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Abstract The term “big data” will always be remembered
as the big buzzword of 2013. According to the Wikipedia,
big data “is a collection of data sets so large and complex
that it becomes difficult to process using on-hand database
management tools”. In other perceptions, the “3 Vs” that
characterize it (i.e., volume, velocity, and variety) or the “4
Vs” (adding veracity to the previous three) are responsible
for the fact that it exceeds an organization’s own data as well
as its storage or compute capacity for accurate and timely
decision-making. In essence, big data refers to the situation
that more and more aspects and artifacts of everyday life, be
it personal or professional, are available in digital form, e.g.,
personal or company profiles, social network and blog post-
ings, buying histories, health records, to name just a few, that
increasinglymore data gets dynamically produced especially
on the Internet and on the Web, and that nowadays the tools
and techniques are available for evaluating and analyzing
all that data in various combinations. Numerous companies
already foresee the enormous business effects that analytical
scenarios based on big data can have, and the impacts that
it will hence have on advertising, commerce, and business
intelligence (BI). This paper reviews the issues, techniques,
and applications of big data, with an emphasis on future BI
architectures.
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1 Introduction

Ever since the beginning of the digital age, data in digital
form has received a growing importance, first primarily in the
business domain and later also in the private domain. Think
back, for example, to the early beginnings of email usage in
the late 1970s and early 1980s: it took a while to set up a con-
nection, typically via a slow modem, then type a message on
a black and white screen using a line editor, next sending the
message off, and finally shutting down the connection again.
While the actual data, i.e., the number of characters or bytes
making up the message, was small compared to what we can
put in an email today, at the time nobodywould have believed
that the same could at some point be done from an “intelli-
gent” phonewithmuch higher speed and considerably bigger
content. For another example, think of early digital cameras
and their resolution and compare that to what is currently the
standard! But besides digitalization and the fact that digital
objects have become larger and larger over time, technology
has also enabled faster transportation of data and—thanks to
the Web 2.0 developments [26]—both increased automatic
as well as human production of data. The result is so over-
whelming that the term “big data” seems appropriate; this
paper is about the issues, techniques, and applications of big
data, with an emphasis on future BI architectures.

In a recent statistics,1 Intel reported that in a single Internet
minute, 639,800GBof global IP data gets transferred over the
Internet, which can be broken down into emails, app down-
loads, e-commerce sales, music listening, video viewing, or
social network status updates, and this number will increase
significantly over the next couple of years. This already is
representative of one dimension of big data, its volume or

1 http://www.intel.com/content/www/us/en/communications/internet-
minute-infographic.html.
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Fig. 1 The defining “4 Vs” of big data

size: data is considered big if it has reached TB or PB in size,
and is typically so large that it exceeds a single organization’s
storage capacity. Other dimensions which have become com-
mon for characterizing big data, and which together with
volume are called the “4 Vs of big data”,2 are the velocity
or the speed with which data is produced and needs to be
consumed, the variety data can have, and the veracity the
data comes with (We note that the first three of these Vs are
attributed to analyst Doug Laney3 who now works for Gart-
ner). Velocity refers to the fact that data often comes in the
form of streams which do not give the respective consumer a
chance to store them for whatever purpose, but to act on the
data instantly. Variety means that data can come in different
forms such as unstructured (e.g., text), semi-structured (e.g.,
XML documents), or structured (e.g., as a table), and verac-
ity refers to the fact the data may or may not be trustworthy
or uncertain. These characteristic properties of big data are
summarized in Fig. 1.

We consider the transition from Web 1.0 to Web 2.0 as
one of the major drivers that have led to big data. Indeed, as
we have written in my book on Web 2.0 [26], this transition
was determined by three parallel streams of development:
the applications stream that has brought along a number of
services anybody can nowadays use on the Internet and the
Web; the technology streamwhich has provided the underly-
ing infrastructure groundwork for all of this with fast moving
and comprehensive advances in networking and hardware
technology and quite a bit of progress regarding software;
and finally the user participation and contribution stream
(which we might also call the socialization stream) which
has changed the way in which users, both private and profes-
sional ones, perceive the Web, interact with it, contribute to
it, and in particular publish their own or their private infor-
mation on it.

2 http://www.ibmbigdatahub.com/infographic/four-vs-big-data.
3 http://blogs.gartner.com/doug-laney/.

These three streams have brought along a number of tech-
niques, technologies, and usage patterns that at present con-
verge, and the result is what has received the term “Web
2.0”. While initially content was mostly read from the Web,
content is nowadays constantly written to the Web; hence
the term “read/write Web”. An immediate consequence of
the fact that more and more people publish on the Web
through blogs, instant messaging, social networks, and oth-
erwise is that increasing amounts of data arise. Additionally,
data arises from commercial sites, where each and every
user or customer transaction leaves a trace in a database.
Several years back, this made companies start employing
data warehouse technology for online analytical processing
or the application of data mining tools to large data collec-
tions to generate new knowledge. Especially, these tools have
reached a new maturity, so that besides stored data it is now
possible to process, or to incorporate into processing, data
streams which cannot or need not be stored. We indeed con-
sider “big” data as a consequence of the Web 2.0 develop-
ments, and it remains to be seen how to exploit this data in a
fruitful way.

As can be done for other developments in computer sci-
ence, big data can be viewed from various perspectives and
in various dimensions; these are summarized in Fig. 2. Asmy
goal in this paper is to give a brief survey of the current state
of the big data area, we will first look at several use cases
in Sect. 2 which indicate the enormous potential that can be
seen in big data processing through a variety of examples and
use cases; this touches the economical dimension. Section 3
covers the technological dimension and hence the technol-
ogy available for handling big data, in particular technology
that has made it to the center of attention recently. Section
4 takes an organizational perspective and describes how to
exploit big data in an enterprise environment where a data
warehouse has been the tool of choice until now; as it will
turn out, a data warehouse architecture can straightforwardly
be augmented to allow for big data. Section 5 concludes the
paper and tries to give an outlook into what will happen next.
Due to a lack of expertise of the author, the legal dimension
will not be dealt with in this paper.

Fig. 2 Big data dimensions
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2 Big data use cases

In this section, we describe several use cases for big data
which are intended to indicate that this is indeed a develop-
ment that is different from what we have seen in the past. As
will be seen, they stem from vastly distinct areas, and it has
to be kept in mind that these examples do not represent an
exhaustive list.

One of the oldest examples of what data, at the time not
yet called “big” data, can do when properly collected and
analyzed is from the area of sports and refers to the Oak-
land Athletics baseball team and their coach Billy Beane,
who was able to use statistics and player data to revamp the
team from an unsuccessful one into a pretty successful one
within a limited time span. The story is well documented in
[12] and a movie based on that book. The already mentioned
DougLaneygives amore recent example fromsports, namely
from the Indy 500 race happening in the USA every year on
Memorial Day weekend. According to Laney, a present-day
Indy 500 race car is on the inside “smattered with nearly 200
sensors constantly measuring the performance of the engine,
clutch, gearbox, differential, fuel system, oil, steering, tires,
drag reduction system, and dozens of other components, as
well as the drivers’ health. These sensors spew about 1 GB
of telemetry per race to engineers poring over them during
the race and data scientists crunching them between races.
According to McLaren, “its computers run a thousand sim-
ulations during the race. After just a couple laps they can
predict the performance of each subsystem with up to 90 %
accuracy. And since most of these subsystems can be tuned
during the race, engineers, pit crews and drivers can proac-
tively make minute adjustments throughout the race as the
car and conditions change”. Further details can be found on
Laney’s blog,4 and it is obvious that the situation for Formula
1 cars5 or the NASCAR series is similar.

An example from emergency response occurred in con-
nection with hurricane Sandy, a gigantic storm which hit the
Caribbean as well as the US east coast in the fall of 2012;
company Direct Relief applied big data technology to coor-
dinate rescue activities. On their website, they state: “using
analytics and mapping software from technology partners,
Palantir and Esri, Direct Relief was able to better under-
stand needs on the ground and deploy appropriate resources
to those areas. Beginning with preparedness activities driven
by social vulnerability and health risk analysis, and extending
throughmeteorological investigations, rapid scrutiny of ship-
ping histories and continual monitoring of clinic status, shel-
ters, pharmacies, and power outageswithin a common frame-
work, Direct Relief connects clinics with essential medical

4 http://blogs.gartner.com/doug-laney/the-indy-500-big-race-bigger-
data/.
5 http://www.quantumblack.com/formula-1-race-strategy-2/.

resources by using the best insights available to assess needs,
scale problems and track the rapid pace of events.”6

A third area that will finally come to life with big data
is home automation, a field that has been under develop-
ment for more than 10 years now, but which so far has not
taken off on a large scale (at least not in Europe). It is to
be expected that this is now going to change, with the tech-
nical ability to process data from air conditioning, heating,
lighting, or household devices such as washers, dryers, and
refrigerators in conjunction with personal information from
the people living in a house, to create living conditions opti-
mally adapted to a particular age- or health-related situation.
The latter remark carries over to the domain of health care,
which is also increasingly supported by or based upon data
gathered about a patient’s medical condition, daily activity,
nutrition, as well as other input, e.g., from drug manufactur-
ers and its appropriate processing. This area will particularly
boom in the future due to an availability of personal sequence
or genome data and an increasing understanding of which
portions of it (i.e., genes) are responsible for what disease
or defect. The increasing dissemination of personal track-
ing devices such as the Fitbit,7 the Nike+ Fuelband8 or the
Jawbone Up9 will deliver another source of data that will be
welcomed by health experts as well as the users themselves.

Other areas that are already big on big data analytics
include market research, traffic management (e.g., in coun-
tries like Singapore) or autonomous cars which can drive by
themselves and communicate with other cars. In the enter-
tainment industry, Disney Parks and Resorts has developed
the MyMagic+ system, which through the My Disney Expe-
rience website and the corresponding mobile app can deliver
up-to-date information on current offerings to prospective
guests planning a trip to one of the Disney parks. Disney’s
MagicBand can be used by the guest as a room key, a ticket
for the theme park, access to FastPass+ selection, or to make
a purchase. Participating visitors can skip queues, reserve
attractions in advance and later change them via their smart-
phone, and they will be greeted by Disney characters by their
name. The system behind MagicBand is that it collects data
about the visitor, his or her current location, purchase history,
and which attractions have been visited.

To close our brief survey of big data applications, wemen-
tion that social media sites or search engines are also inten-
sively analyzing the data that they can get hold of. Indeed,
Twitter analyzes the tweets its users are generating, for exam-
ple, to identify and compare user groups, to analyze user
habit, or to perform sentiment analyses on the text of tweets.

6 http://www.directrelief.org/emergency/hurricane-sandy-relief-and-
recovery/.
7 http://www.fitbit.com.
8 http://www.nike.com/cdp/fuelband/us/en_us/.
9 https://jawbone.com/up.

123

http://blogs.gartner.com/doug-laney/the-indy-500-big-race-bigger-data/
http://blogs.gartner.com/doug-laney/the-indy-500-big-race-bigger-data/
http://www.quantumblack.com/formula-1-race-strategy-2/
http://www.directrelief.org/emergency/hurricane-sandy-relief-and-recovery/
http://www.directrelief.org/emergency/hurricane-sandy-relief-and-recovery/
http://www.fitbit.com
http://www.nike.com/cdp/fuelband/us/en_us/
https://jawbone.com/up


6 Vietnam J Comput Sci (2014) 1:3–14

Similarly, Facebook is interested in the number of “likes” a
page gets over time and keeps a counter for recommended
URLs, to make sure it takes less than 30 s from a click to an
update of the respective counter. Google performs text clus-
tering in Google News and ties to show similar news next
to each other; moreover, they classify e-mails in Gmail and
perform various other analytic tasks, e.g., in connection with
their AdWords business.

3 Technology for handling big data

To cope with big data, a variety of techniques, methods, and
technology have been developed in recent years, which are
surveyed next. In particular, when data comes in such large
quantities that local or in-house storage and processing is
not an option anymore, it is not a surprise that “traditional”
technology focusing around a central database is no longer
apt. To determine what is needed and what fits in well, we
first look at requirements for big data processing and then
review technologies satisfying these requirements.

In a nutshell, these requirements can be characterized as
follows:

• considerable processing power for complex computations;
• scalable, distributed and fault-tolerant data processing
capabilities, including temporary or even permanent stor-
age;

• parallel programming and processing paradigms suitable
for handling large collections of data;

• appropriate implementations and execution environments
for these programming models and paradigms.

Regarding hardware solutions for processing big data, we
refer the reader to [20]. Also relevant in this context is a
revival of main memory or in-memory database technol-
ogy, a development that was first studied in the 1980s [8]
and that has finally become available in commercial prod-
ucts [13,17] thanks to considerable technological advances
during the last 30 years. The database field has furthermore
brought along not only SQL (“NoSQL”) databases for coping
with the requirements of big data applications such as scal-
ability, wide distribution, and fault tolerance, which come
in various flavors including key value stores (e.g., Ama-
zon’s SimpleDB or Dynamo, LinkedIn’s Voldemort), col-
umn stores (e.g., Google’s BigTable [5], Apache’s Hbase,
or Cassandra, Yahoo! PNUTS), document databases (e.g.,
MongoDBorCouchbase), andmore recently graphdatabases
(e.g., Neo4J or Allegro) [19]. In addition, “NewSQL” data-
bases such as Clustrix, NuoDB, VoltDB, and Google’s span-
ner promise transactional guarantees in addition to NoSQL’s
scalability.

If data can no longer be exclusively stored locally, it is
near at hand to refer to cloud storage as an extension of local
or in-house capabilities, or to stream processing systems that
can vastly dowithout considerable local storage. For the sake
of completeness, the difference between a database system
and a data stream system is illustrated in Fig. 3 for the aspects
of querying: A database query can be sent to a database sys-

Fig. 3 Database query vs. data
stream query
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tem in an ad hoc manner and each query will be processed
and produce a result individually (Fig. 3a), due to the fact
that data is loaded and then permanently stored. In a data
stream system, on the other hand, the data is streamed to a
query processor continuously andwithout the option of being
available for long periods of time; so the query processor can
only respond to queries that have previously been registered
with it and can produce result for the data stream by looking
at a portion of the stream available within a certain window
(Fig. 3b). The figure is, however, incomplete in that a stream
processing system is often complemented by local storage or
even part of a regular database system.

The ability to process data that is only available as a stream
(e.g., data from temperature or pressure sensors in a weather
station), but occurs at high frequency obviously requires cer-
tain processing power. This aspect of big data processing is
not considered a major problem anymore, due to the avail-
ability ofmulti-core processors,GPUcomputing, in-memory
computing, main memory database systems, and the wide-
spread provisioning of high-performance data centers.

So for both computing and storage, cloud sourcing has
become a typical scenario, which according to the US
National Institute for Standards and Technology (NIST) is
defined as follows—cloud sourcing is the utilization of IT
capabilities from a cloud service provider based on the cloud
paradigm with the following five characteristics: resource
pooling, rapid elasticity, on-demand self-service, broad net-
work access, and measured service. NIST defines three ser-
vice models: Software-, Platform- and Infrastructure-as-a-
Service, abbreviated as SaaS, PaaS and IaaS, respectively,
which represent different types of services and, in a sense,
different levels of abstraction from the underlying physical
IT infrastructure. All three service models are used when it
comes to big data: often IaaS for simple access to “unlim-
ited” computing and/or storage capabilities, PaaS to establish
one’s own linguistic or algorithmic paradigm for process-
ing big data, and SaaS when it comes to simply using a
service or a combination of services for big data business
analytics.

Cloud providers in this area typically base their processing
power on large collections of commodity hardware, includ-

ing conventional processors (“compute nodes”) connected
via Ethernet or inexpensive switches, which are arranged in
clusters and which are replicated within as well as across
data centers. Replication as a form of redundancy is the key
to hardware reliability and fault-tolerant processing, and in
just the same way data is protected against losses via repli-
cation. The result is either a distributed file system such
as the Hadoop distributed file system (HDFS, see below)
or a globally distributed database such as Google’s Span-
ner [6]. Besides fault tolerance and availability, distribu-
tion can enhance parallel processing of the given data, in
particular when computing tasks can be executed indepen-
dently on distinct subsets of the data. In such a case, data is
often partitioned over several clusters or even data centers;
Fig. 4 illustrates the difference between partitioning and
replication.

In the example shown in Fig. 4, data from a relational
database about customer orders is partitioned over three dif-
ferent sites in such a way that each site is assigned distinct
customer numbers, while products data is replicated over the
sites (i.e., identically copied). Queries and updates can now
go to a particular partition or to multiple partitions at the
same time. If an organization like the one shown is run by a
cloud provider underneath an SaaS product, a user does not
need to care about proper data handling.

Data management in the cloud has its specific challenges
when it comes to balancing consistency against availability
and resiliency to partitioning failures [3]. Keeping a distrib-
uted data collection, file system, or database consistent at all
times such that an access to any fraction of it will never see
inconsistent or invalid data is hard to maintain, in particu-
lar since in a distributed system both hardware and software
failures are frequent. Since the good news is that not every
application running in the cloud permanently needs full con-
sistency (in the sense of serializability [27]), consistency can
often be relaxed into what is known as eventual consistency:
when no updates occur for a long period of time, eventu-
ally all updates will propagate through the system and all the
nodes will be consistent; for a given accepted update and a
given node, eventually either the update reaches the node or
the node is removed from service. Eventual consistency is

Fig. 4 Partitioning vs. replication
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Fig. 5 Principle of a
map-reduce computation

used, for example, by Amazon10 within several of their data
storage products or in CouchDB. An observation first made
by Eric Brewer and later proved in [14] is that of consistency,
availability, and partition tolerance, only two properties can
be achieved simultaneously; this result has become known as
the “CAP theorem”. In other words, if an application wants
to be immune against partition failures and needs to guar-
antee high availability, it has to compromise in consistency.
Conversely, an application that needs consistency along with
high availability cannot expect to be partition tolerant and
hence has to take measures for handling partition failures.

The NoSQL systems mentioned above have reacted and
responded to theCAP theorem in variousways,most often by
allowing for relaxed notions of consistency, yet more recent
developments such asGoogle’s Spanner [6] andF1 [25] claim
to be able to go back to strict forms of consistency.

While replication is a measure to enhance data availabil-
ity, since if one copy fails another might still be available,
partitioning turns out to be the key to tackling many large
data problems algorithmically. Partitioning essentially fol-
lows the “old” principle of divide and conquer, which has
a long tradition in computer science and its algorithms. If
data can be split into various independent partitions (as in
the example in Fig. 4 above), processing of that data can
exploit parallelism, for example by keeping multiple cores
of a processor or multiple CPUs in a cluster busy at the same
time. The results obtained by these cores or CPUs may need
to be combined to form a final processing result. This is the
basic idea of Google’s map-reduce [7] (US Patent 7,650,331,
granted in January 2010) which employs higher-order func-
tions (well known from the functional programming para-
digm) for specifying distributed computations on massive
amounts of data.

10 http://www.allthingsdistributed.com/2008/12/eventually_consistent.
html.

Map-reduce is a combination of two functions, map and
reduce, which work on key–value pairs. A map-reduce com-
putation essentially works as shown in Fig. 5: input data
is made available in a number of data chunks, which typi-
cally come from a distributed file system. These chunks are
fed into map tasks executed by components called mappers.
Mappers turn their given chunk into a sequence of key–value
pairs; exactly how these key–value pairs are generated from
the input data depends on the particular computing task and is
determined by the code written by the user for the map func-
tion. Next, mapper intermediate outputs are collected by a
master controller and grouped by their key values. The keys
and their associated value groups are then given to reduce
tasks in such a way that all key–value pairs with the same
key end up at the same reducer component. Finally, reducers
work on one key at a time, and combine all the values asso-
ciated with that key in a task-dependent way again specified
by the code written by the user for the reduce function.

Essentially, amap-reduce computation centers around two
functions that resemble SQL’s group-by followed by aggre-
gation:

1. Map : (K1, V1) → list(K2, V2)

2. Reduce : [K2, list(V2)] → list(K3, V3)

As an example, we consider the analysis of weather data
coming as long string from weather stations; our interest is
in an overview of the maximum temperature per year. Input
data in this case might look like the sample shown in Fig. 6.
The weather station regularly sends long strings that have
to be interpreted appropriately; every string contains, among
other information, the ID of the station, the date of the mea-
surement, longitude and latitude of the station’s location, and
the actual temperature.

Now, suppose the following input is received, where the
parts relevant for determining the maximum temperature are
highlighted (and temperature values are rounded to integers):
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Fig. 6 Sample weather input
data

00670119909999991990051507004 + 51317

+ 028783FM − 12 + 0171. . .+ 0000

00430119909999991990051512004 + 51317

+ 028783FM − 12 + 0171. . .+ 0022

00430119909999991990051518004 + 51317

+ 028783FM − 12 + 0171. . .− 0011

00430119909999991989032412004 + 51317

+ 028783FM − 12 + 0171. . .+ 0111

00430119909999991989032418004 + 51317

+ 028783FM − 12 + 0171. . .+ 0078

Suppose this is the chunk of data given to a mapper, then
the latter will extract year (as key) and temperature (as value)
as desired:

(1990, 0)

(1990, 22)

(1990,−11)

(1989, 111)

(1989, 78)

Shuffling and grouping this by key values will result in

(1989, [111, 78])
(1990, [0, 22,−11]),
from which a reducer can determine maxima as

(1989, 111)

(1990, 22).

It should be obvious that a task like this, which will
in reality be based on huge amounts of weather station
data, all of which can be processed independently, is a
perfect candidate for a map-reduce computation. Other
such tasks include counting the occurrences of words in
a text collection (relevant to index creation and mainte-
nance for a search engine), matrix–vector multiplication
(relevant to PageRank computations for ordering search
results), or operations from relational algebra (including joins
and aggregate operations relevant to query optimization in
databases) [18].

Clearly, several issues need to be addressed to make a
map-reduce computation work, including the following:

• How do we actually write the code for a particular map-
reduce task?

• How do we decompose a given problem into smaller
chunks which can be processed in parallel?

• Howdowe adequately assign tasks to compute nodes (exe-
cuting a mapper or a reducer)?

• How do we coordinate synchronization between the dif-
ferent compute nodes involved in a computation?

• How do we make such a scenario robust against failures?

The first question needs to be answered by a user who
writes themap and reduces functions, say, in a high-level pro-
gramming language such as Java. For our weather example
above (and assuming that Hadoop will be used for executing
the code, see below), the code for map could be as follows,
which implements the map function as a Java class:
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This resembleswhat has been informally described above:
from a given input string, year and temperature are extracted
and written to an (intermediate) output file. Next, the reduce
function can be written as another Java class:

Here, variable maxValue is first initialized to the small-
est integer and then repeatedly updated whenever a larger
value for the same year is encountered.

The other questions listed above have been answered in
recent years in various ways, the best known of which is
the software library Hadoop.11 Hadoop [28] supports scal-
able computations across distributed clusters ofmachines. Its
core components are the MapReduce Engine and the HDFS.
TheMapReduceEngine is responsible for execution and con-
trol of map-reduce jobs; HDFS is a distributed file system in
which large datasets can be stored, read, and output. User
data is divided into blocks, which get replicated across the
local disks of cluster nodes. HDFS is based on a master–
slave architecture, where a namenode as master maintains
the file namespace including the file-to-block mapping and
the location of blocks, and datanodes as slaves manage the
actual blocks. This is shown in Fig. 7, which is taken from
the HDFS architecture guide.12 Besides these main com-
ponents, there are numerous extensions of Hadoop by spe-
cific functionality which together are considered the Hadoop
ecosystem. Meanwhile, there has also been a host of sugges-
tions for Hadoop alternatives (e.g., Disco, Skynet, Twister, or
FileMap) as well as an evolution into Hadoop YARN. For an
overview of Hadoop users, we refer the reader to the Apache
website.13

Wemention that themap-reduce paradigm and its Hadoop
implementation not only have spawned ahost of development
in recent years, which has resulted in a variety of commer-
cial offerings, but also a lot of research; as a starting point,
we refer the reader to [1,2,9,18,21,22]. A typical extension

11 http://hadoop.apache.org/.
12 http://hadoop.apache.org/docs/stable/hdfs_design.html.
13 http://wiki.apache.org/hadoop/PoweredBy.

of the basic map-reduce paradigm is PACT, a programming
model described in [4] that generalizes themap-reducemodel
by addingmore functions as well as ways to specify behavior
guarantees for functions.

We conclude our survey of the technological dimension of
big data by mentioning various other fields that are relevant
here: The first is the area of statistical computing or compu-
tational statistics, which lies on the border of statistics and
computer science and is concerned with the development of
statistical programming languages such as R and with the
design and implementation of statistical algorithms (such as
those available in packages like SPSS, SAS, or STATA). The
second relevant area is datamining, i.e., the process of discov-
ering patterns (such as association rules or clusters) in large
datasets; data mining has since the 1990s become popular
as a collection of techniques to unleash previously unknown
knowledge from raw data [10]. The third is visualization,
which is concerned with the construction of visual represen-
tations of numerical, textual, or geographic data to reinforce
human cognition and to ease interpretation of data or compu-
tation results stemming from that data. See, for example [16],
for a survey of visualization techniques used in connection
with social network data.

Fig. 7 HDFS architecture
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Fig. 8 An adoption strategy for
big data

4 How do we exploit big data?

We now look at the organizational dimension of big data and
consider the situation where a company or institution wants
tomake use of it.What does it take to do so, andwhat needs to
change if the company has previously set up a datawarehouse
for its data analytics purposes? In particular, we briefly look
at strategy development and then present a modification of
the “classical” data warehouse architecture that is intended
to accommodate big data requirements.

As has been the case for many other IT adoption decisions
that have arisen over the years, it makes sense to base a deci-
sion of whether to start a big data project or to adopt big data
technology on well-grounded considerations. To this end,
techniques such as a SWOT analysis can help, which may be
able to reveal the strengths, weaknesses, opportunities, and
threads of a particular technologyor project.Another tool that
could be used in decision making is context analysis, which
looks at objectives, added values, and the general context and
environment into which a project should fit. Both SWOT and
context analysis are popular and have proven successful, for
example, in business process modeling [23].

More comprehensive than specific analyses is the devel-
opment of a strategy for big data, which may look like the
one shown in Fig. 8.

It starts with information gathering and planning, which
could involve either a SWOT analysis or a context analysis
or both. If a decision is made in favor of a big data project
or of a general adoption of big data technology, relevant data
sources need to be selected, which in an enterprise could be
a variety of in-house source, e.g., databases, but could also
be a variety of external sources, e.g., from the Web, which
may provide relevant data for free or for a cost (as in the
case of a data marketplace, see Sect. 5). The third phase of
detailed planning includes a selection of the technology to
be employed, e.g., the selection of a specific Hadoop imple-
mentation. Then the implementation can take place; finally,
the system or project is in operation and may need regular or
ad hoc maintenance.

We do not delve into further details of strategy develop-
ment here, but mention that it may help even non-IT enter-
prises to take advantage of data analytics and intelligence
that is nowadays available. When it comes to business intel-
ligence, what has been at the center of attention for many
years is the data warehouse [11], traditionally understood
as a database separate from operational systems that is built
via an ETL process extracting, transforming, and loading

data from the various sources into the warehouse, and that
is then the basis for online analytical processing, planning
and reporting, ad hoc querying, spreadsheet and dashboard
as well as data mining applications.

The basic architecture of a data warehouse can also be
recognized from the right half of Fig. 9, yet the figure also
indicates how to extend a traditional datawarehouse architec-
ture for big data. Indeed, what is new in this figure is a wider
selection of external data sources than typically considered
and the extension by a map-reduce engine such as Hadoop
on the left side. Various ways of communication need to be
made available between these old and new building blocks,
but in the end the setup might look as shown in the figure.

We mention that running business intelligence and ana-
lytics applications does not necessarily require the existence
of a data warehouse. Many tools are nowadays available that
can be operated as add-ons to the operational systems and
databases that an enterprise is already running and using. In
that case, an explicit architecture design is not needed, and
the same remarks apply to big data applications. However,
experience shows that strategy as well as architectural con-
siderations, in particular when they arewell documented, can
help an enterprise prevent project failures.

5 Conclusions and outlook

In this paper we have tried to survey various dimensions
that are relevant to the field of big data that has emerged in
recent years. Essentially, big data refers to the concept that
data is nowadays available in an abundance that was never
known before, that data-processing technology is capable of
handling huge amounts of data efficiently, and that there-
fore there are large and primarily economic opportunities
for exploiting this data. The notion of business intelligence
that was “invented” in the context of (early) data mining as
a circumscription of the fact that business can improve or
enhance their “intelligence” regarding customers and rev-
enues by analyzing and “massaging” their data to discover
the unknown will now enter the next level. Indeed, a conse-
quence of the fact that more and more data is made avail-
able in digital form not only allows businesses to gain new
insights, but also renders new discoveries possible in areas
such as physics or health care which are not necessarily of
primary type “business”. So not only regarding business, big
data can indeed be seen as the new intelligence enabler, since
the broadness of data available today (not just its sheer size!)
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Fig. 9 Data warehouse architecture enhanced for big data processing

and the available technology enable us to perform analytics,
to see connections, and to make predictions unthinkable only
a short while ago.

We should mention that there is also a downside to all
of this, best illustrated by the recent discovery how compre-
hensively and deeply the American NSA has been spying on
people, companies, and even countries worldwide.14 While
security breaches and data misuse have always been a chal-
lenge in computer science, this reaches a new level with big
data. Website io9 lists a number of ways in which big data is
creating the “science fiction future”,15 among them that dat-
ing sites that can predict when you are lying, that surveillance
gets really Orwellian, really fast, or that scientists and doc-
tors can make sense of your genome and so can insurers. We

14 https://www.eff.org/nsa-spying, http://www.theguardian.com/world/
2013/sep/09/nsa-spying-brazil-oil-petrobras, http://www.bloomberg.
com/news/2013-09-10/nsa-phone-records-spying-violated-court-rules-
for-years.html.
15 http://io9.com/5877560/10-ways-big-data-is-creating-the-science-
fiction-future.

should hence be aware that big data does not just require the
right technology, but also needs an appropriate governance
and protection.

To conclude, we mention two developments that are fore-
seeable in the near future. The first is the fact that big datawill
have an impact on academic education. Indeed, a number of
schools, so far primarily in the USA, have already launched
programs for educating “data scientists”.We expect this trend
to continue, at the borderline of computer science, statistics,
machine learning, and possibly other fields such as commu-
nication and social sciences or medicine.

Second, as has happened with other goods in the past,
when data becomes a commodity, we will see the emergence
of (virtual) marketplaces for data just as the past has seen the
creation of marketplaces, say, for stock. The stock market
is characterized by the fact that it not only sells shares in
companies, but offers a variety of other products that may
or may not be derived from basic stock. In a similar way, a
data marketplace will offer raw data, say, on a certain topic,
and will also offer a variety of ways in which this data can

123

https://www.eff.org/nsa-spying
http://www.theguardian.com/world/2013/sep/09/nsa-spying-brazil-oil-petrobras
http://www.theguardian.com/world/2013/sep/09/nsa-spying-brazil-oil-petrobras
http://www.bloomberg.com/news/2013-09-10/nsa-phone-records-spying-violated-court-rules-for-years.html
http://www.bloomberg.com/news/2013-09-10/nsa-phone-records-spying-violated-court-rules-for-years.html
http://www.bloomberg.com/news/2013-09-10/nsa-phone-records-spying-violated-court-rules-for-years.html
http://io9.com/5877560/10-ways-big-data-is-creating-the-science-fiction-future
http://io9.com/5877560/10-ways-big-data-is-creating-the-science-fiction-future


Vietnam J Comput Sci (2014) 1:3–14 13

Fig. 10 Concept of a data
marketplace

be processed prior to being sold. Different from the stock
market, however, data marketplace may be open to anyone,
i.e., users can act as sellers or buyers or both.

Figure 10, which originally appeared in [15], shows the
general schema of a data marketplace for integrating pub-
lic Web data with other data sources. In analogy to a data
warehouse architecture, the schema includes components for
data extraction, transformation and loading, as well as meta
data repositories describing data and algorithms. In addition,
the data marketplace offers interfaces for uploading data and
methods for optimizing data, e.g., by employing operators
with user-defined-functionality, as well as components for
trading and billing the usage of these operators. In return,
the provider of the user-defined function retrieves a mone-
tary consumption (indicated by the euro symbol) from buy-
ers. Moreover, in the case of large data volumes from the
Web, the marketplace relies on a scalable infrastructure for
processing and indexing data. A survey of the state of the-art
in this field can be found in [24].
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