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Abstract
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated
SAG models have long promised to make easier. However, there are three challenges
for their broad-scale adoption: A technical challenge regarding the need for high-
quality models, which is exacerbated for languages with fewer resources than English;
a usability challenge in adapting high-quality research prototypes to the needs of
non-expert users, and a trust challenge in communicating the abilities and limitations
of the tools. We propose to meet the technical challenge for German with a robust
Transformer-based SAG model. We address the usability challenge with an easy-to-
use graphical user interface for the SAGmodel, and the trust challengewith aworkflow
that allows teachers to evaluate the model on their own data, to choose on the basis of
this evaluation which model predictions to trust, and in consequence to stay in control
of grading their students while saving grading effort.

Keywords Short-answer grading · Grading support · German · Transformers

Introduction

Natural Language Processing for Education is an active research area aiming to support
learning and teaching. It promises to do so very tangibly for Short-Answer Grading
(SAG), where the task is to grade the content of one- to three-sentence constructed
student answers (cf. the overview inBurrows et al., 2015). Hours of human effort could
be saved on any single test by easy-to-use, reliable machine support that teachers and
students can trust.
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Since research prototypes show promising performance on standard benchmark
data sets, the research community is increasingly investigating the use of automated
SAG models in the classroom (e.g., Zhu et al., 2020; Nazaretsky et al., 2022). This
requires applying the research models to teachers’ individual data sets and supporting
teachers in tool adoption. The next challenge is preparing tools for independent use
by teachers outside a study context.

In order to facilitate broad adoption of grading support in classrooms around the
world, several things are needed: First, from a purely technical point of view, SAG
tools have to be sufficiently reliable to be used in a wide variety of classrooms and on
texts from varying domains, as well as texts written in many languages.

Currently, SAG research focuses on English, which is the language with most avail-
able training resources: EnglishWikipedia, which is often used formodel development
in Natural Language Processing, contains almost three times more words than French
or German Wikipedia (Meta, 2023), and almost 50% of HTML documents archived
by the Common Crawl project are in English (Common Crawl Project , 2023). Not
surprisingly, the picture is similar for task-specific annotated corpora as well as mod-
els derived from them. Therefore, lack of resources is a continuing challenge for
non-English SAG models.

Even for English texts, however, applying a SAG model to new data sets is chal-
lenging given that machine learning models perform best on data sets that are similar
to the data they were trained on - therefore performance is expected to degrade for test
data from different topic domains, or written by students of different ages or language
backgrounds. For broad application, teachers therefore cannot rely on benchmarking
results to estimate model reliability, but need to know the expected performance of
the SAG model on their specific data.

The second challenge for accessible grading support is usability for a broad user
base: The SAG tools have to be easy to use for all teachers regardless of their pro-
gramming skills or even general computer expertise. This is necessary for seamless
integration into teachers’ workflows (Yuen and Ma, 2008; Burstein et al., 2012).

Third, the existence of a reliable and easy-to-use tool does not automatically mean
that the intended users trust it. General distrust in or exaggerated expectations of AI
tools can be overcome by (1) facilitating users’ understanding of the capabilities and
limitations of the tool in order to build teachers’ trust, and (2) preserving their control
over the grading process and the final grades communicated to students (Nazaretsky
et al., 2022).

We will address these challenges for the case of German as an example. We solve
the technical challenge by training and evaluating an automated SAG model. By har-
nessing a Transformer-based architecture, we reduce the need for task-specific training
data to counter lack of data, while demonstrating that the model gracefully deals with
properties of German that differ from English (section “Addressing the Technical
Challenge: A German SAG Model”). In section “The Trust Challenge: The Auto-
mated Grading Work”, we will explicitly demonstrate how much model performance
deteriorates when transferring a trained model to other German data sets, and we will
investigate whether the resulting less reliable grade predictions can still be useful to
support human graders.
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Wecounter the usability challengewith a straightforward user interface for the SAG
model which is being specifically designed to be intuitively usable even for occasional
computer users (section “TheUsability Challenge: ASYST, an easy-to-use Automated
Grading System”).

We propose to address the trust challenge by a grading process1 that facilitates
a hybrid approach: Automated grade predictions are seen as suggestions subject to
human review. This way, teachers retain agency in grading, but can save effort by
skipping the review step whenever the automated predictions are reliable enough.
From this perspective, two questions remain: First, how much disagreement between
automated and human grades is any individual teacher ready to accept and still trust
the system, and second, how to tell which grade predictions are in fact trustworthy
and which require human attention. The first question is up to the users. The second
question can be answered by a detailed analysis of the SAGmodel on data that is com-
parable to that of the intended use case (cf. Mieskes and Padó, 2018). We demonstrate
results of the workflow for four German corpora and find that by focusing human
effort where it is most needed, even imperfect SAG models can still be used to save
grading effort and even greater overall grading consistency.

Plan of the Paper
We begin by reviewing literature relevant to the three challenges (“Related Work”)
section. We then address the technical challenge in “Addressing the Technical Chal-
lenge: A German SAGModel” section. After further specifying the task by describing
some properties of German that differ from those of English, we document the training
and evaluation of a SAG model for German, as well as analyzing its appropriateness
for German.

“The Usability Challenge: ASYST, an easy-to-use Automated Grading Syst” sec-
tion addresses the usability challenge and describes the current state of the ASYST
tool, our user-friendly front-end for the German Transformer model.

We discuss the workflow that we propose for countering the trust challenge in detail
in “The Trust Challenge: The Automated GradingWorkflow” section and demonstrate
its results on four SAGdata sets forGerman. Finally, “Conclusions” section concludes.

RelatedWork

We begin by briefly reviewing the literature relevant to the three challenges identified
above.

The Technical Challenge: Automated Short-Answer Grading

Researchers have traditionallymet the technical challenge of buildingwell-performing
SAG models with feature-based, non-neural algorithms (Burrows et al., 2015). Since
these algorithms cannot process text input as-is, features are derived to represent

1 Thus expanding on our earlier work in Padó (2022).

123



Int J Artif Intell Educ

relevant properties of the text, such as important words. A common SAG strategy is
to create these feature sets for a student answer and a correct reference answer, and to
train themodel to recognize correct answers by their feature overlap with the reference
answer.

Feature-based approaches allow fine-grained control over which aspects of the
student answer are considered relevant to grading (Ding et al., 2020). Since the sim-
ple bag-of-words baseline, which uses just the words in an utterance as features, is
strong for SAG (Dzikovska et al., 2013), some approaches have successfully relied
on string-level representations of student and reference answers and their similar-
ity (e.g., Jimenez et al., 2013; Ramachandran et al., 2015). On the other end of the
spectrum, language-specific features have been constructed which require complex
pre-processing and represent, e.g., syntactic and semantic relationships between input
words or the whole input (Ott et al., 2013; Zesch et al., 2013).

Recently, features based on embedding representations have proven very successful
(e.g., Sultan et al., 2016; Saha et al., 2018; Kumar et al., 2019; Steimel and Riordan,
2020; Vittorini et al., 2021). Embeddings are representations for words (or whole
sentences) that were derived from the words’ distribution in context, often by a deep
neural network. To some extent, embeddings capture semantic properties of the mod-
elled words without requiring deep syntactic and semantic pre-processing of the input.
Embeddings can then be used as input for non-neural machine learning algorithms.

Alternatively, neural models can be used to both learn word embeddings and, in the
same model, use these representations to solve the overarching task, in this case grade
prediction for SAG. Riordan et al. (2017) analyze different fully neural approaches to
SAG. Bai and Stede (2022) discuss embedding-based and fully neural approaches to
SAG and essay grading.

When embeddings or fully neural models are used, intensive pre-processing for
feature induction (like deep syntactic and semantic analysis) is no longer required,
and yet models achieve much better results than feature-based non-neural approaches.
However, this strength comes at a cost: Neural models are data hungry and, if trained
from scratch, needmuchmore training input than standardly available for SAG (where
corpora contain in the thousands of answers).

In this situation, transfer learning for Transformer-based deep neural models like
BERT (Devlin et al., 2019) is a promising solution. Transformers (Vaswani et al., 2017)
are a deep neural network architecture that encodes the input into an abstract internal
representation and is able to decode it again into the desired output. Applied to text
data, Transformers learn a detailed language model from large amounts of input text
during the pre-training stage. At this point, no task-specific, annotated training data
is needed, as the models typically learn to predict words that were masked from the
input text (Devlin et al., 2019). After pre-training, Transformer-based models are fine-
tuned on small amounts of task-specific data, with good success (Howard and Ruder,
2018). This means that the models’ encoding portion is topped with one or more new
classification layers, after which the whole architecture (or just the new layers) are
trained on the task-specific annotated data. A successful example of this strategy for
SAG is presented in Ghavidel et al. (2020). In addition, it is possible to further improve
results by pre-training for several rounds, first on un-annotated training data, then on
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annotated data for a related task2, and finally on the task-specific data (Sung et al.,
2019; Camus and Filighera, 2020; Willms and Padó, 2022).

BERT can be trained directly to solve the SAG task, but Reimers and Gurevych
(2019) introduced the SBERT architecture specifically for tasks that rely on sentence
comparison. The architecture uses BERT to create sentence-level embeddings for two
input sentences in parallel. These are concatenated and used as input for a final classi-
fication layer. The architecture is designed for any text classification task that requires
the comparison of two portions of text on the semantic level. For SAG, the student
and reference answers are passed into the SBERTmodel and the classification layer is
trained to predict the grade based on the representations of the two inputs. Condor et al.
(2021) use SBERT for SAG, but in their best-performing setting provide the model
with the student answer and question text, since no reference answers are provided
in their data (scoring rubrics exist, but are not helpful in their experiments). Bexte
et al. (2022) propose an alternative: In a classic memory-based learning approach,
they compare the SBERT representations of the input to those of reference answers
(or training examples of student answers) and assign the grade of the closest answer
(or set of answers). Beyond training a classification layer and using a memory-based
strategy, Bexte et al. (2023) also experiment with ensembles of Transformer-based
models.

Beyond the SAG task proper, researchers have also been interested in identifying
content dimensions (Mizumoto et al., 2019; Gombert et al., 2023). Another highly
active area of current research into Transformers for SAG is the analysis of model
behavior from the point of view of robustness towards unorthodox input (e.g., Ding
et al., 2020; Willms and Padó, 2022; Filighera et al., 2023), explainability of model
decisions (e.g., Poulton and Eliëns, 2021; Törnqvist et al., 2023) as well as giving
feedback (Filighera et al., 2022).

Research into automated SAG routinely finds that the same models perform differ-
ently on different data sets. Zesch et al. (2023) put this performance difference down
to variance in the student answers, where questions with high variance in the answer
texts are harder to score automatically. They suggest that would-be users of SAG
models first determine the expected amount of variance in their data (stemming from
conceptual, linguistic or nonconformity variance in student answers), and to expect
best results from automated SAG for low-variance data.

Several recent publications describe the use of automated grading systems in real-
world examinations. They share the assumption that all automated SAG models will
be somewhat flawed, and discuss several strategies to address these flaws.

Condor (2020) suggests using a BERT-based grading model alongside a human
grader to save human effort in a standard double-grading situation where two graders
work independently of one another and any answers with disagreeing grades are
reviewed by a third grader. This is similar to existing real-world applications of
machine grading as a replacement for one human grader such as the ETS e-rater3

(Attali and Burstein, 2006).

2 For example, the MNLI corpus for Natural Language Inference, Wang et al. (2018).
3 see https://www.ets.org/erater/about.html
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Vittorini et al. (2021) use a human-review setting in high-stakes situations where all
automated grades are standardly reviewed (and possibly revised) by a human grader.
Since reviewing a pre-assigned grade can be easier than independent grading, they
report a time-saving effect of 43% compared to independent grading. For lower-stakes
formative settings, Vittorini et al. deem their system’s grading accuracy of 89% suffi-
cient.

Mieskes and Padó (2018) suggest involving human graders only for those auto-
mated grades that are least likely to be correct in order to save human time and effort.
Candidate grades for revision can be identified using the results of a priori automated
grader evaluation (which yields information about general weaknesses of the grader
for specific grade labels) or the agreement in an ensemble of automated graders (which
indicates ensemble confidence in individual assigned grades). Schneider et al. (2022)
follow a similar strategy. They identify questions that are hard to grade based on the
automated grader’s similarity estimate for each student and correct reference answer.
In both approaches, the teacher can adjust the expected correctness of the automated
grader predictions and the human workload by adjusting the parameter of which ques-
tions should be assumed to be hard to grade.

Azad et al. (2020) use an automated grader with an accuracy of 89% for stand-alone
grading even in a high-stakes setting. Their focus is on adapting the grading process
in order to mitigate the effect of automated grader errors: They allow several answer
attempts in case the automated grader rejects a student’s answer, as well as offering an
appeal tomanual grading.They report student satisfactionwith the process andfind that
less than 1%of students are incorrectly denied points by the system.However, they also
note that the multiple-attempt strategy allows students to try out conceptually different
answers, which leads to an increase of incorrectly awarded points. Interestingly, the
option to appeal to human re-grading mostly seems to affect student satisfaction with
the process; the offer does not noticeably change the outcome of the exam.

In sum, there are different strategies to address flaws in automated grading in order
to benefit from reduced human grading effort: Human involvement can be limited by
taking a reviewing role rather than grading from scratch or by focusing grading effort
where it is most needed, but it is also feasible to make changes to the testing situation
to ensure points are not unfairly withheld.

The Usability Challenge: Software Usability

Usability is defined as the “extent to which a system, product or service can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use” (ISO Technical Committees, 2018). Effectiveness means
that the user’s intended task can be completed successfully, while an efficient system
allows the user to reach this goal quickly.User satisfactionwith the process ismeasured
through user feedback. Systems with high usability are easy to understand for users
from many backgrounds, which also facilitates learning how to use the system and
avoiding errors during use (ISO Technical Committees, 2018).
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In Software Engineering, usability is in focus in User Interaction (UI) and User
Experience (UX) design. Shneiderman (1987) formulates eight “golden rules” for
user interface design (cited here from Shneiderman et al., 2016):

1. Strive for consistency
2. Seek universal usability
3. Offer informative feedback
4. Design dialogs to yield closure
5. Prevent errors
6. Permit easy reversal of actions
7. Keep users in control
8. Reduce short-term memory load

Rules 2, 4 and 5 resonate directly with the extended ISO specification where it
requires usability for users from many backgrounds, efficient and satisfying handling
of user tasks and the resulting reduction of errors. Rule 8 points to the fact that all UI
design principles used to implement these guidelines are rooted in cognitive psychol-
ogy: The software tools should be designed for the human mind (Johnson, 2013).

This means that in implementing general rules like 2 or 5, software design can profit
from properties of human cognition: By conforming to common design practices and
navigation strategies shared with other software GUIs, UI designers rely on users’
previous experience and expectations to navigate a newapplicationwithout instruction.
On the other hand, specific properties of human visual perception prompt UI designers
to place related items closely together, highlight them in similar colors and use icons
rather than text wherever possible to make their GUIs comprehensible "at a glance"
or highlight important information (Johnson, 2013).

In addition to these design principles, the recommended development process
includes careful study of the expectations, abilities and goals of the intended users,
which helps define detailed requirements. GUI development is iterative, starting with
mockups and progressing to implemented prototypes while involving the users early
on to ensure timely feedback at multiple stages during development (Galitz, 2007).

The Trust Challenge: Adopting Automated Tools in the Classroom

A number of recent studies look at the impact of SAG and writing feedback systems in
the classroom, on both teachers and students, and factors that influence tool adoption.
They rely on concepts from the Technology Acceptance Model (Davis, 1989), which
posits that two factors influence actual system use: Perceived usefulness and perceived
ease of use of the system. On top of these, additional factors like the social norm (i.e.,
the socially implied desirability or undesirability of using the system) can be defined
(Venkatesh and Davis, 2000).

Yuen and Ma (2008) look at what convinces teachers to use eLearning software for
their classes and find that teachers’ intention to use the software depends (directly or
indirectly) on their perception of their own computer abilities, the ease of use of the
software and the perceived social norm. From a software development perspective,
this shows the importance of a hassle-free user interface, especially for teachers who
feel that their computer abilities are limited.
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Another relevant finding is the importance of trust in the system by both students
and teachers: Zhai and Ma (2022) present a meta-study on the perceived usefulness
of automated writing evaluation by Chinese students. They identify students’ trust in
the automated system as an important factor explaining the perceived usefulness of
the system. Other influential variables were the perceived social norm, and feedback
quality, in that students valued feedback that supports reflection on thewriting process.

Addressing the question of teachers’ trust in an automated SAG tool specifically,
Nazaretsky et al. (2022) recommend providing teachers with a basic understanding of
the technology as well as focusing on concrete applications that teachers deem useful.
They also recommend to give teachers unrestricted agency in integrating the tools into
their teaching, as well as giving them the ability to override grading proposals.

Addressing the Technical Challenge: A German SAGModel

We now turn to the practical part of the paper, addressing the three challenges in turn.
Our solutionwill use German data as a specific problem instantiation, but is not limited
to German. We begin with the technical challenge, namely the need for a robust SAG
model in German. In order to specify the problem setting, we first describe some
syntactic and morphological properties of German that differ from those of English.
We then describe the training and evaluation of an automated SAG model for several
German corpora. Since some corpora are annotated with partial credit and others just
as correct-incorrect, we normalize all grades to the correct-incorrect case to make
evaluation results more comparable (see also “Corpora”). We also specifically verify
the chosen model’s appropriateness for dealing with German.

Properties of German

German is in principle a well-represented language in terms of publicly available
written text: It has the third-largest resources in both Wikipedia (Meta, 2023) and
the Common Crawl (Common Crawl Project , 2023), a large web data collection
project. However, there are only four SAG corpora for German4 with a grand total of
roughly 6,500 student answers, as opposed to seven freely available standard corpora
for English5 with a grand total of roughly 44,500 human-graded student answers.
Therefore, the need for methods that perform well in data-poor environments is still
pressing when working with German.

Germanhas someproperties thatmake the use of the traditional simplifying assump-
tions ofNLP harder than for English (Krummet al., 2011): On themorphological level,
the presence of verb, adjective and noun inflection calls for normalization strategies
like lemmatization (or splitting words into sub-tokens in the case of embeddings).

4 The German SAG corpora are: CREG (Meurers et al., 2011), CSSAG (Padó and Kiefer, 2015), ASAP-DE
(Horbach et al., 2018) and SAF-DE (Filighera et al., 2022)
5 The English SAG corpora are Mohler et al. (Mohler et al., 2011), CREE (Meurers et al., 2011), ASAP
(www.kaggle.com/c/asap-sas), SciEntsBank andBeetle (Dzikovska et al., 2013), Powergrading (Basu et al.,
2013) and SAF-EN (Filighera et al., 2022)
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German nouns and adjectives are morphologically marked for four cases and take one
of three grammatical genders (see the top of Table 1 for examples). In addition, there
is a variety of plural paradigms for nouns, including Ablaut (vowel changes inside the
word stem as for some irregular verbs in English). Verbs are marked for person and
number in all tenses and can show Ablaut formation in the word stem as well, across
tenses. This means stemming strategies are less likely to succeed in German than in
English for all word classes.

Highly productive noun compounding adds complexity in lexical semantic analysis
for the humanandmachine learner alike.Compoundnouns expressmeaning thatwould
often be realized as a noun plus noun or a noun-of-noun construction in English (see
examples in line 5 of Table 1).

On the syntactic level, word order is more flexible than in English: In German, only
the verb has a fixed position in the sentence (either in the second or in the last place),
while other phrases are much freer to move (cf. the final part of Table 1) – the order
variants differ with regard to information structure (see, e.g. Wöllstein, 2014). This
means surface-level strategies for inferring syntactic relationships are less reliable than
in English.

Table 1 Some examples of German morphology and syntax

Phenomenon German English translation

Noun case der Tisch, des Tisches the table

dem Tisch(-e), den Tisch

Noun plural der Tisch, die Tische the table, the tables

das Dach, die Dächer the roof, the roofs

die Sache, die Sachen the thing, the things

Verb person ich gehe, du gehst, er geht I go, you go, he goes

Verb tense ich ging, du gingst, er ging I went, you went, he went

Noun compounding Schreibtisch desk (lit. writing table)

Hausdach roof of the house

Word order Gestern biss der Mann den Hund. Yesterday, the man bit the dog.

Der Mann biss gestern den Hund. The man bit the dog yesterday.

Der Mann biss den Hund gestern.

Den Hund biss der Mann gestern.

Den Hund biss gestern der Mann.

..., dass gestern der Mann den
Hund biss.

... that the man bit the dog
yesterday.

..., dass der Mann gestern den
Hund biss.

..., dass der Mann den Hund
gestern biss.

..., dass den Hund gestern der
Mann biss.
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Taken together, these morphological and syntactic variants for German words and
sentencesmean that similarmeaning can be expressed inmany different surface strings
in German. Therefore, representing a sentence by patterns in word distributions (and
sub-word sequence distributions) is harder for German than for English. This in turn
makes it harder to automatically extract the content of a student answer in SAG for
modelling approaches that rely on distributional modelling of semantics.

Method

To create a SAGmodel forGerman,we employ a successful strategy from the literature
(Camus and Filighera, 2020;Willms and Padó, 2022) and use a fine-tuned Transformer
approach.Transformer-basedmodels require very little annotated trainingdata for fine-
tuning, which helps in the face of data sparseness. Also, Transformer-based models
do not require input pre-processing for feature generation, which is a time-consuming
and somewhat brittle step in feature-based grading models. Note that our goal is not
to create the best possible German SAG model: Instead, we want to demonstrate the
usefulness of a robust, relatively off-the-shelf model, knowing that it could be replaced
by an even better-performing model in the future.

Model

Specifically, we use the SBERT architecture (Reimers and Gurevych, 2019), which
is designed for tasks that require the comparison of whole sentences with regard to
their meaning (such as paraphrase detection or inference). We apply it to SAG by
generating representations for the student answer and the reference answer for the
question provided in the corpus.

SBERThas been used forEnglish SAGbefore byCondor et al. (2021), but their best-
performing setup compares the student answer to the question text, while we compare
to a correct reference answer (which is not available to Condor et al.) Our approach
appears more natural in terms of the SBERT architecture, since it was designed to
enable exactly the direct sentence comparison on the semantic level that is required in
our setting.

SBERT derives fixed-length representations u and v of the input sentences from a
BERT languagemodel byfirst splittingwords into (subword-)-tokens and thenderiving
embedding representations for these tokens. These embeddings are concatenated and
fed into a final classification layer that learns to predict grades from the combined
representations. The SBERT model was pre-trained for a paraphrase detection task,
which also involves comparing sentences according to the similarity of their content.

We parametrize the architecture for use on German as follows: We employ the
sentence-transformers/paraphrase-multilingual-MiniLM-L12
-v2BERT-based tokenizer and languagemodel (Reimers andGurevych, 2020, available
on https://huggingface.co). Thismodel covers 50world languages, among themGerman,
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but (originally) not English6.Weonly evaluate themodel forGerman, but hope to even-
tually make the Automated Grading Workflow available to as many users as possible.

We use mean pooling for sentence embedding creation, combine the resulting
embeddings as |u −v|+|u ◦v| and use a logistic regression classifier for the classifica-
tion layer. These parameters were chosen by cross-validation on the Computer Science
Short Answers for German (CSSAG) corpus training set. Note that only the classi-
fication layer is ever trained in our experiments; the language model for embedding
creation remains untouched. We will refer to this model as the German Transformer
model below.

The steps of the processing pipeline thus become:

1. Preparation of the input strings using the publicly available tokenizer
2. Generation of a fixed-length representation of the input using the publicly available

language model
3. Combination of the representations for the student and reference answer into one

input vector
4. Classification of this input vector by a logistic regression learner inferred from the

training data

Evaluation

We report the standard evaluation scores of weighted Precision, Recall, and F-Score.
Precision shows which percentage of the predictions of a specific label were cor-
rect, that is, how trustworthy the grader’s predictions are. Recall shows how many
instances of a specific class were labelled correctly by the grading model, i.e., how
many instances of interest were identified. These measures are computed on the basis
of single labels and then the weighted average across labels is computed to charac-
terize the performance of the grading model as a whole. The F-Score is the harmonic
mean of Precision and Recall and serves as a single measure for model comparison.

For comparison with the literature, we also showAccuracy, the number of instances
that were labelled correctly across the whole test set.

To make predictions, we leave one question out in turn and train on the others,
making predictions for the one question that was unseen in training. This evaluation
setting is called “unseenquestion” (Dzikovska et al., 2013). It is the hardest formulation
of the SAG task, since the models have no information about question-specific answer
patterns for the test question and instead have to learn general signals of semantic
similarity between student and reference answers. It is also the only realistic setting of
the task – except for the rare case of large-scale, standardized testing, where previous
student answers are available for question-specific training (Padó, 2016).

Corpora

We will work with the four German SAG corpora that are currently available. They
were collected in different contexts and with different motivations: CREG contains

6 Reimers and Gurevych (2020) give the languages as ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu,
he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt-br, ro, ru, sk, sl, sq, sr, sv,
th, tr, uk, ur, vi, zh-cn, zh-tw
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data from learners of German as a second language, while the other corpora focus
on content assessment. ASAP-DE was created through crowdsourcing, the other two
corpora were collected in the course of teaching. Table 2 lists the corpus sizes - ASAP-
DE is the smallest at 903 answers, and the German section of SAF is the largest at
2407 answers.

Table 2 also shows the label distribution for the binary correct-incorrect decision.
Note that onlyCREG is annotatedwith binary grades. The other corpora have question-
specific grading scales, which makes automated labelling and comparison of results
more difficult. Therefore, we normalize all grade annotations to the binary case, where
any answer with ≥ 50% of the maximum available points counts as correct. After
normalization, CREG and CSSAG are (approximately) balanced, ASAP-DE has more
incorrect than correct answers and SAF-DE is strongly biased towards correct answers.

SAG for German: Results

Table 3 shows the results of training and evaluating the German Transformer model
separately on each of the fourGerman corpora using leave-one-question-out evaluation
to test on unseen questions. For comparison, we also give the state-of-the-art result
from the literature for each corpus in Table 3. Since we make predictions for the
binary correct-incorrect case, no literature results for ASAP-DE and SAF-DE exist
(published figures are for the multi-label, partial credit case).

The literature benchmark models for CSSAG and CREG are systems relying on
carefully designed features derived from several different layers of linguistic analysis
of the input, for example syntactic structure and deep semantic representations.

It is quite clear from Table 3 that the German Transformer model does not beat
the literature results. It does, however, approximate the performance of the carefully
hand-crafted model for CSSAG. Performance on SAF-DE, where direct comparison
to the literature is missing, is comparable to CREG, the best result. For ASAP-DE,
results are noticeably poorest. The reason is probably that the ASAP-DE data covers
only three questions, so that the model has difficulty in generalizing sufficiently from
the seen two questions in the training set to the unseen question currently tested.

These results highlight two important points: First, Transformer-basedmodels, data
efficient as they are, do not necessarily outperform other types of gradingmodel if only
small amounts of training data are available. This underscores the undiminished value
of crafting language-specific models that rely on linguistic knowledge in data-poor
settings, if possible.

Table 2 German SAG corpora: Source, size and label distribution for binary correct-incorrect decisions

Source # answers % correct-incorrect

CREG (Meurers et al., 2011) 1032 50 – 50

CSSAG (Padó and Kiefer, 2015) 1926 56 – 44

ASAP-DE (Horbach et al., 2018) 903 25 – 75

SAF-DE (Filighera et al., 2022) 2407 80 – 20
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Table 3 Evaluation results: Our German Transformer model and literature results on German corpora.
Unseen question evaluation. Weighted F-Scores and Accuracy

Data Set Model F-Score Accuracy

CREG German Transformer 72.1 72.1

CREG Hahn and Meurers (2012) – 86.3

CSSAG German Transformer 65.0 65.1

CSSAG Padó (2016) 66.6 69.3

ASAP-DE German Transformer 59.8 64.7

ASAP-DE – – –

SAF-DE German Transformer 71.7 70.6

SAF-DE – – –

Second, we see clearly that for the same machine learning model architecture and
underlying language model, prediction performance can vary quite widely across cor-
pora. This point is especially relevant for the real-world applicability of automated
grading: The performance on any new data set cannot be reliably predicted from exist-
ing benchmarks. Note that in these experiments, models were tested on unseen data
originally from the same source as the training data. This is an optimal setting for
machine learning, and model deterioration is expected when test data from a different
source is used. We quantify the loss in model performance when switching to differ-
ent test sets when we demonstrate our Automated Grading Workflow in “The Trust
Challenge: The Automated Grading Workflow” section.

Model Appropriateness for German

Some of the performance difference of ourGermanTransformermodel to the literature
models that rely on deep linguistic analysis could be caused by difficulty dealing
with the syntactic and morphological complexities of German (cf. “Properties of Ger-
man)” section. We therefore investigate how well the tokenization step in our German
Transformer model deals with German morphology, since this is the crucial step that
prepares the student answers for further processing by the language models. Given the
extremely wide coverage of languages from different language families and writing
systems of the pre-trained Transformer model we use, it is not self-evident that the
multilingual language model appropriately covers German.

Tokenization in our chosen language model relies on the WordPiece approach
(Wu et al., 2016) which allows words to be broken into substrings and derives a set of
tokens from its training data such that it concisely covers the vocabulary: A represen-
tation of common word stems plus endings is more concise in this sense than a list of
all encountered strings. Any words in later input that were unseen in model training
can be represented by (subword) tokens from this vocabulary. Wu et al. (2016) state
that between 8000 and 32000 word pieces yield good results – this is much less than
the vocabulary size of corresponding corpora.
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In our case, the multilingual language model was trained on data in 50 languages,
which all had to be represented by the same inventory of word pieces. This inventory is
also trained from data and without explicitly considering linguistic rules. Despite the
complexity of this task,we dofindword representations that are reminiscent ofGerman
lemmatization. Table 4 shows examples. Tokenizations that match linguistic analysis
are set in bold face. Underscores in front of letter sequences mark the beginning of a
new word in the original text.

Lines 1 and 2 show sample text written by native speakers on the topic of Java
programming. We find that tokens mostly correspond to morphemes, although fre-
quent words such as the determiners diese and eine are tokenized as complete words
instead of inflected forms, probably due to their frequency. Content words, except for
Methode (method) and Konstante (constant) are analyzed correctly – prüft is split into
the stem and the person affix, and Inhaltsgleichheit is separated into its components
Inhalt (content) and gleich (equal) as well as the linking element s and the derivation
marker heit. Schnittstelle (interface) is represented by its components Schnitt (here:
nominalization of ’to intersect’) and Stelle (place), while the latter keeps its plural
marker n (possibly due to overlap with the verb stellen (to put, to place)).

The prefix ver of the verb vererben (to pass on by inheritance) is represented as
one token, but the stem erben (to inherit) shows non-standard segmentation. This is
probably due to the cross-lingually high frequency of the sequence er, which prompts
misrepresentation (the canonical lemmatizationwould be stem erb and infinite ending en).

Learner language (line 3 in Table 4) is more of a challenge for the tokenizer:
Missing capitalization causes the word Kenntnis (knowledge) to be (only somewhat
correctly) represented as kennt (knows)plus derivationmorphemenis (amorphological
analysis would yield kenn–t–nis, with the stem kenn followed by linking element t and
nis). Capitalized versions of this word are represented as a single token in the data.
This representation difference between capitalized and uncapitalized versions of the
same word may cause the grading model to miss lexical overlap. The spelling error
in österreichische (Austrian) also causes a complete, but linguistically unfounded
representation. These observations may explain why the German Transformer model
so clearly stays below the literature results for the learner data in CREG.

Besidesmorphology,which theTransformer-basedmodel captures in broad strokes,
we mentioned the relatively free word order in German as a potential issue for the

Table 4 Automatic tokenization of German text, samples from CSSAG (native speakers, lines 1 and 2) and
CREG (learners, line 3)

’_Da’, ’_diese’, ’_Method’, ’e’, ’_auf’, ’_Inhalt’, ’s’, ’gleich’, ’heit’, ’_prüf’, ’t’, ’.’,

Because this method checks for content equality.

’_Man’, ’_nimmt’, ’_eine’, ’_abstrakt’, ’e’, ’_Klasse’, ’,’, ’_da’,

’_Schnitt’, ’stellen’, ’_nur’, ’_Konst’, ’anten’, ’_ver’, ’er’, ’ben’, ’_können’, ’.’

One uses an abstract class, since interfaces can only pass on constants [by inheritance].

’_kennt’, ’nis’, ’_in’, ’_der’, ’_öst’, ’er’, ’rich’, ’en’, ’_Küche’

knowledge (sp) of the Austrian (sp) cuisine
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automated grader. As our examples in Table 1 show, adverbs and arguments can take
several positions in the sentence, while the verb position is either in the beginning (in
second position) or at the very end of the sentence. The challenge for any model is
therefore to identify and represent verbs and arguments wherever they appear in the
sentence. This task is made easier by the bidirectional training strategy employed by
theBERT family of languagemodels: The input is passed to themodels simultaneously
front-to-back and back-to-front, ensuring that, e.g., the German verb is encountered
soon no matter what its position in the sentence.

Furthermore, BERT is quite insensitive to input shuffling on Natural Language
Understanding tasks (Hessel and Schofield, 2021; Willms and Padó, 2022), which
also implies that it should be robust to effects of (relatively) free word order.

Therefore, we conclude that even though the language model does not deeply ana-
lyze the input text on a linguistic level, it is well-equipped to deal with the complexities
of (standard) German that we introduced.

Cross-Language Comparison to English

Cross-language model comparison is difficult, since evaluation results vary strongly
by corpus even within one language, as we have seen. Table 5 does demonstrate,
though, that evaluation results for our German Transformer model in terms of F-Score
are numerically similar to state-of-the-art Transformer results for the SemEval-2013
English standard corpora (Dzikovska et al., 2013). (No benchmarks exist for the other
English corpora on the correct-incorrect task.)

To adapt to standard procedure for the English corpora, we report evaluation results
for a fixed train-test split of the German data sets that is stratified by question. This
setting is called “unseen answers” and is an easier task than the “unseen questions”
setting reported above, since the models have already encountered sample answers for
each question during training. This explains the higher F-Scores for theGerman Trans-
former model on all four corpora compared to the unseen questions results in Table 3.
This is especially noticeable for ASAP-DE, where switching to unseen answers evalu-
ation removes the difficulty of generalizing over a small number of available questions
in the training set. For each corpus, a set of approximately 200 answers is withheld for

Table 5 Evaluation results:GermanTransformermodel onGerman corpora and literature results for English
standard corpora (Beetle/SciEntsBank:Poulton and Eliëns (2021), model albert-large). Unseen answer eval-
uation. Weighted F-Scores

Data Set Language F-Score

CREG German 81.7

CSSAG German 84.8

ASAP-DE German 86.2

SAF-DE German 86.2

SciEntsBank English 83.4

Beetle English 91.2
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testing (this is 20% of CREG and ASAP-DE, 10% of CSSAG, and the 270 instances
of the unseen answers test set of SAF-DE).

The results do not directly prove the quality of the German Transformer model, but
they do indicate that the model’s performance is numerically comparable to reference
models for English.

Discussion

In sum, we have seen that our Transformer-based SAG models for German data show
comparable performance to English-language models despite the smaller amounts of
available training data because of their smaller data requirements for fine-tuning exist-
ing language models. These models also appropriately deal with German morphology
and syntax. The models however do not outperform hand-crafted, feature-based mod-
els using linguistic analysis on the harder “unseen questions” task that is closest to
expected usage of the models in real-world classrooms. This highlights the power of
utilizing linguistic knowledge in hand-crafted systems in data-poor settings. We have
also seen variance in performance across different corpora, an argument for closely
inspecting model performance on each new data set, especially in a practical setting.

The German SAG model we have built and evaluated is not fully optimized. There
is sure to be a further margin for improvement using different pre-trained Transformer
models, different classificationmodels or even different classification approaches (e.g.,
as in Bexte et al., 2023). We have shown, however, that the model has robust perfor-
mance, and we will demonstrate how teachers can profit from its predictions in a
hybrid grading setting in “The Trust Challenge: The Automated Grading Workflow”.

The Usability Challenge: ASYST, an easy-to-use Automated Grading
System

We counter the challenge of making the German Transformer model easy to use for
a broad user base by developing the ASYST (Automated Grading System) tool. In
addition to the German Transformer model introduced in “SAG for German: Results”
section, ASYST also wraps a SAG model for English, so that the input language can
be freely chosen for each data set.

ASYST takes as input an Excel sheet containing student answers and correct refer-
ence answers. Question texts can also be provided at this step so they will be available
for reference during later review. They are however not used for grade prediction.
If available, teachers can also specify existing manual grades for some or all stu-
dent answers – this helps with analyzing the reliability of ASYST predictions on one
specific data set.

The Excel sheet containing student answers and correct reference answers is loaded
into the tool in just two steps (see Fig. 1): First (top left), the user is asked to choose the
language of the student answers, and then to specify the Excel sheet using a standard
file chooser dialog that pops up upon clicking the “Input file” button. In the top right
of Fig. 1, a file named DE-Demo-Daten.xlsx has been loaded successfully.
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Fig. 1 The ASYST GUI. Top left: Initial state. Choose language and input file. Top right: Ready to start.
Bottom: Result display and Save button

As the user progresses through these steps, the next relevant button (first “Input
file”, then “Start”) is only activated in the GUI once the previous task is concluded in
order to prevent errors (following Golden Rule 5) and feedback about user choices is
given (according to Golden Rule 3). In the top right of Fig. 1, this is done by showing
the name of the loaded input file for verification. The user can always go back to earlier
steps if needed – this keeps the user in control as demanded by Golden Rule 5.

Finally, at the click of the Start button, the grading process begins, using the appro-
priate grading model for the chosen input language. Automated grading is fully local,
which precludes data protection issues because the student answers never leave the
teacher’s computer.

After grading, a table opens with the results (see bottom of Fig. 1). The table shows
all the columns provided in the input file, but centers on the reference and student
answer and the ASYST grade prediction. The “observed grade” column at the far
right is for existing manual grades, but the value NONE was entered instead by the
user in the screenshot. Whenever the incorrect grade is encountered in the “suggested
grade” or “observed grade” columns, the corresponding spreadsheet cell is highlighted
in red.

The table content can then be saved as an Excel sheet for review and revision at the
teacher’s discretion before being distributed to students. If previously observed grades
exist, model reliability can also now be evaluated (cf. “Analysis”) by comparing the
labels in the suggested and observed columns using Excel formulae.
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Design Process and User Involvement

ASYST was designed with Shneiderman’s Golden Rules in mind (see “The Usability
Challenge: Software Usability”) in order to achieve high usability as defined by the
ISO. To this end, users were involved in two places in the design process: First, a
small group of test users helped guide initial development. Second, a group of teachers
experienced in short-answer grading participated in a more formal usability study.

Initial Development
Three test users of different ages and computer skills gave feedback with a focus on
ease of use for anyone irrespective of their technical skills. One tester was a software
developer, one had experience using office applications for work and one mostly used
mobile phone apps for all digital tasks. These early testers were not experts on short-
answer grading; the age range was 20-55 years. They used an early version of ASYST
to load student answers in different file formats, generate grade predictions and save
them.

The most important result of this test user involvement was the focus on Excel
sheets as input and output format because this format was most familiar to the testers
and is (in the LibreOffice incarnation) accessible to anyone. Another advantage of the
format is that Learning Management Systems (LMS) like Moodle7 or Ilias8 that are
commonly used in German universities offer Excel export of student answers from
online tests, which allows integration with existing computerized test tools.

Usability for Target Group
Upon completion of a first full version of ASYST, we ran a second round of user tests
with a dual goal: One, to more formally evaluate software usability, and two, to gather
additional feedback from users from the intended target group.

We recruited a panel of teachers with experience in short-answer grading. In total,
six people (three women and three men) participated. Four participants teach German
as a second language, two teach computer science. All six have more than three years’
experience grading short answer questions.

The testers were given an Excel sheet with sample student answers in individual test
runs and were asked to create grade suggestions using ASYST and to save the results
in a new Excel sheet. In order to evaluate usability in terms of the ISO definition (see
“The Usability Challenge: Software Usability”), we registered whether users were
able to complete the task (measuring effectiveness), how long they took to complete
the task (measuring efficiency) and how satisfied theywerewith theASYST tool, using
the standard Software Usability Score (SUS, Brooke, 1995) to measure satisfaction.

Userswere asked to think aloud during task completion, in order to help the observer
understand the reason for any problems using the tool. Users were also asked for
free feedback on the ASYST tool after the test. Feature requests and comments on
difficulties were documented.

7 www.moodle.org
8 www.ilias.de
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All participants were ready in principle to use a tool for grading assistance; the
language teachers in particular were very interested in a tool to support their grading
and help save them time.

Table 6 shows the numeric results of our small user study. All testers were able
to complete the task successfully, leading to 100% effectiveness of the tool. The
median time taken on the task (from setting the input language to completed saving
of the results, and counting the run time of the tool) was 2:15 min. The minimum
time was 1:24 min, the maximum was 6:14 min. However, in this longest trial, the
participant carefully reviewed the grade suggestions before saving, which accounts
for the additional time taken.

The average SUS score across the six participants was 88.8, with a minimum score
of 67.5 and a maximum of 100 (which is a perfect score). SUS scores should be
interpreted against the empirically observed score distribution. Bangor et al. (2009)
in a meta study found the SUS mean score across all tested items to be 70, while the
mean score for Graphical User Interfaces (GUIs) like ASYST is 76. This puts the SUS
score of the ASYST system well above average, even for a GUI, and indicates good
usability.

Even though our results should not be over-interpreted due to the small number of
participants, they do indicate that short-answer grading experts were able to use the
tool successfully and smoothly to generate grading predictions for further revision.

We also collected feedback and feature requests from the users. Three aspects
were mentioned more than once: Users asked for clearer visual indication that grade
prediction can be started once the input file is loaded. In the tested software version,
this was indicated by the unlocking of the Start button. Users suggested to additionally
highlight the button in a contrast color to the gray background. When inspecting the
results, users also asked to see the question text in addition to the reference and student
answers. These two requests have already been incorporated in the current version of
ASYST (see the screenshots in Fig. 1).

While the ASYST results display is meant to give a quick overview before saving,
users wanted to be able to immediately edit the output in the result display. This
functionality is scheduled for future implementation.

ASYST Availability

The finished tool is available as an end-user application in the form of a compiled
Windows 11 executable at https://transfer.hft-stuttgart.de/gitlab/ulrike.pado/ASYST.
The Python source code is also available there under an Open Source license. It can
be executed in a Python interpreter on all platforms.

Table 6 Evaluation of the usability of ASYST by six experts: Effectiveness (success on task), efficiency
(median time taken in minutes) and satisfaction (average SUS score)

Effectiveness Efficiency Satisfaction

100% 2:15 min 88.8
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Current goals for further development also include an evaluationmode to test model
performance on one’s own data (currently, performance evaluation has to happen
manually using spreadsheet calculations in the output Excel sheet) as well as adding
GUI support for more of the many languages that the SBERT model covers.

Other tools are available that are similar to ASYST, but have a somewhat different
goal: One is the ESCRITO scoring tool (Zesch and Horbach, 2018), which takes
users through multiple steps analyzing whether the use of SAG models on their data
is promising. Another is ShinyReCoR (Andersen and Zehner, 2021), which supports
human analysis and grading of data by creating semantic clusters of the input answers.

The Trust Challenge: The Automated GradingWorkflow

In the literature, two keys to adoption for teaching support tools are ease of use and
trust in the system (see “The Trust Challenge: Adopting Automated Tools in the
Classroom”). We have discussed a tool to help with the former. The latter can be
facilitated by users’ understanding of the capabilities of the tool and their agency in
its integration into teaching. Nazaretsky et al. (2022) argue specifically for SAG that
it is key to both communicate that grading differences are to be expected even among
two humans and to enable teachers to review and revise machine grades.

We propose an evaluation process that allows teachers to gauge the performance of
a grading pipeline on their students’ data, apply their own quality requirements and
choose which automated grades to keep and which to review. In short, the evaluation
process acknowledges the imperfection of today’s SAG models, but allows teachers
to actively make the most of what is available by choosing exactly how much to rely
on the model in a hybrid human-machine grading setting.

The workflow integrates steps from the classical data mining and artificial intelli-
gence model development cycle (e.g., CRISP-DM, Shearer, 2000) – data preparation,
model training and result analysis – as well as an explicit step for setting require-
ments for the resulting model (cf. the reliability testing workflow proposed by
Tan et al., 2021) and a step for deciding on the best integration of human and machine
grading in each special case. In the context of winning teachers’ trust, the step of defin-
ing requirements for model performance raises awareness for the expected level of
grading disagreement in any grading process, be it manual or automated. It also allows
teachers to adapt the maximum acceptable level of disagreement to their concrete use
case, be it formative or summative testing. The decision step at the end emphasizes
teachers’ agency in using automated grading tools for their own goals in their own
setting.

The process is as follows:

1. Teachers define the maximum affordable disagreement between machine and
human grader depending on their test situation – sample human-human disagree-
ment rates from real data are provided

2. Teachers collect a data set of manually annotated student answers (e.g., from last
year’s exam)
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3. Optionally: Teachers train or fine-tune a grading model on this data to improve
performance – a publicly available model can also be used

4. Teachers analyze the gradingmodel’s performance on the level of individual grade
labels (like correct/incorrect)

5. Teachers decide on the basis of Step 4which grade predictions to accept andwhich
to revise in order to save effort, while grade disagreement with their own judgment
stays below their required threshold

Wewill now discuss these steps in turn from a theoretical perspective and then apply
the process to the available German data in “Sample Application” to demonstrate the
results for several data sets.

Defining Requirements

An automated grader in teaching should save grading effort and yield a grading result
at the same level of quality as human grading, or even better. However, these general
expectations are quite imprecise – a concrete minimum requirement for model perfor-
mance and effort saved are needed. We therefore discuss concrete examples from the
literature to demonstrate which levels of grading quality have been deemed acceptable
in the past and which amount of saved labor can realistically be expected.

Grading disagreement
We measure the performance of a SAG model in terms of its agreement with the
gold standard grade annotations on the test data. Therefore, it is easy to conceptualize
imperfect predictions as grading error on the part of the machine. While differences
between a machine and the gold standard can be due to erroneous predictions just as
differences between a human grader and the gold standard can be due to tiredness
or oversight, differences between different annotators can also be caused by different
interpretations of the student answer or gray areas in the scoring rubrics. Therefore, a
certain amount of disagreement in the grade assignments of any two graders (human
or machine) are to be expected.

Mieskes and Padó (2018) surveyed a number of publicly available SAG corpora
with double human grade annotation. They determined that human-human grading
disagreement of up to 15% has been accepted in the past for published data from
ad-hoc, small- to medium scale testing like in-class tests. Nazaretsky et al. (2022) find
similar average disagreement between different teachers grading the same answers.
For standardized, large-scale testing, the observed human-human disagreement is at
less than 10% inMieskes and Padó’s survey, due to grader training and quality control
measures.

These values can serve as a guideline to the amount of grading disagreement we
can accept from a machine grader. In fact, the decision made by Vittorini et al. (2021)
to use their 89% correct model for stand-alone grading in low-stakes testing and to
additionally review its grades in high-stakes testing fits well within these boundaries.
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Distribution of disagreement
Another important aspect of grader disagreement is its distribution over the different
grade labels. In a correct-incorrect grading task, any disagreement would ideally
occur equally in both grade labels, but both humans and machine graders may well
show a grading tendency by being too strict (rejecting correct answers) or too lenient
(accepting wrong answers). Depending on the context, one tendency or the other may
be more desirable.

Workload reduction
A desire to save grading time and effort is often the driving factor behind the use
of automated graders, so users will require a substantial reduction in grading time in
order to consider using a model. The minimum required reduction depends on any
specific user’s time budget. In terms of what can be realistically expected of a system,
Vittorini et al. (2021) report a grading time reduction of about 40%.

Data Collection

In the context of our workflow, manually graded student answers are required in two
places: As test data for the analysis step, and, optionally, for model training and fine-
tuning to improve model quality (recall “Method”)

Aswe have seen in “SAG for German: Results”, the performance of the samemodel
on different data sets can vary substantially, even after the optional model training
step. Without model training, performance is expected to be even lower. Therefore,
evaluation results from literature data cannot be expected to carry over identically to
a new test set.

Teacherswhowish to profitmost from evaluating and analyzingmodel performance
therefore should collect a context-specific test set. The data might for example consist
of graded answers from old tests that are similar to the ones that the system will
be grading. The test set should be as large as possible to make it robust to chance
fluctuations; a size in the hundreds of answers is realistic.

Ideally, this data set would be graded by multiple teachers to provide an insight
into the reliability of the human grades (in terms of annotator agreement) and into the
acceptable error level for the setting (in terms of Accuracy).

Training or Fine-Tuning

If large amounts of data (in the thousands of manually graded answers) are available,
the grading model can be optimized for this data set. The fastest option to do this
for our German Transformer model is to train the logistic regression classifier in the
SBERT architecture – this is the component that is doing grade prediction given input
sentence representations generated by the earlier model steps.

It is also possible to further fine-tune the language model used for creating the
sentence representations. This takes some technical expertise, but it is a plausible
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improvement strategy which adds vocabulary and samples of the expected writing
style to the language model. Note that we did not take this step for our experiments.

Analysis

Anumber of different standardmeasures exist for evaluating SAG. In our experiments,
we take the view of grading as a classification task, where pre-defined labels are
assigned to the test instances. In this case, standard measures are Accuracy, Precision,
Recall and F1 Score.

When speaking about grading disagreement between machine and human grader
(as above in “Defining Requirements”), we are more closely aligned with the concept
of grading as parallel annotation by several graders. The standard evaluation method
for this operationalization of grading is Cohen’s κ .

We nonetheless opt for the classification evaluation measures because they are
easily interpreted as percentages in the different analysis steps: Overall grading dif-
ferences between the SAG model and the human gold standard become visible in
system Accuracy, which gives the percentage of answers where the model agrees with
the gold standard. This means that a SAG model with Accuracy of 85% agrees with
the human gold standard in 85% of cases and disagrees in the remaining 15%. Note
that we have no way of determining which portion of the remaining disagreement is
true error (and the resulting machine prediction would never agree with any human
grader’s) and which portion is due to the gray area of interpretation that mostly causes
disagreement between humans.

Importantly, evaluation should be carried out not just for the whole set of answers,
but also for subsets, in order to zoom in on grading tendencies. We can do this by
inspecting the label-specific Precision. If 90% of all student answers that were graded
correct by the machine also received this label by a human grader, the assignment
precision of the grade label correct Preccorr is 90.

A SAG model with a tendency to over-predict correct will likely have a lower
Preccorr score, since many of student answers with the overly frequent machine pre-
diction correct will be graded incorrect by thehumangold standard.ASAGmodelwith
a tendency to under-predict correct will have a low Precincorr performance instead,
since it will assign incorrect in many cases where the human gold standard says
correct.

Decision on Usage

After the performance analysis, the automated grader’s fulfillment of the required stan-
dards for grading error, grading tendencies and workload reduction can be evaluated.
This tells the teacher what usage settings are optimal given the observed performance
and the stated requirements (for example, hybrid usage only).

In this way, teachers can evaluate their individual cost-benefit ratio of using an
automated system over standard manual grading based on a realistic picture of what
the automated grader is able to contribute in their classroom setting.
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Sample Application

We now apply our process to the German data sets. We define the requirements to
be in line with the literature findings (see “Defining Requirements”): The output of
a grading cycle should have at most 15% grading disagreement between human and
machine grader, in line with common human-human agreement. If the machine grades
disagree with the human gold standard, machine grades should optimally be in favor
of the students, i.e., accepting gold standard incorrect answers rather than rejecting
gold standard correct answers. Projected workload reduction should be around 40%.

The data consists of the German corpora we used above, i.e., CSSAG, CREG,
ASAP-DE and SAF-DE. These are treated as four separate data samples and stand in
for teacher-collected data samples as described in “Data Collection”.

For three of these corpora, κ values for double human annotation are provided in the
literature. (CREGonly contains student answers forwhich the graders agreed.)CSSAG
annotators achieved Fleiss’ κ of 0.54 and Accuracy of 89.2% for binary grading
(Mieskes and Padó, 2018). ASAP-DE grade annotations agree “between .58 and .84
quadratically weighted κ” (Horbach et al., 2018) on three or four labels (depending
on the prompt). SAF-DE uses five labels, and annotators reached 0.78 Krippendorff’s
α and 81.4% Accuracy (Filighera et al., 2022).

Even though each work reports a different κ formulation and κ is not always avail-
able for the binary grading done here, we conclude that the human grades reported for
the four corpora are reliable. Our demonstration of the grading support process now
aims at showing how human grading effort can be saved while still achieving grading
outcomes within the requirements.

We train the classification step of the German Transformer model on a 90% split
of CSSAG and apply this model to the unseen 10% CSSAG test split as well as the
whole of CREG, ASAP-DE and SAF-DE (including both SAF-DE test sets). This
mimics a situation for CREG, ASAP-DE and SAF-DE where a model trained on a
different corpus is re-used without further adaption, which is realistic in practice due
to lack of data or technical expertise. Note that we expect the model Accuracy on
CREG, ASAP-DE and SAF-DE to be lower than in Table 3, where we reported the
performance of models specifically trained on the individual data sets: In general, the
more different the evaluation data is from the training data, the more the performance
of Machine Learning models suffers.

We choose the CSSAG model as the prediction model because (1) it performs
best of all models in comparison to the relevant literature and (2) it was trained on a
relatively large corpus with balanced label distribution, which will hopefully enable
it to generalize well.

Table 7 shows the results for analysis. First, we find that the Accuracy for CREG,
ASAP-DE and SAF-DE is indeed lower than for the tuned models in Table 3, as
expected. This underscores again the need to test existing models against samples of
teachers’ own data, since the size of the performance drop varies notably between
corpora and is hard to predict. The drop in Accuracy is most drastic for ASAP-DE
(loss of 22 percentage points) and SAF-DE (loss of 15 percentage points). On the face
of it, this raises the question of how useful the model predictions can still be for these
corpora.
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Table 7 Applying the CSSAG German Transformer model to the CSSAG test set, CREG, ASAP-DE and
SAF-DE: Overall Accuracy and label-specific Precision. Hybrid Accuracy and Workload Reduction are
for hybrid machine-human grading, assuming that the labels with the higher label-specific Precision are
accepted, and the others are manually reviewed

Data Set Acc Preccorr Precincorr Hybrid Acc Workload Reduction

CSSAG Test 84.8 83.2 86.5 0.94 46.4%

CREG 66.0 69.1 63.7 0.87 42.0%

ASAP-DE 43.2 28.3 85.9 0.96 25.9%

SAF-DE 55.0 85.3 24.7 0.93 50.0%

However, when looking at grade-wise Precision, predictions are still quite reliable
for at least one grade: Strikingly, for ASAP-DE with an overall Accuracy of just 43%,
86% of all predictions of incorrect are still in agreement with the gold standard human
grades. Similarly, SAF-DE has an overall Accuracy of 55%, but predictions of correct
still agree with the gold standard in 85% of cases. CREG shows the least difference
between grade-wise Precisions, probably because the data set is perfectly balanced
between grade labels.

The CSSAG model on the CSSAG test set is the best case of a corpus-specific
grading model and almost fulfills the workflow requirements as it stands: 84.8% of
all predictions are accurate. Additionally, the remaining grading disagreement is quite
well-balanced between grade labels, with a slight inclination towards leniency (the
model more often accepts incorrect answers than rejecting correct ones). Accepting
all grade predictions without review would of course save 100% of grading effort, so
the workload reduction criterion would also be satisfied.

Hybrid grading
For CREG, SAF-DE and especially ASAP-DE, stand-alone use of the model pre-
dictions is not realistic. However, even these model predictions can still be used to
reduce a teacher’s workload while maintaining acceptable overall agreement between
machine and human grader: In a hybrid setting, the teacher can accept all grade pre-
dictions made for the grade that the model predicts most reliably, and manually review
the remaining predictions, correcting them as necessary. The two rightmost columns
in Table 7 show the overall Hybrid Accuracy and the workload reduction due to hybrid
grading given in percent of all students answers. The Hybrid Accuracy is the overall
agreement with the gold standard human grade that would result from accepting the
more reliable label prediction and manually reviewing the remaining predictions.9

This strategy would result in an overall percentage of remaining disagreement of
at or below 15% for all four corpora and a workload reduction between 26 and 50%
of answers. There will even be some additional speedup compared to pure manual
grading, since it is faster to review grades than to assign them from scratch (Vittorini
et al., 2021).

The outcome of the hybrid grading process satisfies our criteria for CSSAG, CREG
and SAF-DE. Adding a human review step for some of the predicted grades would

9 We (somewhat optimistically) assume that human-reviewed grades are always correct.
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reduce disagreement on grades for CSSAG from 15 to 6% across all student answers,
while still saving human grading of almost half of the student answers. This would
however introduce a small bias to the detriment of students, since the remaining dis-
agreementwould stem from correct answers thatwere automatically labelled incorrect
and therefore not revised.

For CREG, 13% of disagreement remain in the hybrid setting (this time, in favor
of the students) and 40% of answers can be skipped in manual grading. For SAF-DE,
the large label imbalance of the data set leads to a workload reduction of 50% at 7%
remaining disagreement if all predictions of correct are accepted. Only answers that
were predicted to be incorrect would need to be reviewed, and any remaining grading
disagreement would again be in favor of the students.

Despite the poor model performance for ASAP-DE, hybrid grading would even
bring the overall level of disagreement down to 4%when accepting all answers labelled
as incorrect and manually revising all others. However, this means that the remaining
prediction disagreement is to the detriment of students, since correct answers misla-
belled as incorrect would not be reviewed. Also, due to the label distribution of the
corpus, this translates to only 26% of annotation effort saved, which does not meet
our labor saving criterion.

Based on this result pattern, users can now decide on whether and how to use the
system. Users with data like the CSSAG test set can choose between fully automated
and hybrid grading since both settings fulfil our requirements. Results like for CREG
and SAF-DE invite hybrid grading, yielding substantial effort reduction and grad-
ing disagreement rates below our required threshold of 15% along with remaining
disagreement in favor of the students.

Faced with a result like for ASAP-DE, a teacher might decide not to use the system
and rely on full manual grading as before. Alternatively, given the very high Hybrid
Accuracy, the annotation effort saved might even still be worthwhile.

Importantly, the decision for any of these strategies is fully in the hands of the
teacher, and is based on a sample of their own data. Therefore, teachers have a clear
expectation of how well machine grades will agree with their own judgment and how
strong this agreement will be after hybrid grading. They can also communicate their
assessment of the chosen strategy and its quality clearly to their students to build their
trust in turn.

Conclusions

We have highlighted three challenges for the broad-scale application of automated
Short-Answer Grading (SAG) to student answers, especially for languages other than
English: A technical challenge regarding the need for automated SAG models of
sufficient quality, given that fewer resources exist for training andmodel development;
a usability challenge in adapting high-quality research prototypes to the needs of users
who are not programming experts, and a trust challenge in communicating the abilities
and limitations of the tools and keeping the intended users in control of grading in
their classrooms.
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We have addressed these challenges in turn, proposing an automated SAG model
for German wrapped by a GUI that was designed with usability for all in mind, as
well as a workflow that enables teachers to evaluate the model on their data and decide
on the best usage for the tool in their context, while realizing workload reduction at
acceptable rates of disagreement between the machine and human graders.

Focusing on German, we have demonstrated that our SAG model gracefully deals
with syntactic and morphological properties of German that differ from English. Due
to the nature of the multilingual language model used in model creation, our German
Transformer model can be applied to texts in 49 more languages (as diverse as Arabic,
Danish, Finnish, Chinese or Italian) as easily as to a new German data set. Analy-
ses of performance and linguistic appropriateness for (some of) these languages are
interesting avenues for future work on the technical challenge.

One limitation of the German Transformer model is our decision to work with
the dichotomous grading case (the correct-incorrect decision). While technically, the
German Transformer model can be trained to cover partial credit (as additional grade
labels), the integration of machine grades and human review becomes much more
complex in this case. The larger the number of available labels, the harder the task of
consistently deciding between the classes. This means annotators (human or machine)
will disagree more often than for the dichotomous case. Also, the interpretation of this
disagreement becomesmore challenging: Likely, practitioners will view disagreement
about which of two adjacent grade labels to choose as less serious than disagreement
about two grade labels that are far apart (like full and zero marks). This complexity
would need to be considered in choosing the machine grades that a teacher is ready to
accept as reliable in the partial credit case.

We addressed the usability challenge by presenting the ASYSTGUI for easy appli-
cation of the German Transformer model and demonstrating its usability for expert
teachers. Development of ASYST is ongoing, with better support for grading model
evaluation and analysis a major focus for future work. ASYST currently assumes that
student answers are easily accessible in spreadsheet format. In Germany, this is plau-
sible to assume at the university level, where learning management systems (LMS) are
available and accessible for testing. However, at the level of primary and secondary
education, availability and use of LMS varies widely among schools. For many teach-
ers, this means a gap between handwritten student answers and digital automated
grading that is not currently addressed by ASYST.

To demonstrate possible outcomes of using our proposedworkflow,we have applied
it to four German data sets and found that by focusing human effort where it is most
needed, even imperfect SAGmodels can still be used to save grading effort and produce
reliable grade predictions.

The hybrid nature of our proposed workflow and the focus on the teacher’s freedom
to set requirements for theGermanTransformermodel’s output avoidsmany of the eth-
ical questions associated with automated grading in the classroom: The performance
of the automated gradingmodel is scrutinized in a realistic setting and unreliable grade
predictions are rejected out of hand. Therefore, students are not graded by a black box
model with unknown performance and biases. In hybrid grading, model predictions
can even serve as a corrective to possible teacher grading biases, while the teacher
can identify model bias in the grade predictions under human review. What remains
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potentially problematic is the amount of disagreement between human and machine
(small by design) on those grade labels that are accepted without review. In these
cases, is not possible at this point to distinguish between true grading errors on the
part of the machine and disagreement of interpretation as between humans, and the
danger of introducing a machine bias remains.

However, machine involvement need not be the same across all settings – teachers
choose the amount of grading support (and with it of possible machine bias and
true error) that is acceptable to them for each individual test. This means that hybrid
grading for high-stakes testing with its rigorous requirements for grading agreement
and absence of bias will be different from low-stakes testing, for example in weekly
feedback tests.

With an easily usable automated SAG tool and workflow available, we believe that
everything is in place for future work on the trust challenge by inviting feedback from
the field on both usability and workload reduction in real-life settings, and on teachers’
views of the ethical consequences of hybrid grading, as well.
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