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Abstract One of the software engineering interests is qual-
ity assurance activities such as testing, verification and vali-
dation, fault tolerance and fault prediction. When any com-
pany does not have sufficient budget and time for testing the
entire application, a project manager can use some fault pre-
diction algorithms to identify the parts of the system that are
more defect prone. There are so many prediction approaches
in the field of software engineering such as test effort, secu-
rity and cost prediction. Since most of them do not have a
stable model, software fault prediction has been studied in
this paper based on different machine learning techniques
such as decision trees, decision tables, random forest, neural
network, Naive Bayes and distinctive classifiers of artificial
immune systems (AISs) such as artificial immune recogni-
tion system, CLONALG and Immunos. We use four public
NASA datasets to perform our experiment. These datasets are
different in size and number of defective data. Distinct para-
meters such as method-level metrics and two feature selection
approaches which are principal component analysis and cor-
relation based feature selection are used to evaluate the finest
performance among the others. According to this study, ran-
dom forest provides the best prediction performance for large
data sets and Naive Bayes is a trustable algorithm for small
data sets even when one of the feature selection techniques
is applied. Immunos99 performs well among AIS classifiers
when feature selection technique is applied, and AIRSParal-
lel performs better without any feature selection techniques.
The performance evaluation has been done based on three
different metrics such as area under receiver operating char-
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acteristic curve, probability of detection and probability of
false alarm. These three evaluation metrics could give the
reliable prediction criteria together.

Keywords Software fault prediction - Artificial immune
system - Machine learning - AISParallel - CSCA - Random
forest

1 Introduction

As today’s software grows rapidly in size and complexity,
the prediction of software reliability plays a crucial role in
software development process [1]. Software fault is an error
situation of the software system that is caused by explicit and
potential violation of security policies at runtime because of
wrong specification and inappropriate development of con-
figuration [2]. According to [3], analyzing and predicting
defects' are needed for three main purposes, firstly, for
assessing project progress and plan defect detection activ-
ities for the project manager. Secondly, for evaluating prod-
uct quality and finally for improving capability and assess-
ing process performance for process management. In fault
prediction, previous reported faulty data with the help of
distinct metrics identify the fault-prone modules. Important
information about location, number of faults and distribution
of defects are extracted to improve test efficiency and soft-
ware quality of the next version of the software. Two bene-
fits of software fault prediction are improvement of the test
process by focusing on fault-prone modules and by identifi-
cation the refactoring candidates that are predicted as fault-
prone [4]. Numbers of different methods were used for soft-
ware fault prediction such as genetic programming, decision

' Defects and faults have the same meaning in this paper.
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trees, neural network, distinctive Naive Bayes approaches,
fuzzy logic and artificial immune system (AIS) algorithms.
Almost all software fault prediction studies use metrics and
faulty data of previous software release to build fault predic-
tion models, which is called supervised learning approaches.

Supervised machine learning classifiers consist of two phases:

training and test phase; the result of training phase is a model
that is applied to the testing data to do some prediction [5].
There are some other methods like clustering, which could be
used when there are no previous available data; these methods
are known as unsupervised learning approaches. It should be
mentioned that some researchers like Koksal et al. [6] used
another classification for data mining methods, which are
famous as descriptive and predicative.

One of the main challenges in this area is how to get the
data. In some works like in [7], a specific company pro-
vides the data, so the results are not fully trustable. Before
2005, more than half of the researches have used non-public
datasets; however after that, with the help of PROMISE
repository, the usage of public datasets reached to half [8],
because the results are more reliable and not specific to a
particular company. According to [8], software fault predic-
tions are categorized based on several criteria such as metrics,
datasets and methods. According to the literatures, software
fault prediction models are built based on different set of met-
rics; method-level and class-level are two of the most impor-
tant ones. Method-level metrics are suitable for both proce-
dural and object-oriented programming style whereas class-
level metrics are extracted based on object-oriented notation.
It should be mentioned that compared to the other metrics,
the method-level metrics is still the most dominant metrics
prediction, followed by class-level metrics in fault predic-
tion research area and machine-learning algorithms. It has

been for many years that researchers work on different types
of algorithms based on machine learning, statistical meth-
ods and sometimes the combination of them. In this paper,
the experiments have been done on four NASA datasets with
different population size using two distinct feature selection
techniques that are principal component analysis (PCA) and
correlation-based feature selection (CFS). We have changed
the defect rates to identify what will be the effects on the
predicting results. The predictability accuracy has been inves-
tigated in this paper based on two different method-level
metrics, which are 21 and 37 static code attributes. The
algorithms in this study are decision tree (C4.5), random
forest, Naive Bayes, back propagation neural network, deci-
sion table and various types of AIS such as AIRS1, AIRS2,
AIRSParallel, Immunos], Immunos2, Immunos99, CLON-
ALG and clonal selection classification algorithm (CSCA).
Three different performance evaluation metrics were used,
area under receiver operating characteristic curve (AUC),
probability of detection (PD) and probability of false alarm
(PF), to give more reliable prediction analysis. Although we
calculated accuracy along with above metrics, it does not
have any impact on the evaluation process. Figure 1 shows
the research done in this study.

We conducted four different types of experiment to answer
six research questions in this paper. Research questions are
listed as follows:

RQ1: which of the machine learning algorithms performs
best on small and large datasets when 2 1-method-level
metrics is used?

RQ2: which of the AIS algorithms performs best on small
and large datasets when 21-method-level metrics is
used?

Fig. 1 The studies done in this

paper IM=10

2: All=37
: Partial = 21

7: for data in DATAS

8: for fst in FST

9 data’ = fst(data)
10: foriinltoM
11: tests = bin[i]

# 37 method-level

3 # 21 method-level

4: DATAS = (CM1, KC1, JM1, PC3)

5: FST = (PCA or CFS) # feature selection techniques

6: LEARNERS = (J48, RF, NB, NN (back propagation), Decision Table, AIRSI, AIRS2,
AIRSParallel, Immunos1, Immunos2, Immunos99, CLONALG, CSCA)

12: trainingdata = data’ - tests

13: for learners in LEARNERS

14: METHOD = (cfs learner)

15: Predictor = learner (trainingdata)

16: RESULT (METHOD) = apply predictors to test

@ Springer



Vietnam J Comput Sci (2014) 1:79-95

81

RQ3: which of the machine learning algorithms performs
best on small and large datasets when 37-method-level
metrics is used?

RQ4: which of the machine learning algorithms performs

best on small and large datasets when PCA and CFS

applied on 21-method-level metrics?

which of the AIS algorithms performs best on small

and large datasets when PCA and CFS applied on 21-

method-level metrics?

RQ6: which of the machine learning algorithms performs
best and worst on CM1 public dataset when the rate
on defected data is doubled manually?

RQ5:

The experiment 1 answered research question 1 (RQI)
and research question 2 (RQ2). Experiment 2 responded to
research question 3 (RQ3). Experiment 3 shows the differ-
ence between the results obtained when no feature selection
techniques were used. This experiment answered the research
question 4 and 5. Finally, in experiment 4, to answer the
last question, we doubled the defect rate of CM1 dataset to
see whether it has any effect on the prediction model perfor-
mances or not. This paper is organized as follows: the follow-
ing section presents the related work. Section 3 explains dif-
ferent classifiers in AIS with its advantages and drawbacks.
The feature selection and some of its methods are reviewed
in Sect. 4. Experimental description and study analysis are
described in Sects. 5 and 6, respectively, and finally Sect. 7
would be the results.

2 Related works

According to Catal [9], software fault prediction became one
of the noteworthy research topics since 1990, and the number
of research papers is almost doubled until year 2009. Many
different techniques were used for software fault prediction
such as genetic programming [10], decision trees [11] neural
network [12], Naive Bayes [13], case-based reasoning [14],
fuzzy logic [15] and the artificial immune recognition system
algorithms in [16—18]. Menzies et al. [13] have conducted an
experiment based on public NASA datasets using several
data mining algorithms and evaluated the results using prob-
ability of detection, probability of false alarm and balance
parameter. They used log-transformation with Info-Gain fil-
ters before applying the algorithms and they claimed that
fault prediction using Naive Bayes performed better than
the J48 algorithm. They also argued that since some mod-
els with low precision performed well, using it as a reliable
parameter for performance evaluation is not recommended.
Although Zhang et al. [19] criticized the paper but Menzies
et al. defended their claim in [20]. Koru and Liu [21] have
applied the J48, K-Star and random forest algorithms on pub-
lic NASA datasets to construct fault prediction model based
on 21 method-level. They used F-measures as an evaluation

performance metrics. Shafi et al. [22] used two other datasets
from PROMISE repository, JEditData and AR3; they applied
30 different techniques on them, and showed that classifi-
cation via regression and locally weighted learning (LWL)
are better than the other techniques; they chose precision,
recall and accuracy as an evaluation performance metrics.
Catal and Diri [4] have used some machine learning tech-
niques like random forest; they also applied artificial immune
recognition on five NASA datasets and used accuracy and
area under receiver operating characteristic curves as eval-
uation metrics. Turhan and Bener have used probability of
detection, probability of false alarm and balance parame-
ter [9,23]; the results indicate that independence assump-
tion in Naive Bayes algorithm is not detrimental with prin-
cipal component analysis (PCA) pre-processing. Alsmadi
and Najadat [24] have developed the prediction algorithm
based on studying statistics of the whole dataset and each
attributes; they proposed a technique to evaluate the corre-
lation between numerical values and categorical variables of
fault prone dataset to automatically predict faulty modules
based on software metrics. Parvinder et al. [25] claimed that,
the prediction of different level of severity or impact of faults
in object oriented software systems with noise can be done
satisfactory using density-based spatial clustering; they used
KCI1 from NASA public dataset. Burak et al. [26] analyzed
25 projects of the largest GSM operator in Turkey, Turk-
cell to predict defect before the testing phase, they used a
defect prediction model that is based on static code attributes
like lines of code, Halstead and McCabe. They suggested
that at least 70 % of the defects can be detected by inspect-
ing only 6 % of the code using a Naive Bayes model and
3 % of the code using call graph-based ranking (CGBR)
framework.

3 Artificial immune system

In late 1990, a new artificial intelligence branch that was
called AIS was introduced. AIS is a technique to the scene
of biological inspired computation and artificial intelligence
based on the metaphor and abstraction from theoretical and
empirical knowledge of the mammalian immune system. The
immune system is known to be distributed in terms of con-
trol, parallel in terms of operation, and adaptive in terms of
functions, all the features of which are desirable for solving
complex or intractable problems faced in the field of artificial
intelligence [27].

AISs embody the principles and advantages of vertebrate
immune system. The AIS has been used in intrusion detec-
tion, classification, optimization, clustering and search prob-
lems [4].

In the AIS, the components are artificial cells or agents
which flow through a computer network and process several
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Fig. 2 The activity diagram of Introduction

AIRS algorithm

-Dataset Normalization
-Algorithm preparation
-Affinity threshold calculation

Antigen Training

-Affinity best match from memory pool
-Best match is added in ARB pool
-Generate mutate and add clone to ARB

tasks to identify and prevent attacks from intrusions. There-
fore, the artificial cells are equipped with the same attributes
as the human immune system. The artificial cells try to model
the behavior of the immune-cells of the human immune sys-
tem. Network security, optimization problems and distrib-
uted computing are some of the AIS’s applications.

There are several classifiers available based on AIS para-
digm, some of them are as follows: AIRS, CLONALG, and
IMMUNOSSI, each one of them is reviewed in the following
subsections.

3.1 Artificial intelligence recognition system (AIRS)

Artificial intelligence recognition system is one of the first
AIS techniques designed specifically and applied to classi-
fication problems. It is a novel immune inspired supervised
learning algorithm [28,29].

AIRS has five steps: initialization, antigen training, com-
petition for limited resources, memory cell selection and clas-
sification [4,27]. These five steps are summarized in Fig. 2.

First, the dataset is normalized, and then based on the
Euclidian formula distances between antigens, which is
called affinity, are calculated. Affinity threshold that is the
user-defined value is calculated. Antibodies that are present
in the memory pool are stimulated with a specific infected
antigen, and the stimulated value is assigned to each cell.
The cell, which has the highest stimulation value, is chosen
as the finest memory cell. Afterwards, the best match from
the memory pool is selected and added to the artificial recog-
nition ball (ARB) pool. This pool contains both antigen and
antibodies with their stimulation value along with some other
information related to them. Next, the numbers of clones are
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Fig. 3 The activity diagram of AIRS algorithm based on [27]

calculated and cloning starts. These clones are also added to
the ARB pool. After that, competition for the finite resources
begins. Again, ARB pool is stimulated with the antigens,
and limited resources are assigned to them based on derived
stimulation values. This is a recursive task until the stopping
condition happens that is, if the stimulation level between
ARB and antigen is less than the affinity threshold, it stops;
otherwise, it goes on. After that, the ARB with the highest
stimulation value is selected as a candidate to be a memory
cell. The stimulation value is compared to the best previous
matching value, if it is better; it is going to be replaced by the
old one. Another explanation of the AIRS is shown in Fig. 3
and is described completely in [27].

In a simple word, each input vector is a representative of
an antigen, and all attributes of this vector are the epitope
of the antigens, which is recognizable by the antibodies. So
each antigen with M epitope is like Ag = [epy, ep,, eps, . - .].



Vietnam J Comput Sci (2014) 1:79-95

83

For each epitope, one antibody is considered (Ab). The
affinity between each pair of epitope of each antigen and
antibody is calculated in Egs. 1 and 2 as follows:

n

dist="| > (v1; — v2;)? (1)
i=1

Affinity = 1 — dist (Abg, ep;) 2)

AIRSv1 is the first version of this algorithm. AIRSv1 (AIRS1)
treats the ARB pool as a persistent resource during the entire
training process whereas ARB pool is used as a temporary
resource for each antigen in AIRSv2 (AIRS2). In another
word, ARB’s leftovers for past antigens from the previous
ARB refinement step are maintained and are participated in
a competition for limited resources. According to [28] this
cause more time spending in rewarding and refining ARBs
that belong to the same class of the antigen in question. In
order to solve this problem, a user defined stimulation value
is raised in AIRS2 and only clones of the same class as the
antigen are considered in ARB pool. The other difference
between these two algorithms is how mutation is done. In
AIRS1, the mutate rate is a user defined parameter and shows
the mutate degree for producing a clone; mutate rate is simply
replaced with normalized randomly generated value. Mutate
rate in AIRS?2 is identified as proportional to its affinity to
antigen in question. This approach performs a better search
when there is a tight affinity. Both AIRS1 and AIRS2 show
similar accuracy performance behavior except that, AIRS2
is a simpler algorithm and is also show better generalization
capability in terms of improved data reduction of the training
dataset [4,27]. Watkins [29] introduced the parallel imple-
mentation in 2005. The model shows the distributed nature
and parallel processing attributes exhibited in mammalian
immune system. The approach is simple and we have to add
the following step to the standard AIRS training schema. If
the dataset is not partitioned too widely, then the training
speed is observable. AIRS Parallel have the following steps
[4,27,29]:

Divide the training dataset into np? partitions.

Allocate training partitions to processes.

Combine np number of memory pools.

Use a merging approach to create the combined memory
pool.

Acceptance of continuous and nominal variables, capacity
to learn and recall large numbers of patterns, experienced-
based learning, supervised learning, classification accuracy,
user parameter and the ability to predict the training times are
some of the design goals that could be noted for an AIRS-like
supervised learning system.

2 pp is the number of partitions.

3.2 CLONALG

The theory specifies that the organism has a pre-existing pool
of heterogeneous antibodies that can recognize all antigens
with some level of specificity [30].

As you may see in Fig. 4, when matching occurs, the can-
didate cell undergoes mitosis and produces B lymphoblast
that could be one of the following:

e Plasma cell that produces antibody as an effector of the
immune response.
e Long-lived memory cell, in case a similar antigen appears.

CLONal selection ALGorithm is inspired by the clonal
selection theory of acquired immunity, previously known as
CSA. A new clonal selection inspired classification algorithm
is called CSCA.

CLONALG inspires some features from clonal selection
theory, which is mentioned above. The goal here is to develop
a memory pool containing best antigen matching antibodies
that represent a solution to engineering problems.

The algorithm provides two searching mechanism for the
desired final pool of memory antibodies. These two are noted
in [30] as follows:

e Local search, provided via affinity maturation of cloned
antibodies. More clones are produced for better-matched
antibodies.

e A search that provides a global scope and involves the
insertion of randomly generated antibodies to be inserted
into the population to further increase the diversity and
provide a means for potentially escaping local optima.

Figure 5 shows an algorithm based on GLONALG The-
ory. A CLONALG technique has a lower complexity and
smaller number of user parameters compared to other AIS
systems such as AIRS [31]. CLONALG algorithm is mainly
used in three engineering problem domains: pattern recogni-
tion, function optimization and combinatorial optimization
[30].

Parallel CLONALG works like a distributed system. The
problem is divided into number of processes. The task of
each one is preparation of themselves as antigen pools. After
completion, all results will be sent to the root and the memory
pool forms based on the combination of them.

There are some other classifications based on clonal selec-
tion algorithms such as CLONCLAS (CLONal selection
algorithm for CLASsification) which is mostly used in char-
acter recognition. Here, there is a concept called class that
contains an antibody and the antigen exposed to a class of
specific antibody.

To improve and maximize the accuracy of the classifica-
tion and also minimize the wrong classification, CSCA came
to the picture. CSCA or clonal selection classifier algorithm
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Fig. 4 The simple overview of
the clonal selection process,
image taken from [32]
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Fig. 5 Overview of the
CLONALG algorithm

1:Prepare an antibody pool of size N; call it AB, which consist of two different areas, represent-

atives of the solution section (m), and introducing additional diversity into the system sec-

tion (7).

2: For (i=1 toi<= G (user defined variable) )

AFF;€ calculate affinity (based on Hamming Distance)
Select n antibodies from AFF that has the highest affinity with Ag;

j selections for each antibody

CLset< mutate CLset affinity maturation based on thelr parent’s affinity

CAN< the d number of Antibodies (Ab) with the highest affinity in CLset
If CAN ~affinity > stimulated Antigen in m then swap (m, CAN))

3: Ag;< arandom antigen is selected from antigen pool
4: Ag;is shownto AB
5: For(j=1toj<=N)
6:
7:
8: CLset< cloning takes place based on step (7) AFF;
9:
10: CLset members are exposed to Ag;
11: For (k=1 to k <= CLset.length)
12: Affy € calculate affinity
13:
14:
15:

Swap ( d number of remaining 4bs in section r of the AB, new random antibodies

16: Finish, the memory m component of the antigen pool is taken as the algorithm solution

has four distinct steps, which is started with Initialization like
every other AIS algorithm followed by repetition (loop) of
Selection and Pruning, Cloning and Mutation and Insertion
until the stopping point, and at the end it has Final Pruning
and Classification.

In Initialization step, an antibody pool is created based on
randomly selected antigen which has size S. In loop phase,
there is a Selection and Pruning step that shows and scor-
ing the antibody pool to each antigen set, which could be
either correct classification score or misclassification score.
After that selection rules are applied, antibodies with a mis-
classification score of zero are eliminated or antibodies with

@ Springer

the fitness scoring of less than epsilon are removed from the
chosen set and from the original antibody set as well. After
that, all remaining antibodies in the selected set are cloned,
mutated, and inserted to the main antibody set. When the
loop condition is fulfilled, the Final Pruning step starts which
exposes the final antibodies set to each antigen and calculates
fitness scoring exactly like the loop step. Finally, the set of
exemplar is ready in antibody set, so in case of any unclassi-
fied data instances that are exposed to the antibodies set, the
affinities between each matches are calculated and selected
and according to this result, unclassified data set could be
classified. Figure 6 shows the CSCA steps.
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Initialize antibody —+
Pool to size S Selection &
* Pruning
Run algorithm for - *
G generations 3
Cloning &
* Mutation
Run final pruning *
Rule set
* Clones & New Anti-
body Insertion
The final pool as
classifier

Fig. 6 Overview of the CSCA algorithm taken from [30]

3.3 Immunos81

Most of the issues that described in AIS are close to bio-
logical metaphor but the goal for Immunos81 is to reduce
this part and focus on the practical application. Some of the
terminologies are listed as below:

e T-Cell, both partitioning learned information and decisions
about how new information is exposed to the system are

Fig. 7 Generalized version of (

the Immunos81 training scheme Collect all

Training data

v

the duty of this cell, each specific antigen has a T-Cell, and
it has one or more groups of B-Cells.

e B-Cell, there is an instance of a group of antigens.

e Antigen, this is a defect; it has a data vector of attributes
where the nature of each attribute like name and data type
is known.

e Antigen-Type, depends on the domain, antigens are iden-
tified by their names and series of attributes, which is a
duty of T-Cell.

e Antigen group/clone based on the antigen’s type or a spe-
cific classification label forms a group that is called clone
of B-Cell and as mentioned above, are controlled by a
T-Cell.

e The recognition part of the antibody is called paratope,
which is bound to the specific part of the antigen, epitopes
(attributes of the antigen).

This algorithm has three main steps: initialization, training
and classification [33]; the general idea behind the Immu-
nos81 is shown in Fig. 7.

To calculate the affinity values for each paratope across all
B-Cells, Eq. 3 is used, p; is the paratope affinity for the ith
paratope, k is a scale factor and S is total number of B-Cell,

v
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jth B-Cell affinity in a clone set is shown by q;.

j=1
pa; =k - Zaj 3)
S

There is another concept called Avidity, which is sum of
affinity values scaled both by the size of the clone population
and additional scale parameter, according to Eq. 4, ca is a
clone avidity for the ith, k; defines by user, N is the total
paratopes and total number of B-Cells in the ith clone set is
shown by S;.

=1
ca; =koi - [ D paj |- Si )
N

There are two basic implementations for Immunos§ that are
known as naive immunos algorithms; they are called,
Immunos! and Immunos2. There is no data reduction in
Immunosl, and it is similar to the k-nearest neighbors. The
primary difference is obviously that the training population
is partitioned and £ is set to one for each partition; multiple-
problem support can be provided with simpler mechanism
that uses classifier for each problem, and each classifier has
its own management mechanism. The Immunos2 implemen-
tation is the same as Immunos1 only seeks to provide some
form of primary generalization via data reduction, so the
closer representation to basic Immunos [33].

Immunos99 could be identified as a combination of Immu-
nos81 and CSCA which some user-defined parameters are
either fixed or removed from the CSCA. Immunos99 is very
different from the AIR classifiers such as AIRS and CLON-
ALG; they all do competition in a training phase so the size
of the group set has some affection on affinity and avid-
ity calculation. There is another distinguishing point also;
there is a single exposure to the training set (only in CLON-
ALG).

As mentioned before, there is a classification called
antigen-group and antigen-type. If the algorithm could iden-
tify some groups of B-Cell that are able to identify a specific
type of antigens which these antigens might be also in differ-
ent forms, then we can conclude that, how well any B-Cells
could respond to its designed class of antigens compared to
any other classes. The training step is composed of four basic
levels; first data is divided into antigen-groups, and then the
B-Cell population is set for each antigen-group (same as the
immunos). For user, defined number of times, the B-Cell is
shown to the antigens from all groups and fitness value is
calculated; population pruning is done after that, two affinity
maturations based on cloning and mutations are performed
and some random selected antigens from the same group
are inserted to the set. The loop is finished here when it is
fulfilled the stopping condition. After last pruning for each B-
Cell population, the final B-Cell population is introduced as
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aclassifier. The usefulness or fitness formula for each B-Cell
is shown in Eq. 5.

) Correct
Fitness = —— (@)

Incorrect

Correct means, sum of antigen ranked based score of the
same group and incorrect means, sum of them in different
groups of B-Cell. Here, all B-Cells have correct and incor-
rect scores, and also the antigen-group could not be changed;
this is different from CSCA method.

4 Feature selection

Feature selection identifies and extracts the most useful fea-
tures of the dataset for learning, and these features are very
valuable for analysis and future prediction. So by removing
less important and redundant data, the performance of learn-
ing algorithm could be improved. The nature of the training
data plays the major role in classification and prediction. If
the data fail to exhibit the statistical regularity that machine
learning algorithms exploit, then learning will fail, so one
of the important tasks here is removing the redundant data
from the training set; it will, afterwards make the process of
discovering regularity much easier, faster and more accurate.

According to [34], Feature selection has four different
characteristics which are starting point, search organization,
evaluation strategy, and stopping criterion. Starting point
means from where the research should begin, it could be
either begin with no feature and add a feature as you pro-
ceed forward, or it could be a backward process; you start
with all attributes, and as you proceed, you do the feature
elimination, or it could start from somewhere in the middle
on the training set. In search organization step, suppose the
dataset has N number of features, so there will be 2 N num-
ber of subsets. So the search could be either exhausted or
heuristic.

Evaluation strategy is divided into two main categories,
which are wrapper, and filters. Wrapper evaluated the impor-
tance of the features based on the learning algorithm, which
could be applied on data later. It uses the search algorithm
to search the entire feature’s population, run the model on
them, and evaluate each subset based on that model. This
technique could be computationally expensive; it has been
seen that it may have suffered from over fitting to the model.
Cross validation is being used to estimate the final accu-
racy of the feature subset. The goal of cross-validation is to
estimate the expected level of fit of a model to a data set
that is independent of the data, which were used to train the
model. In filters, the evaluation is being done based on heuris-
tic’s data and general characteristics of the data come to the
picture. Searching algorithm in both techniques are similar
but filter is faster and more practical when the populations
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of the features are high because the approach is based on
general characteristic of heuristic data rather than a method
with a learning algorithm to evaluate the merit of a feature
subset.

Feature selection algorithms typically fall into two cate-
gories; it could be either feature ranking or subset ranking.
If the ranking is done based on metric and all features that
do not achieve a sufficient score are removed, it is called fea-
ture ranking but subset selection searches the set of possible
features for the optimal subset, which includes wrapper and
filter.

4.1 Principal component analysis

Principal component analysis is a mathematical procedure,
the aim of which is reducing the dimensionality of the dataset.
Itis also called an orthogonal linear transformation that trans-
forms the data to a new coordinate system. In fact, PCA is
a feature extraction technique rather than a feature selection
method. The new attributes are obtained by a linear combi-
nation of the original attributes. Here, the features with the
highest variance are kept to do the reduction. Some papers
like [35] used PCA for improving their experiments’ perfor-
mance. According to [36], the PCA technique transforms n
vector {x1, x2, ..., x,} from the d-dimensional space to n
vectors {x{, x}, ..., x;,} in anew d’ dimensional space.

d/
x; = Zak,iek, d <d, (6)
k=1

where ey are eigenvectors corresponding to d’ largest eigen
vectors for the scatter matrix S and a ; are the projections
(principal components original data sets) of the original vec-
tors x; on the eigenvectors ey.

4.2 Correlation-based feature selection

Correlation-based feature selection is an automatic algori-
thm, which does not need user-defined parameters like the
number of features that need to be selected. CFS is catego-
rized aa filter.

According to [37], feature V; is said to be relevant, If there

exists some v; and ¢ for which p (V; = v;) > 0 such that in
Eq. 7.
p(C=c|Vi=v) # p(C=0) )

According to research on feature selection experiments, irrel-
evant features should be removed along with redundant infor-
mation. A feature is said to be redundant if one or more of
the other features are highly correlated with it [38]. As it was
mentioned before, all redundant attributes should be elimi-
nated, so if any features’ prediction ability could be covered

by another, then it can be removed. CFS computes a heuris-
tic measure of the “merit” of a feature subset from pair-wise
feature correlations and a formula adapted from test theory.
Heuristic search is used to traverse the space of feature sub-
sets in reasonable time; the subset with the highest merit
found during the search is reported. This method also needs
discretizing the continuous features.

5 Experiment description
5.1 Dataset selection

Here, four datasets from REPOSITORY of NASA [39,40]
are selected. These datasets are different in number of rows
and rate of defects. The largest dataset is JM1 with 10,885
rows, which belongs to real time predictive ground system
project; 19 % of these data are defected. The smallest dataset,
CML1, belongs to NASA spacecraft instrument project and it
has 498 modules and 10 % of the data are defected. KC1
is another dataset which belongs to storage management
project for receiving and processing ground data with 2,109
modules. 15 % of the KC1 modules are defected. PC3 is the
last dataset that has 1,563 modules; 10 % of the data are
defected and it belongs to flight software for earth orbiting
satellite [39]. It should mention that PC3 is used only in first
two experiments.

5.2 Variable selection

Predictability performance is calculated based on two distinct
method-level metrics 21 and 37. In this work, experiments
that have not been performed in [4] are studied. All 21 met-
rics which are the combination of McCabe’s and Halstead’s
attributes are listed in Table 1. McCabe’s and Halstead’s met-
rics are called module or method level metrics and the faulty
or non-faulty label is assigned to each one of the modules.
These set of metrics are also called static code attributes and
according to [13] they are useful, easy to use and widely used.
Most of these static codes could be collected easily, cheaply
and automatically. Many researchers and verification and val-
idation text books such as [13,41] suggest using complexity
metrics to decide about which module is worthy of man-
ual inspection. NASA researchers like Menzies et al. [13]
with lots of experience about large governmental software
have declared that they will not review software modules
unless tools like McCabe predict that they are fault prone.
Nevertheless, some researchers such as Shepperd and Ince
[42] and Fenton and Pfleeger [43] argued that static codes
such as McCabe are useless metrics, but Menzies et al. in
[13,20] proved that prediction based on the selected dataset
with static code metrics performed very well and based on
their studies they built prediction model with higher proba-
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Table 1 Attributes present in 21 method-level metrics [39,40]

Attributes names

Information

loc McCabe’s line count of code

v(g) McCabe “cyclomatic complexity”
ev(g) McCabe “essential complexity”
iv(g) McCabe “design complexity”

n Halstead total operators + operands
v Halstead “volume”

1 Halstead “program length”

d Halstead “difficulty”

i Halstead “intelligence”

e Halstead “effort”

b Halstead “delivered bugs”

t Halstead’s time estimator
10Code Halstead’s line count
10Comment Halstead’s count of lines of comments
10Blank Halstead’s count of blank lines
10Code AndlOComment Lines of code and comments
uniq_op Unique operators

uniq_opnd Unique operands

total_op Total operators

total_opnd Total operand

branchCount Branch count of the flow graph

bility of detection and lower probability of false alarm which
was in contrast with Shepherd and Ince [42] and Fenton and
Pfleeger [43] beliefs.

As it is shown in Table 1, the attributes mainly consist of
two different types, McCabe and Halstead. McCabe argued
that codes with complicated pathways are more error-prone.
His metrics, therefore, reflects the pathways within a code
module but Halstead argued that, code that is hard to read, is
more likely to be fault prone.

5.3 Simulator selection

All the experiments have been done in WEKA, which is open-
source software and implemented in JAVA; it is developed in
the University of Waikato and it is used for machine learning
studies [44].

5.4 Performance measurements criteria

We used tenfold cross validations and all experiments were
repeated five times. According to Menzies et al. [13,20] since
some models with low precision performed well, using it
as a reliable parameter for performance evaluation is not
good. They also mentioned that if the target class (faulty/non-
faulty) is in the minority, accuracy is a poor measure as for
example, a classifier could score 90 % accuracy on a dataset
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Table 2 Confusion matrix

No (predicted) Yes (predicted)
No (actual) TN FP
Yes (actual) FN TP

with 10 % faulty data, even if it predicts that all defective
modules are defect free. Hence in this study, area under
receiver operating characteristic curve values were used for
benchmarking especially when the dataset is unbalanced.
Other performance evaluation metrics that were used are:
PD which is the number of fault-prone modules that are clas-
sified correctly and PF that is the number of not fault-prone
modules that are classified incorrectly as defected, Table 2,
Eqgs. 8, 9 and 10 show all details about calculation of perfor-
mance evaluation metrics. As a brief explanation, true neg-
ative (TN) means that the module is predicted as non-faulty
correctly, whereas false negative (FN) means that the module
is predicted as non-faulty wrongly. On the other hand, false
positive (FP) means that the module is estimated as faulty
incorrectly and true positive (TP) denotes that the module is
predicted as faulty correctly.

TP + TN
Accuracy = ®)
TP + FN 4+ FP + TN
TP
Recall(PD) = —— ©)]
TP + FN
FP
PF= ———— (10)
FP + TN

6 Analysis of the experiment
6.1 Experiment 1

Twenty-one method-level metrics were used for this exper-
iment. All 13 machine-learning techniques were applied on
four different NASA datasets, and the results were com-
pared. Table 3 shows accuracy and AUC value of algorithms
and Table 4 presents PD and PF values for this experiment.
This experiment has been done to answer research question 1
and 2. Notable values obtained after applying each algorithm
are specified in bold.

As mentioned earlier and according to Menzies et al.
[13,20], a good prediction should have high AUC and PD
values as well as low PF value, so with this consideration,
we have evaluated the results. Figure 8 presents the perfor-
mance comparison in terms of AUC among four different
NASA projects. According to the figure, both random forest
and decision table performed best compared to other algo-
rithms for JM1. For KC1, Naive Bayes also performed well
along with random forest and decision table. Random forest
performed best when it comes to CM1 as well. Figures 9, 10
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Table 3 Accuracy and AUC values for different algorithms in experi- Table 4 PD and PF values for different algorithms in experiment 1
t1
fmen Algorithms M1 KCl cMi1 PC3
Algorithms IM1 KCl1 CMI1 PC3
— Decision tree, J48
Decision tree, J43 PD 0232 0331 0061 0206
Accuracy 79.50 84.54 87.95 88.36 PF 0.070 0.061 0.031 0.039
AUC 0.653 0.689 0.558 0.599
Random forest
Random forest PD 0242 0313 0061  0.181
Accuracy 81.14 85.44 87.95 89.89 PF 0.052 0.047 0.031 0.019
AUC 0.717 0.789 0.723 0.795 ..
) Naive Bayes
Naive Bayes PD 0201 0377 0286  0.085
Accuracy 80.42 82.36 85.34 48.69 PF 0.051 0.095 0.089 0.555
AUC . 0.679 0.790 0.658 0.756 NN, Back Propagation
NN, Back Propagation . PD 0.000 0000 0000  0.000
Accuracy 80.65 84.54 89.96 89.76 PF 0.000 0.000 0.002 0.000
AUC 0.500 0.500 0.499 0.500 ..
o Decision Table
Decision Table PD 0129  0.066 0000  0.000
Accuracy 80.91 84.87 89.16 89.51 PF 0.028 0.026 0.011 0.003
AUC 0.703 0.785 0.626 0.657 AIRS1
AIRS1 PD 0.282 0.298 0.224 0.231
Accuracy 71.67 74.63 80.92 85.16 PF 0.179 0.172 0.127 0.078
AUC 0.551 0.563 0.549 0.577 AIRS?2
AIRSZ PD 0.309 0.298 0.102 0.131
Accuracy 68.53 68.90 84.94 88.10 PF 0225 0.239 0.069 0.033
AUC 0.542 0.529 0.516 0.549 AIRSParallel
AlRSParallel PD 0300 0204 0163  0.125
Accuracy 71.93 82.02 84.74 86.95 PF 0.183 0.084 0.078 0.046
AUC 0.558 0.605 0.543 0.540
Immunosl
Immunosl PD 0.685 0.936 0.969 0.969
Accuracy 56.37 50.55 32.93 17.98 PF 0.465 0573 0732 0910
AUC 0.610 0.681 0.610 0.529
Immunos2
Immunos2 PD 0.000 0.163 0.000 0.000
Accuracy 80.65 75.25 89.16 89.51 PF 0.000 0.140 0.001 0.003
AUC 0.500 0.511 0.494 0.499
Immunos99
Immunos99 PD 0155 0917 0918 0925
Accuracy 74.10 53.39 36.75 39.21 PF 0118 0536 0.693 0758
AUC 0.515 0.691 0.613 0.584 CLONALG
CLONALG PD 0149  0.107 0041 0013
Accuracy 73.01 82.50 87.95 87.20 PF 0.130 0.044 0.029 0.030
AUC 0.509 0.532 0.506 0.491 CSCA
CSCA PD 0138 0236 0000  0.044
Accuracy 80.17 83.97 88.15 89.00 PF 0.039 0.050 0.022 0014
AUC 0.549 0.593 0.489 0.515

and 11 have been drawn to show different evaluation values
based on PF, PD and AUC for easier comparison between
prediction models.

According to Fig. 9, both random forest and decision table
have high AUC value but when we consider PF and PD val-
ues, random forest has better combination of low PF and
high PD. Among AIS classifiers, although Immunos! has

higher AUC and PD compared to the others but PF value is
high and not acceptable. Here AIRSParallel performed better.
Figure 10 shows the comparison results for KC1, here also
random forest, Naive Bayes and decision tree have higher
AUC values, but if we consider PF and PD values, decision
tree will be eliminated. In AIS algorithms, both AIRSPar-
allel and CSCA classifiers performed better than the oth-
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Fig. 8 Comparison between different AUC values in all four distinct

NASA projects. The AUC values are represented on the x axis and
different selected algorithms are shown in y axis
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Fig. 9 Comparison between different evaluation metrics for project
JMI1. The percentage values for AUC, PF and PD are represented on
the x axis and different selected algorithms are shown in y axis

Different evaluation metrics for project KC1
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Fig. 10 Comparison between different evaluation metrics for project
KC1. The percentage values for AUC, PF and PD are represented on
the x axis and different selected algorithms are shown in y axis

ers. Results based on PC3 dataset are also similar to KC1
as they have similarities in number of modules and defect
rate. According to Fig. 11, random forest followed by Naive
Bayes has highest AUC value for CM1, but Naive Bayes per-
formed better when PD and PF values are also considered.
AIRS1 and AIRSParallel have better results compared to the
other AIS algorithms.
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Different evaluation metrics for project CM1

+PD el PF cfi AUC

Fig. 11 Comparison between different evaluation metrics for project
CMI1. The percentage values for AUC, PF and PD are represented on
the x axis and different selected algorithms are shown in y axis

From Tables 3 and 4, we could conclude that, random
forest and decision table are the best classifiers when the
size of the dataset is not that much small; of course Naive
Bayes is an acceptable algorithm as it performs well among
the others for all four datasets. AIRSParallel is better than
the others when the size of dataset is not so large, and CSCA
performs well when the size of dataset is not small. It seems
that if the algorithms execute best in big datasets, there is a
high chance that they perform well with smaller datasets as
well.

6.2 Experiment 2

As only for PC3, 37 method-level metrics was available; we
applied 13 algorithms on PC3 dataset. The attributes and the
results are shown in Tables 5 and 6, respectively.

To have a reliable results, this experiment has been rep-
eated ten times but no significant changes are observed com-
pared to the results obtained from 21 method-level metrics in
experiment 2. There is only a slight change in accuracy, PD
and PF values when AIRSParallel [27] classifier is used, so
it seems that other 37 variables except common variables
with 21 method-level do not have major effect on build-
ing a prediction model and it only increases the training
time.

6.3 Experiment 3

In this part, different feature selection techniques were app-
lied on datasets to see their probable effects on the results and
evaluation metrics. As it has been explained before, by elim-
inating the redundant attributes, performance of the model
could be improved. Here two feature selection techniques,
PCA and CFS, were used. When PCA applied on the 21
method-level metrics, the number of attributes is reduced to
7, 8 and 8 for CM1, PC1 and JM1, respectively. The results
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Table 5 Attributes in PC3 datasets, 37 method-level metrics [45]

Attributes names

LOC_BLANK
BRANCH_COUNT
CALL_PAIRS
LOC_CODE_AND_COMMENT
LOC_COMMENTS
CONDITION_COUNT
CYCLOMATIC_COMPLEXITY
CYCLOMATIC_DENSITY
DECISION_COUNT
DECISION_DENSITY
DESIGN_COMPLEXITY
DESIGN_DENSITY
EDGE_COUNT
ESSENTIAL_COMPLEXITY
ESSENTIAL_DENSITY
LOC_EXECUTABLE
PARAMETER_COUNT
HALSTEAD_CONTENT
HALSTEAD_DIFFICULTY
HALSTEAD_EFFORT
HALSTEAD_ERROR_EST
HALSTEAD_LENGTH
HALSTEAD_LEVEL
HALSTEAD_PROG_TIME
HALSTEAD_VOLUME
MAINTENANCE_SEVERITY
MODIFIED_CONDITION_COUNT
MULTIPLE_CONDITION_COUNT
NODE_COUNT
NORMALIZED_CYLOMATIC_COMPLEXITY
NUM_OPERANDS
NUM_OPERATORS
NUM_UNIQUE_OPERANDS
NUM_UNIQUE_OPERATORS
NUMBER_OF_LINES
PERCENT_COMMENTS
LOC_TOTAL

Table 6 Comparision between PC3, 37 and 21 method-level metrics
for experiment 2

Algorithms PC3 (37) PC3 (21)
AIRSParallel
Accuracy 87.46 86.95
AUC 0.554 0.540
PD 0.150 0.125
PF 0.043 0.046

Table 7 Accuracy and AUC values for different algorithms using PCA
in experiment 3

Algorithms M1 KC1 CM1

Decision tree, J48

Accuracy 81.04 85.78 90.16

AUC 0.661 0.744 0.616
Random forest

Accuracy 80.85 84.93 88.15

AUC 0.706 0.782 0.736
Naive Bayes

Accuracy 80.02 82.98 85.94

AUC 0.635 0.756 0.669
NN, Back Propagation

Accuracy 79.78 81.18 89.56

AUC 0.583 0.665 0.515
Decision Table

Accuracy 80.71 85.54 89.56

AUC 0.701 0.765 0.532
AIRS1

Accuracy 67.02 73.88 84.14

AUC 0.555 0.580 0.530
AIRS2

Accuracy 71.66 75.77 82.93

AUC 0.555 0.576 0.514
AIRSParallel

Accuracy 71.62 80.65 85.95

AUC 0.568 0.609 0.549
Immunosl

Accuracy 69.85 73.49 69.88

AUC 0.638 0.705 0.660
Immunos2

Accuracy 80.65 84.54 90.16

AUC 0.500 0.500 0.500
Immunos99

Accuracy 70.35 75.53 71.29

AUC 0.632 0.709 0.650
CLONALG

Accuracy 73.27 80.75 87.15

AUC 0.517 0.505 0.505
CSCA

Accuracy 79.58 84.92 88.55

AUC 0.573 0.601 0.509

are shown in Tables 7 and 8. This experiment has been done
to answer the research questions 4 and 5.

Using PCA as feature selection techniques and with the
consideration of high AUC and PD values as well as low
PF value, random forest and Naive Bayes perform well for
CM1 dataset compared to the others. Among AIS classi-
fiers, Immunos1 and Immunos99 are the finest. RF and Deci-
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Table 8 PD and PF values for different algorithms using PCA in exper-
iment 3

Algorithms IMI KC1 CM1
Decision tree, J48

PD 0.096 0.239 0.041

PF 0.018 0.029 0.004
Random forest

PD 0.235 0.267 0.041

PF 0.054 0.045 0.027
Naive Bayes

PD 0.195 0.337 0.224

PF 0.055 0.080 0.071
NN, Back Propagation

PD 0.224 0.451 0.000

PF 0.056 0.121 0.007
Decision Table

PD 0.101 0.166 0.041

PF 0.024 0.019 0.011
AIRS1

PD 0.366 0.350 0.143

PF 0.257 0.190 0.082
AIRS2

PD 0.291 0.313 0.122

PF 0.181 0.161 0.094
AIRSParallel

PD 0.326 0.319 0.163

PF 0.019 0.100 0.065
Immunosl

PD 0.540 0.663 0.612

PF 0.264 0.252 0.292
Immunos2

PD 0.000 0.000 0.000

PF 0.000 0.000 0.000
Immunos99

PD 0.516 0.641 0.571

PF 0.251 0.224 0.272
CLONALG

PD 0.166 0.067 0.041

PF 0.133 0.057 0.038
CSCA

PD 0.211 0.242 0.041

PF 0.064 0.040 0.022

sion Table are best for both JM1 and KC1 datasets with
AUC, PD and PF as a performance evaluation metrics; also
Immunos99 performs best among the other AIS algorithms
for IM1.

After applying CFS with the best first classifier, some of
the attributes were eliminated from the 21 of total attributes;
seven attributes remain from CM1, eight from KC1 and JM1.
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Table9 Accuracy and AUC values for different algorithms using CFS,
Best First in experiment 3

Algorithms M1 KC1 CM1
Decision tree, J48

Accuracy 81.01 84.68 89.31

AUC 0.664 0.705 0.542
Random forest

Accuracy 80.28 84.83 88.15

AUC 0.710 0.786 0.615
Naive Bayes

Accuracy 80.41 82.41 86.55

AUC 0.665 0.785 0.691
NN, Back Propagation

Accuracy 80.65 84.54 90.16

AUC 0.500 0.500 0.500
Decision Table

Accuracy 80.81 84.92 89.16

AUC 0.701 0.781 0.626
AIRS1

Accuracy 66.76 76.34 84.54

AUC 0.567 0.602 0.569
AIRS2

Accuracy 73.36 77.34 82.53

AUC 0.565 0.591 0.530
AIRSParallel

Accuracy 70.17 79.47 86.14

AUC 0.564 0.588 0.488
Immunos1

Accuracy 59.99 49.98 69.88

AUC 0.600 0.678 0.697
Immunos2

Accuracy 80.65 80.23 90.16

AUC 0.500 0.491 0.500
Immunos99

Accuracy 65.02 62.21 76.51

AUC 0.594 0.705 0.679
CLONALG

Accuracy 72.92 79.28 87.95

AUC 0.512 0.522 0.497
CSCA

Accuracy 79.55 83.21 87.75

AUC 0.575 0.590 0.505

The results are also shown in Tables 9 and 10. The remaining
attributes form JM1, KC1 and CM1 after applying CFS, best
first are listed below:

CM1: loc,iv(g), i, LOComment, LOBlank, uniq_Op, Uniq_
Opnd
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Table 10 PD and PF values for different algorithms using CFS, Best
First in experiment 3

Algorithms IM1 KCl1 CM1

Decision tree, J48

PD 0.148 0.175 0.000
PF 0.031 0.030 0.009
Random forest

PD 0.243 0.282 0.102
PF 0.063 0.048 0.033
Naive Bayes

PD 0.223 0.365 0.306
PF 0.056 0.092 0.073
NN, Back Propagation

PD 0.000 0.000 0.000
PF 0.000 0.000 0.000
Decision Table

PD 0.108 0.178 0.000
PF 0.024 0.028 0.011
AIRS1

PD 0.402 0.368 0.224
PF 0.269 0.184 0.087
AIRS2

PD 0.290 0.328 0.163
PF 0.160 0.145 0.102
AIRSParallel

PD 0.301 0.301 0.041
PF 0.173 0.125 0.065
Immunos1

PD 0.600 0.936 0.694
PF 0.400 0.058 0.301
Immunos2

PD 0.000 0.040 0.000
PF 0.000 0.058 0.000
Immunos99

PD 0.502 0.825 0.571
PF 0.314 0.415 0.214
CLONALG

PD 0.159 0.129 0.020
PF 0.134 0.086 0.027
CSCA

PD 0.217 0.239 0.041
PF 0.066 0.059 0.031
KC1: v, d, i, LOCode, LOComment, LOBlank, Uniq_

Opnd, branchcout
loc, v(g), ev(g), iv(g), i, LOComment, LOBlank, loc-
CodeAndComment

JM1:

It should be mentioned here, after applying CFS, Best
First, there are only slight changes observed in the results, so
it means that there is no considerable difference in the results

after applying distinct feature selection techniques. The main
change would be the execution time reduction. As it is shown
in Tables 9 and 10, the best performance for JM1, which is
the largest dataset, belongs to decision tree followed by ran-
dom forest. By checking the AUC, PF and PD values, naive
bayes perform greatly on CM1 dataset as well as the other
three. CSCA also performed well among the other AIS clas-
sifiers, but the problem with this algorithm is long execution
time.

We also applied CFS, random search to see whether it has
a considerable change in the results or not. It was found that
there is no significant difference between selected attributes
for KC1 after applying feature selection methods. There were
only six attributes selected for CM1, which is less than the
best first method. The number of selected attributes for JM 1
is increased by one compared to the best first as well. Since
no noticeable differences observed in performance evalua-
tion metrics after building prediction model based on CFS,
random search, we do not show the results in this sec-
tion. However, the remaining attributes from JM1, KC1 and
CM1 after applying CFS, random search are presented as
follows:

CML1.:
KC1:

loc, iv(g), 1, b, LOComment, uniq_Op

v, d, i, LOCode, LOComment, LOBlank, Uniq_
Opnd, branchcout

loc, v(g), ev(g), iv(g), n, i, LOComment, LOBIlank,
locCodeAndComment

JMI:

6.4 Experiment 4

As we noted earlier, each of these datasets has a different
rate of defected data; 19 % of the IM1, 10 % of the CM1 and
15 % of KC1 are defected. So in this experiment, the rate of
defected data was doubled in CM1 to identify whether any of
the classifiers shows any distinctive changes in results com-
pared to the previous trials; this experiment uses 21 method-
level metrics to answer the research question 6. We show the
results in Table 11.

According to Table 11, the accuracy rate of all algorithms
is decreased except for Immunos! and Immunos99. There-
fore, it means that the findings could be a challenging fact
because it shows that the performance of each classifier could
tightly related to defect rate in the datasets. So previously
suggested classifiers may not be the best choices anymore
to build a prediction model when the defect rate is changed.
Accuracy in almost all the algorithms is fallen down, but if
we consider AUC for evaluation, we see that this value grows
in two other algorithms that are basically from one category,
GLONALG and CSCA [30]. It could be concluded that by
increasing the defect rate, the artificial immune classifiers
perform better and gives a finest prediction model compared
to others.
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Table 11 Accuracy and AUC values of different algorithms with dif-
ferent defect rate for experiment 4

Algorithms CM1 (Old Values) CM1
Decision tree, J48

Accuracy 87.95 75.50

AUC 0.558 0.534
Random Forest

Accuracy 87.95 76.71

AUC 0.723 0.656
Naive Bayes

Accuracy 85.34 77.31

AUC 0.658 0.614
NN, Back Propagation

Accuracy 89.96 80.32

AUC 0.499 0.500
Decision Table

Accuracy 89.16 79.72

AUC 0.626 0.554
AIRS1

Accuracy 80.92 66.27

AUC 0.549 0.497
AIRS2

Accuracy 84.94 68.67

AUC 0.516 0.501
AIRSParallel

Accuracy 84.74 76.10

AUC 0.543 0.555
Immunosl

Accuracy 32.92 38.35

AUC 0.610 0.574
Immunos?2

Accuracy 89.16 80.32

AUC 0.494 0.500
Immunos99

Accuracy 36.75 50.00

AUC 0.613 0.600
CLONALG

Accuracy 87.95 73.69

AUC 0.506 0.520
CSCA

Accuracy 88.15 78.31

AUC 0.489 0.530

7 Summary and conclusion

In this paper, we identified fault prediction algorithms based
on different machine learning classifiers and distinct feature
selection techniques. Since the accuracy rate is not a reliable
metrics for performance evaluation, three other metrics were
used, AUC, PD and PF which were not used together in other
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experiments before. If we consider high AUC and PD values
along with low PF value as a well-performed benchmark,
random forest performs best on both small and big datasets.
According to [4], AIRSParallel performs better than the other
AIS, but according to experiment 1 and 3, Immunos99 is
the best among the other AIS classifiers. This study shows
that applying different feature selection techniques does not
have that much effect on the results; they mainly reduce the
execution time. Experiment 4 shows that the prediction rate
reduced in CM 1 dataset when the defected data were doubled
manually except for AIRSParallel, CLONALG and mostly
CSCA, so it seems that when the rate of defected modules
was increased, the mentioned AIS classifiers perform best
among the others. We can conclude here that different kinds
of feature selection and method-level metrics do not have a
considerable effect on the performance of the algorithm, and
the most important factor here is the type of algorithm itself;
therefore, it is better to improve the algorithms to get better
prediction results. In addition, building the model based on
large datasets like JM1 or even smaller ones consumes lots of
time when CSCA is used compared to the other algorithms
but the results are relatively acceptable, especially when we
consider AIS classifiers for building models. The results in
this study show that AUC, PD and PF could be used as three
performance evaluation metrics together for more reliable
performance analysis.
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