other nodes, and thus, running
out of energy quicker. Therefore, equal energy distribution
among nodes is not optimal. Another design objective which
may help to prevent such situation is as follows

min
rn ,Pl

j , sl
j

max
n∈N

En (36a)

subject to: The constraints (35b)–(35h). (36b)

The optimization problem (36a)–(36b) aims at minimizing
themaximumenergy consumed at nodes(s). As a result,more
nodes are likely to be involved in the routing algorithm, i.e.,
relaying information for other nodes. For simplicity, the opti-
mization problem (35a)–(35h) is often considered in the lit-
erature.

The cross-layer optimization problem (35a)–(35h) has
worst case exponential complexity when BnB methods are
used to compute the solution. Moreover, when modeling
practical networks and depending on the number of links,
nodes and time slots, problem with large sizes may arise. As
a result, it is extremely difficult to schedule links optimally.
Most research in literature is based on heuristic at the cost of
performance degradation, for example, see [7,8,52]. In [26] ,
we investigated a DCA scheme to solve the mixed 0–1 linear
program (35a)–(35h) efficiently.

The network lifetime maximization problem [29] is sim-
ilar to (35a)–(35h) in which (35a) is replaced by network
lifetime maximization.

5.2 Quality of service (QoS) routing problems

TheUnicast (resp.Multicast) QoS routing emphasizes to find
paths (resp. a set of paths) from a source node to a destina-
tion node (resp. a set of destination nodes) satisfying the QoS
requirements. The Routing problems become more complex
as far as we consider mobile networks or hybrid networks,
because of dynamic topology and real time routing proce-
dure. As an example, we consider a scenario in Multicast
routing problem, such as we are staying in a car parking
place. The mobile services are provided in each moving car,
equippedwith amobile device, via a car service center likes in
the car parking place. There are m cars sending their requests
to a mobile car service center, they need help to find the route

to go to their destinations under the travel time constraint, the
less latency traffic jam, the jitter time delay constraint, the
travel cost (same sources, different destinations, considering
local constraints to each mobile vehicle). Therefore, based
on the temporary update data of the network state, the mobile
car service system has to calculate the route and given the
answer for each car in a few seconds. In this context, we
need a centralized and efficient algorithm to calculate the
routes.

The problem of finding a path in network with multiple
constraints (the MCP problem) is NP-complete. We refor-
mulated the MCP [46] and MCOP (multi-constrained opti-
mal path problem) [47,51] problem as Binary Integer Linear
Programs (BILP) and investigated DCA-based algorithms
for solving them. The DCA is fast and furnished an opti-
mal solution in almost all cases, and a near-optimal solution
in the remaining cases. For large scale problems we inves-
tigated the proximal decomposition technique to solve con-
vex subprograms at each iteration of DCA. Computational
results show that this approach is efficient, especially for
large-scale settings where the powerful CPLEX fails to be
applicable.

5.3 The partitioning-hub location-routing problem

The Partitioning-Hub Location-Routing Problem (PHLRP)
is a hub location problem involving graph partitioning and
routing features. PHLRP consists of partitioning a given net-
work into sub-networks, locating at least one hub in each
sub-network and routing the traffic within the network at
minimum cost. There are various important applications of
PHLRP, such as the deployment of network routing proto-
col problems and the planning of freight distribution prob-
lems. In [50]we formulated this problem as anBinary Integer
Linear Programming (BILP) and then investigate DCA for
solving it. Preliminary numerical results are compared with
the well-known commercial solver CPLEX, they show the
efficiency and the superiority of DCA.

5.4 The car pooling problem

Car pooling is a well-known transport solution that consists
of sharing a car between a driver and passengers sharing the
same route, or part of it. The challenge is to minimize both
the number of required cars and the additional cost in terms
of time for the drivers. To solve the problem, several tasks
should be performed: choosing drivers and passengers, allo-
cating passengers to cars, computing an optimal route for
the cars. As such, the car pooling transport problem may
be described as some kind of fleet management problem. In
[49], we formulated this problem as a Mixed Integer Lin-
ear Program for which DCA has been efficiently applied. In
order to globally solve the problem, we combine DCA with

123



26 Vietnam J Comput Sci (2014) 1:15–28

classical Branch and Bound algorithm. DCA is used to cal-
culate upper bound while lower bound is obtained from a
linear relaxation problem. Preliminary numerical results are
compared with CPLEX. They show the efficiency and the
superiority of DCA-based algorithms.

5.5 The minimum m-dominating set problem

Let G = (V, E) be a graph, where V is the set of nodes and
E is the set of edges ofG. A dominating set D of a graphG =
(V, E) is a subset of nodes D ⊆ V such that every vertex
not in D is joined to at least one member of D by some edge.
The domination number γ (G) is the number of vertices in a
smallest dominating set for G. The dominating set problem
is a classical NP-complete decision problem [10] and has
various applications in CS. A classical network application
for this problemwould be to choose a set of locations to install
relay antennas. In ad hoc networks, creating a dominating
set is a way to organize the network and is generally used as
a first step for generating a connected dominating set [11].
This problem is formulated as a BILP for which DCA is
investigated in [39]. Numerical results show that the DCA is
efficient even for very large instances of problem. Moreover,
our algorithm obtained better solution in significantly less
time than CPLEX.

In a general framework, we show below how to solve opti-
mization problems with integer variables by DCA.

5.6 From combinatorial optimization to DC programming:
reformulation

5.6.1 Mixed zero-one concave minimization programming
problem

Let D �= ∅ be a bounded polyhedral convex set in IRn and
let J ⊂ {1, . . . , n}.
min { f (x) : x ∈ D, xi ∈ {0, 1}, ∀i ∈ J } , (37)

where f is a finite concave function on D.
Let K := {x ∈ D : 0 ≤ xi ≤ 1, ∀i ∈ J } and define
p(x) = ∑

i∈J xi (1 − xi ). Clearly, p is a concave function
with nonnegative values on K and

{x ∈ D, xi ∈ {0, 1}} = {x ∈ K : p(x) = 0}
= {x ∈ K : p(x) ≤ 0}.

Hence (37) can be reformulated as (by Theorem below)

min { f (x) : x ∈ K , p(x) ≤ 0}
which is equivalent to, for any t > to

min { f (x) + tp(x) : x ∈ K } . (38)

Theorem 2 [23] Let K be a nonempty-bounded polyhedral
convex set in IRn and f, p be finite concave on K . Assume
the feasible set of (P) be nonempty and p be nonnegative on
K . Then there exists to ≥ 0 such that for every t > to the
following problems have the same solution sets:

(Pt ) α(t) = inf{ f (x) + tp(x) : x ∈ K },
(P) α = inf{ f (x) : x ∈ K , p(x) ≤ 0}.
Furthermore

(i) if the vertex set of K , denoted by V (K ), is contained in
{x ∈ K : p(x) ≤ 0}, then to = 0.

(ii) if V (K ) is not contained in {x ∈ K : p(x) ≤ 0}, then
to ≤ f (xo)−α(0)

S for every xo ∈ K , p(xo) ≤ 0, where
S := min {p(x) : x ∈ V (K ), p(x) > 0} .

DCA for solving (Pt )

(Pt ) α(t) = inf
x∈K

{ f (x) + tp(x)}
= inf

x∈IRn
{Ft (x) := χK (x) + f (x) + tp(x)} .

Assuming that a subgradient of − f is computable. One
DC decomposition of Ft can be chosen as

Ft (x) := g(x) − h(x) with g(x) := χK (x),

h(x) := − f (x) − tp(x). (39)

In this case, (Pt ) is a polyhedral DC program because χK is
a polyhedral convex function, and the general DCA scheme
becomes:

yk ∈ ∂(− f (xk) − tp(xk));
xk+1 ∈ argmin

{
−〈x, yk〉 : x ∈ K

}
. (40)

Besides the computation of subgradients of − f and set
∇(−p)(x) = ∑

i∈J (2xi − 1), the algorithm requires one
linear program at each iteration The convergence properties
can be stated as follows:

Theorem 3 i) DCA generates a finite sequence x1, . . . , xk∗

contained in V(K) such that f (xk+1) + tp(xk+1) ≤
f (xk) + tp(xk), p(xk+1) ≤ p(xk) for each k , and xk∗

is a critical point of g − h.
ii) If, in addition, h is differentiable at xk∗ , then xk∗ is actu-

ally a local minimizer to (Pt ).

iii) Let t > t1 := max

{
f (x)−α(0)

S : x ∈ V (K ) ∩

{x ∈ K : p(x) = 0}
}
. If at an iteration q one has

p(xq) = 0, then p(xk)=0 and f (xk+1) ≤ f (xk)∀k ≥ q.
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5.6.2 Extension cases

Based on new results related to exact penalty and error
bounds in DC programming [28], the same reformulation
technique via exact penalty can be used for

– Linear constrained mixed zero-one DC programming
problems.

– Linear constrained mixed integer DC programming prob-
lems.

6 Another issue: solving convex programs by DCA

Another issue which is also important in CS but were not
discussed in this paper is how to solve large-size convex
programs. Although convex programming has been studied
for about a century, an increasing amount of effort has been
put recently into developing fast and scalable algorithms to
deal with large scale problems. While some convex regular-
izations involve convex quadratic programs (QP) for which
standard QP solvers can be certainly used, many first-order
methods have been developed in the last years for large scale
convex problems. Since DC programming and DCA encom-
pass convex programming and convex programs can be recast
as (infinitely many) DC programs to which DCAs become
global, (i.e. providing optimal solutions), one can make use
of these theoretical and algorithmic tools to better reformu-
late and solve convex programs.

7 Conclusion

We have presented DC programming and DCA for modeling
and solving three challenging classes that covermost noncon-
vex programs in communication systems. These theoretical
and algorithmic tools have been outlined in an appropriate
way to make them understandable to the reader. They high-
light the distinctive features (flexibility, versatility, inexpen-
siveness, scalability, efficiency and globality) of DC pro-
gramming and DCA. It is desirable that our approaches will
help researchers and practitioners tackle efficiently their non-
convex programs, especially in the large-scale setting.
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