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Abstract
Complexity and difficulty are two closely related but distinct concepts. These concepts
are important in the development of intelligent learning systems, e.g., for sequencing
items, student modeling, or content management. We show how to use complexity and
difficulty measures in the development of learning systems and provide guidance on
how to think, reason, and communicate about these notions. To do so, we propose a
pragmatic distinction between difficulty and complexity measures. At the same time,
we acknowledge the limitations of any simple distinction and discuss several poten-
tially confounding issues: context, biases, and scaffoldings. We also provide an
overview of specific measures and their applications in several educational domains
and a detailed analysis of measures for problems in introductory programming.

Introduction

Both research and development in artificial intelligence in education are often concerned
with questions regarding easiness and difficulty. We try to estimate student skills using
student modeling techniques (Pelánek, 2017) in order to present students with appropri-
ately challenging problems.We aim to sequence problems from easier to more difficult to
achieve the state of flow (Kiili et al., 2012; Csikszentmihalyi & Csikszentmihalyi, 1992).
We design techniques for providing hints for difficult steps (Aleven et al., 2016). Analysis
of difficulty is also useful for intelligence amplification (Baker, 2016), as it can point to
misspecified problems or suggest ideas for the potential addition of new content, which
will make the learning curve smoother (Huang et al., 2020).

But what exactly do the terms “easy” and “difficult” mean? Is there a difference
between “difficulty” and “complexity” of items? How do we exactly conceptualize
these notions for the purposes of the development of adaptive learning systems? These
are the main question that we address in this work.
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The notions of difficulty and complexity are sometimes used as synonyms. However,
the literature offers a basic distinction between them (e.g.,Mesmer et al. (2012); Beckmann
et al. (2017)): complexity is an intrinsic property of a task (item) and is given by its internal
structure, whereas difficulty is related to student-task interaction (performance of students).
Both of these concepts can be measured in many ways. Difficulty and complexity
measures have many applications in the development of adaptive learning systems. It is
thus important that we think, reason, and communicate about these notions properly.

One typical application is the sequencing of items. A common pedagogical principle
applied in most learning systems (both adaptive and static) is to sequence topics and
problems from easier to more difficult (Scheiter & Gerjets, 2002). But what exactly
should be the criterion that is used for sequencing? For example, Brusilovsky (1992)
considers sequencing with respect to complexity, whereas Chen et al. (2006) propose
sequencing based on item difficulty and item similarity. Both of these approaches have
disadvantages. Consider, as an example, the sequencing of program comprehension
items in introductory programming. When sequencing with respect to complexity, we
may put early in the sequence items that use few simple programming concepts but are
difficult to answer due to high cognitive demands. When sequencing with respect to
difficulty, we may put early in the sequence items that contain advanced programming
concepts, but for which the answer is easy to guess due to the structure of the item. This
is a specific example where it is useful to explicitly distinguish between complexity and
difficulty measures and to consider their suitable combination.

Complexity and difficulty measures have many other applications. Complexity can
be used as a proxy for difficulty to alleviate the “cold start” problem in student modeling
and check for biases in student data (Effenberger et al., 2019). Estimation of difficulty
based on complexity is also useful for the filtering of automatically generated content
(Kurdi et al., 2020). Complexity and difficulty measures are also useful for intelligence
amplification (Baker, 2016) or design-loop adaptivity (Aleven et al., 2016).

In this work, we consider the complexity and difficulty of items in learning systems,
focusing on well-structured problems, i.e., problems with clear instructions and an
objective solution that can be checked algorithmically. This covers a wide range of
items used in learning systems; specific examples are given in Table 1. For these items,
complexity measures are, for example, the length of a text, the count of numbers in an
item statement, the number of concepts in an item solution, or the number of steps
necessary to solve an item. Difficulty measures are based on students’ performance; the
basic ones are the failure rate and median response time.

Our aim in this overview paper is to provide a solid starting point that can provide
guidance and inspiration for the usage of complexity and difficulty measures in the
development of learning systems. To this end, we review literature, provide conceptu-
alizations relevant to the AIED field, discuss specific examples from several educa-
tional domains, and perform an in-depth analysis of a particular dataset.

We propose a simple distinction between complexity and difficulty measures: a
complexity measure is based only on the item description, it does not use any data
about student performance; a difficulty measure is based only on data about student
performance, it does not use any data about an item beyond its identification number.
This is a pragmatic view that is useful for many practical applications. However, we
also highlight its limitation: aspects like the role of context, biases, and scaffoldings
make the distinction between complexity and difficulty more convoluted. Our proposal
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is based on previous conceptualizations of complexity and difficulty, which are
reviewed in Section 2. We discuss aspects specific to educational items and our
pragmatic approach to dealing with complexity and difficulty measures in Section 3.

We complement the general discussion with specific examples from several diverse
settings.We have chosen settings for which the current literature provides ample measures,
applications, and results: reading and language learning, multiple-choice questions, word
problems in mathematics, logic puzzles. In Section 4, we discuss specific complexity and
difficulty measures for these domains and outline specific applications of these measures.

We also provide a detailed analysis in a less studied domain: introductory program-
ming. We use extensive data from five types of programming exercises, which allows
us to explore the subtle issues involved in the computation of complexity and difficulty
measures. The use of five types of exercises also allows us to explore the generaliz-
ability of results. These results are reported in Section 5.

Throughout the paper, we stress the need to take into account the purpose of
complexity and difficulty measures. As the examples discussed above illustrate, there
are many types of use cases, and each of them requires measures with slightly different
properties. We thus do not aim at finding the correct measure but rather at a wide
spectrum of measures and tools for choosing the ones suitable for a specific situation.
We elaborate on this point in the final discussion.

Related Work

In this section, we discuss works relevant to general issues concerning the difficulty and
complexity concepts. Works concerning specific complexity and difficulty measures for

Table 1 Examples of well-structured problems that fall into the scope of this work
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particular educational domains are discussed in Section 4 and Section 5, where we describe
case studies.

Task Complexity and Difficulty

The distinction between complexity and difficulty and characterization of these con-
cepts has been discussed in several previous works, typically with the focus on general
“tasks” and complex, ill-structured problems.

One of the first systematic discussions of task complexity was provided by Camp-
bell (1988), who contrasted several views of complexity (as a psychological experi-
ence, as a task-person interaction, as a function of objective characteristics) and
provided a typology of complex tasks. A more recent review along similar lines is
provided by Liu and Li (2012), who propose a general overview of task complexity (in
a very broad setting). They define task complexity as “the aggregation of any intrinsic
task characteristic that influences the performance of a task.” They also propose general
“complexity dimensions.” Three of these dimensions—size, variety, and relationship—
are directly relevant to educational items; these correspond to aspects like the length of
an item statement or solution, the number of concepts used, and interactions among
concepts. For these dimensions, the interesting question is how to measure them
precisely; with this respect, unfortunately, the general framework cannot provide any
guidance. Several other described complexity dimensions—ambiguity, variability,
unreliability, and incongruity—are not directly relevant to the current discussion
because we consider only well-structured problems, where these factors should not
be present (or only in a limited manner). Finally, novelty and temporal demand
dimensions are related to the contextual aspect of complexity that we discuss later.

Robinson (2001) distinguishes task complexity (cognitive factors), task difficulty
(learner factors), and task conditions (interaction factors). He considers tasks in the context
of language learning, and the main motivation is the sequencing of tasks in the syllabus. In
the context of language tasks, Mesmer et al. (2012) explicitly distinguish text difficulty
(based on the performance of readers) and text complexity (based on textual elements) and
highlight that treating these terms as synonymous “conflates causes with effects.”
Amendum et al. (2018) notes the importance of a specific task with the text.

Beckmann et al. (2017); Beckmann andGoode (2017) explicitly focus on the distinction
between complexity and difficulty. They consider complexity to be a cognitive concept that
reflects cognitive demands imposed by the task and difficulty to be a psychometric concept
that reflects the performance of individuals. They discuss these notions specifically for
complex problem solving (controlling a dynamic system with feedback loops).

Complexity and Educational Taxonomies

Well-known educational taxonomies are related to the complexity concept. Bloom’s
taxonomy and its revision (Bloom et al., 1956; Anderson et al., 2000) describe the
taxonomy of educational objectives. The taxonomy divides cognitive objectives into
levels (knowledge, comprehension, application, analysis, synthesis, evaluation) that are
sorted from easier to more complex (although their complexity may overlap).

The SOLO taxonomy (Biggs & Collis, 1981) focuses on the relation between concepts
and is used particularly to evaluate open-ended questions. Its focus is on the complexity of
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answers (not questions). The depth of knowledge framework (Webb, 1997) consists of four
levels of increasing cognitive complexity: recall and reproduction, application, strategic
thinking, and extended thinking. The Knowledge-Learning-Instruction framework
(Koedinger et al., 2012) provides a taxonomy of knowledge components and learning
processes and links the complexity of knowledge components to instructional design.

Although all of these taxonomies are related to complexity, they are very general
and thus coarse-grained. Such taxonomies are useful particularly for comparing differ-
ent types of tasks. They do not provide guidance on how to measure complexity
numerically. Particularly, when we consider tasks of one type (e.g., different linear
equations), they do not differentiate between them, even though there may be signif-
icant differences between individual instances.

Difficulty and Performance

Difficulty is usually used in connection with human performance on a task. A basic
approach to quantifying difficulty is to consider the correctness of answers. A simple
difficulty measure is a failure rate (the ratio of answers that are incorrect). Difficulty is a
key concept in both adaptive testing and practice. In the context of testing, difficulty is
usually measured using Item Response Theory (IRT) models (De Ayala, 2008). In an
adaptive practice system, student modeling approaches like the Elo rating system
(Pelánek, 2016) or Additive Factors Model (Cen et al., 2006) include difficulty
parameters. Wauters et al. (2012) compare different methods for estimating difficulty
(e.g., IRT, Elo, student feedback, expert rating).

The correctness of an answer is not the only source of data for measuring difficulty.
Another common source of difficulty data is response time (Pelánek, 2017). In the case of
problem-solving activities (programming or solving logic puzzles like Sudoku), it is not
very natural to analyze the correctness of answers—rather than “incorrectly answered
problems,” it is more natural to talk about “not solved yet problems.” The primary measure
of difficulty in these cases is thus problem-solving time (Pelánek& Jarušek, 2015).Wemay
also consider difficulty both with respect to correctness and time (Van Der Linden, 2009).

Context and Biases

Educational items are not solved in isolation. Students typically answer an item in some
specific context, e.g., after previously solving several other items. This context influ-
ences student behavior and can have a significant effect on how we analyze (or should
analyze) the complexity and difficulty of items.

Contextual effects are studied in many areas of human behavior, e.g., social and
psychological research clearly shows the significant influence of question order in surveys
(Schwarz & Sudman, 2012). In education, a classic illustration of the role of context is the
Einstellung effect (Luchins, 1942) — an influence of previous attempts on the selected
approach in problem-solving activities (Lovett & Anderson, 1996). Another well-known
effect illustrating the role of context is the difference between blocking and interleaving
practice (Taylor & Rohrer, 2010). By changing the ordering of items, their difficulty and
long-term impact also change: interleaving items of different types decreases immediate
success while leading to better long term retention.
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The contextual effects can create biases in the collected data, which we use for
analysis. Common biases in educational data are caused by fixed ordering of items or
by the use of mastery learning, which leads to attrition bias (Nixon et al., 2013; Goutte
et al., 2018; Pelánek, 2018; Čechák & Pelánek, 2019). The commonly used techniques
in educational data mining or psychometrics typically do not take contextual effect into
account, e.g., local item independence is a key assumption in standard item response
theory models (Baker, 2001). There are, however, extensions of the basic models that
consider contextual effects (Keller et al., 2003; Sao Pedro et al., 2013) or address biases
and missing data (Finch, 2008).

Complexity and Difficulty of Educational Items

Based on the review of the literature and our experience with the development of
learning systems, we propose a systematic approach to dealing with complexity and
difficulty measures for well-structured problems in learning systems.

Item Anatomy and Student Data

Before discussing the complexity and difficulty of items, let us clarify what we
understand under “item” and what kind of data can be used to measure complexity
and difficulty.

In our discussion, we aim to strike a balance between generality and specificity. We
want our discussion to be relevant to many different types of educational content, and at
the same time, we want to avoid vague formulations. Thus, we consider only well-
structured problems with clear solutions, which are relatively short (the response time is
between few seconds and few minutes) and have relatively simple interaction (mostly
basic selected response and constructed response). This list of constraints may seem
restrictive, but it covers a large portion of items used in education (a sample of
illustrations is provided in Table 1).

This type of item has two major parts:

– an item statement (what is shown to students): natural language text, image, sound
recording, or a structured input describing interactive elements (e.g., a JSON file
describing a logic puzzle),

– an item solution (what is expected as an answer from student): either specified
explicitly (a number, a short text), or implicitly (a code and testing data in
programming exercise, a goal state in a logic puzzle).

Each item is used within a learning system in some context, i.e., what other items do
students solve before and after the given item. This context is determined typically by a
mapping of items to knowledge components (students typically practice a sequence of
items from a single knowledge component), an algorithm for item selection (e.g., fixed
sequence, random, adaptive), and the algorithm’s parameters (e.g., specific ordering for a
fixed sequence).

The item difficulty is based on student performance; we thus also need log data on
student answers. The core data on student performance are:
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– the identification of a student and item,
– the correctness of an answer (binary value),
– the specific value of an answer,
– response time.

Richer performance data are typically available, but these are often in some way specific
to a particular exercise (e.g., information about “solution quality,” or information about
multiple attempts if the exercise allows repeated attempt after a mistake). For the sake of
generality, we will focus on the core data that are relevant to a wide range of exercises.

Complexity versus Difficulty Concepts

In line with the previous work on task complexity and difficulty (Liu & Li, 2012;
Beckmann et al., 2017), we propose the following definitions as a basic distinction
between complexity and difficulty of educational items:

– Item complexity is an intrinsic item characteristic, which aggregates item aspects
that influence how students solve the item. Complexity is concerned with the
structure of the item itself.

– Item difficulty describes how hard it is to solve the item for students.

Note that it is necessary to distinguish between concepts and measures. For example,
“complexity as a concept” is a multifacet aggregate (and as such is treated in many of the
previous works), whereas “complexity measure” is a specific way to compute a single
number per item, which characterizes one aspect of “complexity as a concept.”We focus
on measures, which are directly applicable to the development of learning systems.

A pragmatic view of the basic difference between complexity and difficulty is to
consider the data used to compute a specific measure (Fig. 1). If only an item
description is used, then it is a complexity measure; if only the log of student actions
is used (where items are identified solely by their IDs), then it is a difficulty measure.
As Fig. 1 shows, this view is a simplification due to the presence of one important
aspect—the context in which an item is used.

Elementary Complexity and Difficulty Measures

Let us start by discussing basic measures of complexity and difficulty, which do not
take the issue of context into account.

Complexity Measures

From the general dimensions of complexity (Liu & Li, 2012), for well-structured
educational items, the most relevant complexity dimensions are size, variety, and
relationships. Complexity measures are based on the item statement and item solution,
which can be used to measure size, variety, and relationships in many ways. For
example, in word problems in mathematics, size can be measured as the length of
the text, variety as the number of distinct operations that need to be performed to reach
the solution, and relationships can quantify the depth of the computation tree (i.e.,
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whether the individual steps are independent or dependent on each other). Complexity
measures are always specific for a particular domain and type of item. There are,
however, several general basic approaches.

A basic complexity measure is the length of an item. This can be measured in
various ways: Do we take into account item statement, item solution, or both? What
unit of measurement do we use (e.g., characters, words, lines of code)? For most items,
there is some choice of the length that is natural (although not necessarily useful).

Items in many domains contain text in natural language. It is dominant in language
learning but also present in mathematics (word problems) or programming (specifica-
tion of a problem). For such cases, we may use text complexity measures, e.g., using
readability measures (Benjamin, 2012).

Another common approach to measuring complexity is to take into account the
number of concepts needed to solve an item. For example, in the example
23 þ 32−2� 3, the concepts may be addition, subtraction, multiplication, and expo-
nentiation. This approach requires clarification of several points:

– How do we choose concepts and their granularity? For example, should addition
and subtraction be treated as two separate concepts?

– What do we count? We can use, for example, a unique count (“variability”), a
simple sum (taking the number of occurrences of concepts into account), or a
weighted sum (taking into account estimated difficulty of concepts).

– Where do we count the concepts? We can detect concepts in item statement (which
makes sense for math examples in Table 1), item solution (which makes sense for
the programming example in Table 1), or in the item solving process (which makes
sense in the case of logic puzzles).

For specific types of items, there are many other potential complexity measures, which can,
for example, try to capture concept interaction or the structure of solution paths (“multiplic-
ity, redundancy, and uniqueness” dimensions described by Liu and Li (2012)). We can, of
course, also construct aggregated measures, which combine several aspects of complexity.

item data log datacontext data

complexity

difficulty

all single item
item-PS mapping
ordering, presentation

complexity

difficulty

contextualized

estimated

observed

single item

item in specific 
context

strongly population
dependent

weakly (implicitly)
population dependent

statement, solution

Fig. 1 The range of complexity and difficulty measures and the data that are used to compute these measures
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Difficulty Measures

There are two basic measures for “observed difficulty” that are applicable for nearly all
types of items: the failure rate and median response time. The failure rate expresses the
proportion of students who failed to solve the item correctly. It is a simple complement
of the success rate, which is sometimes preferred. As a measure of difficulty, the failure
rate is more natural as greater difficulty corresponds to a higher failure rate. As
response times are typically highly skewed (Van Der Linden, 2009; Pelánek & Jarušek,
2015), the median is a preferable measure of centrality than the mean. Alternatively, it
is possible to use the mean of log-transformed times.

For some types of items, there are other simple difficulty measures:

– items allowing multiple attempts: number of attempts,
– items with hints: the hint usage (e.g., expressed as the proportion of students who take a

hint),
– items with solutions of different quality: solution quality (e.g., the compactness of

code in a programming exercise),
– items with a constructed response: number of edits required to construct the answer.

Role of Context

As Fig. 1 illustrates, the basic distinction between complexity and difficulty is convo-
luted by the role of context: What is the group of students that answer the item? What
items (learning materials) have the students seen before answering the item? For a
specific illustration of the role of context on complexity and difficulty, Table 2
describes several of our previously used examples in three different contexts. In each
case, the third context leads to greater difficulty than the first one.

The basic approach is to consider the role of context as follows:

– Item complexity is objective (absolute), i.e., independent of specific solvers and the
context of item use.

– Item difficulty is relative, i.e., concerned with the performance of a particular
student population in a given context.

However, this is a simplified view. Each complexity measure is in some way (often
implicitly) population dependent. For example, a complexity measure may be based on
the number of concepts used in an item. This may seem independent of the student
population. But what is a single concept? Do we distinguish addition and subtraction as
two separate concepts? That may depend on the student population.

On the other hand, difficulty measures can be “decontextualized.” For example,
simple difficulty measures like the failure rate are clearly dependent on the particular
student population, but item response theory models do produce difficulty estimates
that are “group invariant” (Baker, 2001). A similar effect is often achieved by the use of
the Elo rating system (Pelánek, 2016), which can be seen as a lightweight variant of
IRT models. Other student modeling techniques, e.g., the Additive Factors Model (Cen
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et al., 2006), can also incorporate the information about the subpopulation into
estimates (although the model measures difficulty only for concepts, not for items).

As Fig. 1 depicts, we may consider complexity measures that explicitly take the
context data into account to produce “contextualized complexity.”Wemay also use the
context data to try to “remove the context bias” from the basic difficulty measures and
to produce estimated (decontextualized) difficulty measures. Consequently, when we
take the context into account, complexity and difficulty measures end up lying on a
spectrum rather than at two clear poles.

Taking Use Case into Account

As our literature review and the above-given discussion suggest, the notions of
complexity and difficulty are very difficult to capture precisely. It thus does not seem
very sensible to try to find the correct measure of item difficulty or complexity. Rather,
it is meaningful to focus on useful measures—measures that will enable us to improve
in some way our learning systems. The usefulness of measures depends on the specific
goal that we are trying to achieve. There are several use cases of difficulty and
complexity measures, and each of them requires different types of measures.

For example, in some applications, we need complexity measures that predict well
difficulty. In these cases, we often do not care about the interpretability of a measure;
the primary criterion of usefulness is predictive accuracy. In other cases, however, we
may be more interested in multiple measures that are interpretable and not necessarily
strongly correlated. We highlight the different use cases in the subsequent discussion of
measures in specific educational domains.

Item Complexity and Difficulty in Specific Domains

In the previous section, we discussed item complexity and difficulty in general. Now,
we consider several specific domains and discuss issues specific to these particular

Table 2 Illustration of the role of context

Item Contexts

How many ways can you arrange the
letters in ‘Rococo‘?

1. Word problems on permutations with repetition.

2. Word problems on combinatorics.
3. Items on various part of mathematics.

Does she [play/plays] the guitar? 1. Questions in present simples.
2. Positive sentences, negative sentences, and question in present

simple.
3. Tenses in English.

Write a function that for a given n prints
all its divisors.

1. The problem is solved after a sequence of problems using
functions and the modulo operator.

2. The first problem in the application which requires the use of the
modulo operator.

3. The first problem that students solve in an interactive web
application.
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situations. Our main aim is illustration, not completeness. We try to illustrate how the
general principles discussed above are realized in several domains. We also aim to
highlight different uses of complexity and difficulty measures. In this section, we thus
focus on the breadth of discussion and on covering results reported in previous studies.
For the following section, we pick one domain (introductory programming) and
provide deeper analysis and novel results.

Reading and Language Learning

Analysis of text complexity and difficulty is relevant not only for applications in
language learning (both a first and a second language) but also in many other domains
since natural language text is very often part of an item statement, e.g., in word
problems in mathematics or as a description of programming tasks. It is also one of
the few areas where the distinction between complexity and difficulty has been clearly
made in previous research (Mesmer et al., 2012).

Text complexity measures, often called readability formulas, have been studied for a
long time (Benjamin, 2012). Basic measures are typically linear combinations of
shallow text features, e.g., Flesch-Kincaid grade level formula, one of the most well-
known, is given as 0:39ASLþ 11:8AWL−15:59, where ASL is average sentence length
and AWL is average word length. Although still widely used, simple measures of this
type are subject to frequent critique, e.g., by Bailin and Grafstein (2001). Several more
complex approaches to measuring text complexity have been developed, e.g., Coh-
metrix (Graesser et al., 2004), TextEvaluator (Sheehan et al., 2014).

Applications

A typical application of text complexity measures is to predict text difficulty and thus to
enable the selection and recommendation of texts for reading for a particular student
population or individual. The readability formulas are sometimes used as a tool for
authors while writing a text and are integrated into many word processors. It has been
noted, however, that this practice can be detrimental (Benjamin, 2012).

In second language learning, complexity measures can be used as a tool for the
development of grammar questions—they can be used to pre-calibrate the difficulty of
new items before student data are available and to provide insight into reasons for item
difficulty. For examples of such analysis, see Pandarova et al. (2019), who analyze fill-
the-gap grammar exercises, or Ayako Hoshino(2010), who analyze multiple-choice
questions. For vocabulary learning, measures are a useful tool for defining homoge-
neous groups of words for practice. A vocabulary learning application needs to
structure thousands of words into manageable groups; it is beneficial for practice when
these groups are similar with respect to difficulty and complexity.

Complexity Measures for Individual Words

The complexity of individual words can be measured along several basic dimensions:

– basic word structure: the length of the word, the number of syllables, grapheme-to-
phoneme ratio (Rosa & Eskenazi, 2011),
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– word familiarity: the frequency ofword usage (typicallymeasured as the logarithmof the
number of word occurrences in a corpus) or age-of-acquisition (Kuperman et al., 2012),

– how abstract and hard to image the word is: denoted as concreteness, imaginability, or
measured using a list of academic vocabulary (Graesser et al., 2004; Sheehan et al., 2014),

– semantic complexity: aspects like polysemy or ambiguity of words, can be mea-
sured, for example, as the number of meanings provided in a dictionary or
WordNet (Miller, 1998).

In the case of second language learning, there are additional considerations, as the
difficulty of words may differ from native speakers, e.g., due to the similarity of words
in different languages. Specialized classifications of words have been prepared for this
purpose. For the Common European Framework of Reference levels (Milton, 2010),
Sohsah et al. (2015) collected expert (teacher) opinions for a sample of words and used
machine learning techniques to extend them to a large set of words. Uemura and
Ishikawa (2004) presents a similar effort targeted at Asian language learners.

Sentence and Text Complexity Measures

The complexity of sentences or whole texts can be again measured along several basic
dimensions:

– typical vocabulary used: averages of measures for single words (e.g., average
length, familiarity, concreteness),

– vocabulary richness: the number of unique words, type:token ratio (which mea-
sures the number of repetitions of individual words),

– syntactic sentence complexity: the length of sentences, the depth of a parse tree, the
number of (syntactically) valid parse trees, the mean number of modifiers, the
average number of words before the main verb,

– measures based on part-of-speech tagging: the presence or the count of individual
tags, the density of tags (e.g., high density of pronouns may be difficult for
comprehension (Graesser et al., 2004)),

– text cohesion (Graesser et al., 2004), which can be measured using vocabulary
used (presence of specific connectives or causal verbs), co-reference (repeated
words in adjacent sentences), or semantics (similarity of words or sentences based
on LSA inference or word embeddings).

These are just the basic directions for measuring text complexity. Researchers have also
considered other dimensions, e.g., the degree of narrativity, argumentation, or conversational
style. These measures are often based on a combination of the above-described measures.
Basic readability measures like Flesch-Kincaid are simple linear combinations of elementary
measures. More complex approaches like Coh-metrix (Graesser et al., 2004) or
TextEvaluator (Sheehan et al., 2014) report a wide range of measures and perform their
grouping based on human expert judgment or bymachine learning techniques (e.g., principal
component analysis). Sheehan et al. (2008) highlights the genre effects—the values of some
complexity measures require different interpretations for informational and literary texts.

A complexity measure should also take into account the task that the student should
perform with the text. For example, a common task in language learning is the fill-the-

207International Journal of Artificial Intelligence in Education  (2022) 32:196–232



gap exercise. In this case, the complexity measure can put additional weight on the
complexity of the missing word or take into account the size of the context that is
necessary for filling in the word.

Difficulty Measures

The difficulty of texts and learning tasks can also be measured in many ways. One
option is to focus on reading fluency; in that case, we measure the accuracy and speed
of reading. Another option is to focus on reading comprehension or understanding of
grammar; this is typically tested by multiple-choice questions or fill-the-gap exercises,
and the straightforward difficulty measure is the failure rate. Additionally, difficulty
measures can take into account the response time, the number of incorrect attempts, or
the number of edits while writing the response.

Amendum et al. (2018) provide a recent meta-analysis of studies with experiments
concerning the relation of text complexity and text difficulty for elementary grades,
with difficulty measured both as reading fluency and reading comprehension. The
report shows that researchers have found a wide range of measures correlation,
depending on the used complexity and difficulty measures and on the specific aspects
of a study (population, grade, used texts).

An important aspect is whether we measure difficulty with respect to recall or
recognition. A constructed response (students have to write the answer) requires an
active recall of knowledge. A selected response (students only select the answer from
available choices) requires only recognition of an answer. Both of these types of
questions are commonly used for language learning tasks, and each of them can lead
to quite different estimates of difficulty. Fig. 2 provides a specific illustration. It shows
the relation between the failure rate in the recall and recognition exercises for several
groups of words. Notice, for example, that “brown” and “yellow” have a similar failure
rate as “green” and “black” with respect to recognition but are more difficult with
respect to correct recall (in this case, mainly due to spelling mistakes). On the other
hand, “stop” is easy to recall and spell correctly, but in the recognition exercise, the
failure rate is relatively high due to confusion with “stand.” This example illustrates
another issue with difficulty measures in language learning: dependence on the native
language of students. Our analysis is based on the performance of Czech students;
“stop” and “stand” have similarly sounding translations in Czech.

Multiple-Choice Questions

A multiple-choice question (MCQ) is probably the most commonly used type of item
used in educational systems. The use of MCQs is widespread, particularly in testing,
but MCQs are also useful for learning and practice (Gierl et al., 2017). From the
perspective of complexity analysis, an advantage of MCQs is their clear item anatomy:

& a stem, i.e., the introductory text stating a question or a problem (What is the capital
city of France?),

& the correct answer (Paris),
& distractors, i.e., incorrect options (Berlin, London).

208 International Journal of Artificial Intelligence in Education  (2022) 32:196–232



Applications

The typical application of complexity and difficulty measures in the case of MCQs is
the prediction of difficulty based on complexity measures, e.g., in the context of
medical questions (Yaneva et al., 2019; Baldwin et al., 2020) or English vocabulary
learning (Susanti et al., 2016).

This prediction is useful particularly for automatic question generation (Kurdi et al.,
2020) since it allows the generator to create questions of suitable difficulty. The
prediction is also useful for manually created questions—in adaptive systems, it can
eliminate (or shorten) the need for calibration of questions (Pandarova et al., 2019).
Other applications, such as feedback for content authors, are also useful.

Measures

The basic complexity measures for MCQs are based on the readability measures
discussed above. The question stem is typically textual, and thus we can apply the
general text measures and linguistic features (Yaneva et al., 2019; Baldwin et al., 2020).
In addition to these general measures, it is useful to focus on the concepts mentioned in
the text. For example, the question “What is the capital city of Angola?” has the same
sentence structure as the question about France, and thus the basic text measures cannot
capture the difference between these two questions. To do so, we can use, for example,
techniques based on word frequency (Benedetto et al., 2020) or word embeddings
(Mikolov et al., 2013).

Fig. 2 The relation between two measures of difficulty for four vocabulary groups (the data are from the
umimeanglicky.cz system; English as a second language; Czech students)
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A specific feature of the multiple-choice question format is the use of distractors
(Gierl et al., 2017; Mitkov et al., 2009). From the perspective of complexity, a key
aspect of distractors is their similarity to the correct answer since more similar
distractors require more complex processing from students (Ascalon et al., 2007).
The similarity can be measured in several ways, for example:

– semantic similarity based on knowledge measured using ontologies (Leo et al.,
2019; Papasalouros et al., 2008; Lin et al., 2015; Nuthong &Witosurapot, 2017) or
knowledge graphs (Seyler et al., 2017), e.g., using distance or depth within an
ontology,

– semantic similarity based on language features and text processing measured using
WordNet (Mitkov et al., 2009), word embeddings (Mikolov et al., 2013), or latent
semantic analysis,

– syntactic similarity measured using edit distance (Ayako Hoshino, 2010), phonetic
similarity (Mitkov et al., 2009), and potentially extended with part-of-speech tags
and other word properties,

– the visual similarity in the case of images (e.g., animal pictures).

For difficulty measures, the most commonly used one is the basic failure rate. As
MCQs are often used in adaptive systems, it is useful to consider also difficulty
parameter of IRT models, which are able to take into account biases caused by
adaptivity. Response time, another common difficulty measure, is typically of second-
ary importance in the case of MCQs.

Word Problems in Mathematics

In the domain of mathematics, a specific interesting area is word problems. Analysis of
word problems is very challenging due to the complex interaction of reading skills and
computation skills. Daroczy et al. (2015) provide an extensive overview of linguistics
and numerical factors of word problem complexity and their relation to difficulty.
Barbu and Beal (2010) discuss specifically the impact of linguistic complexity of word
problems on performance for second language English learners. The aspects influenc-
ing the difficulty are often non-intuitive, even for experienced teachers. Koedinger and
Nathan (2004) compared the difficulty of word problems and mathematically equiva-
lent equations to evaluate the impact of problem representation on difficulty. They note
that although word problems were easier than equations, most teachers had the opposite
expectation.

Applications

In this case, the main type of application of complexity and difficulty measures is
“insight.” The analysis can provide information about aspects of word problems that
influence difficulty—such information is useful for content authors as a guideline for
creating new problems. It can also be useful for the automatic generation of word
problems (Polozov et al., 2015), where it can provide methods for controlling the
difficulty of generated problems (Khodeir et al., 2018; Wang & Su, 2016). The insight
is also useful for the management of content and meta-data, e.g., specifying the
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mapping of items to knowledge components or removing unsuitable items. Beyond the
development of learning systems, insight into word problems is also relevant for
cognitive science and pedagogy research (Daroczy et al., 2015; Koedinger & Nathan,
2004).

Measures

The complexity measures for word problems can be divided into two basic types. At
first, there are measures that can be relatively simply computed algorithmically, but
these are typically “shallow,” covering only the surface features of word problems.
These include basic properties of a word problem text (e.g., the length of a text, the
number of words, the average length of a sentence, readability formulas) and basic
analysis of numbers used in the problem statement (e.g., the total count of numbers,
the magnitude of numbers, the type of numbers: small integer, decimal, fraction).

To better capture the complexity of word problems, it is necessary to consider
also “deep” measures that correspond better to cognitive processes used by solvers.
Such measures can be based on the number and type of concepts used to compute
the solution. We may also take into account the necessity of the use of “common
knowledge” in the computation (e.g., to find a solution, a solver may need to know
the number of days in a week or the number of legs of a spider) or the presence of
irrelevant data. These deep measures are, however, very difficult to compute
algorithmically just from the text of the word problem.

To evaluate algorithmically computed text features, current studies typically
either use manual labeling to obtain the deep features or consider only a set of
closely related problems (e.g., addition and subtraction under 20). We have ex-
plored the relations among complexity and difficulty measures for a diverse set of
1000 word problems from the system umimematiku.cz. The analysis showed
that the shallow, easily computable complexity measures correlate only very weak-
ly with difficulty. The only larger correlation is between the length of the text and
the response time—which is an expected and not very applicable result.

Logic Puzzles

Logic puzzles are an interesting bridge between educational applications, cognitive
science research, and computer games. Complexity and difficulty are key aspects in
the design of computer games (Aponte et al., 2011). For example, Linehan et al.
(2014) analyzed the complexity of four successful puzzle games; they measure
complexity as a number of steps and discuss the relation of this “objective”
complexity and difficulty as performance. They also discuss the relation of these
measures to sequencing and the role of the scaffolding of learning.

The domain of logic puzzles is very wide, see, e.g., the taxonomy proposed by
Hufkens and Browne (2019). For the sake of concreteness, we consider in our
discussion mainly transport puzzles (e.g., Sokoban, Rush hour) and constraint satisfac-
tion puzzles (sometimes also called “Japanese logic puzzles,” the most well-known
example being Sudoku).
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Applications

Puzzles have been used in basic cognitive science research, e.g., Kotovsky et al. (1985)
analyzed several izomorfs of the famous Tower of Hanoi puzzle, showing that some of
them are 16 times more difficult than others; this research highlights the impact of
problem representation on difficulty.

The main practical application of measures is to predict difficulty based on com-
plexity measures. Such a prediction is useful for the sequencing of puzzles or presen-
tation of puzzles to users. A typical example is the indication of Sudoku difficulty in
newspapers. A specific application area where the notions of difficulty and complexity
are critical is procedural content generation (Togelius et al., 2011). Estimation of
difficulty is an important step in the automatic creation of game content (evaluating
and filtering candidate puzzles).

Measures

The basic complexity measures for puzzles are the size of the problem (e.g., the size of
the grid, the number of elements in the puzzle) and the length of a solution, i.e., the
number of steps necessary for solving the puzzle.

Many puzzles (particularly transport puzzles) can be expressed as a search within a
state space of puzzle configuration. Properties of this state space (e.g., the structure of
paths, redundancy, bottlenecks) can be used as complexity measures; additionally, it is
possible to build a computational model that traverses the state space and simulates
human behavior (Jarušek & Pelánek, 2011).

Primi (2001) analyzed Raven’s Progressive Matrices (often used in “IQ tests”),
identifying the perceptual organization and the amount of information (a measure
combining the number of elements and the number of rules) as complexity measures
most predictive of difficulty.

Another approach is based on constraint relaxation (Pelánek, 2014), which is based
on the observation that difficult puzzles often have “close-but-not-valid” solutions. We
can thus formulate complexity measures based on the increase in the number of
solutions (or decrease in the shortest path length) when some constraint in the puzzle
is relaxed (we allow one repeated number in a Sudoku row or one step through an
obstacle in Sokoban).

Concerning difficulty measures, a specific aspect of puzzles is that it is mostly not
meaningful to talk about “incorrect answers.” Rather, some solution attempts are “not
finished yet.” We can measure difficulty by unfinished rate, but this measure is often
not very informative, e.g., it does not distinguish between easy and extremely easy
puzzles (they all have the unfinished rate close to zero). In the case of puzzles, the
primary focus of difficulty measures is thus problem-solving time.

For an illustration of specific results, Table 3 provides a summary of the results
reported by Jarušek and Pelánek (2011) and Pelánek (2014). The table shows the
correlation of various complexity measures with median problem-solving time (a basic
difficulty measure for logic puzzles). The results show that simple complexity measures
(size, length of solution) correlate mostly only weakly with difficulty. However, for
some puzzles (Rush hour), even such simple measures can provide a good prediction of
difficulty. Where basic complexity measures provide weak correlation with difficulty, it
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is often possible to design complexity measures that lead to high correlation; however,
these measures are often quite puzzle-specific and non-trivial even for puzzles with
simple rules (as is the case of Sudoku).

Complexity and Difficulty in Introductory Programming

In the previous section, we focused on the breadth of the discussion. Now, we
demonstrate a deeper analysis of difficulty and complexity measures for one educa-
tional domain: introductory programming.

We use data from five exercises summarized in Table 4. The first three exercises use
a block-based programming interface (Bau et al., 2017), and the other two use Python
programming. Some items include scaffolding in the form of an initial partial program,
see Fig. 3. All solutions have between 2 and 24 lines (or blocks corresponding to lines),
with medians ranging from 5 lines in the Spaceship exercise to the 9.5 lines in the
Shapes exercise.

Applications

The goal of our analysis is to explore the relationship between various difficulty and
complexity measures and how they are impacted by scaffolding and data collection

Table 3 Correlations between complexity measures and difficulty measured as the median problem-solving
time for several puzzles

Puzzle Complexity measure r

Sudoku number of givens 0.25

constraint relaxation 0.56

linear combination of measures 0.84

Sokoban path length 0.19

computational model 0.39

Rush Hour path length 0.77

Table 4 Data used for the analysis of programming exercises. The scaffolding denotes how many items
provide an initial partial program to complete. Attempts include both successful and unsuccessful sessions.
The median time is computed from the successful attempts only

Exercise Levels Items Scaffolding Attempts Median time

Spaceship 9 85 0% 135,000 50 sec

Shapes 7 54 44% 34,000 82 sec

Turtle Blockly 8 77 60% 117,000 81 sec

Turtle Python 5 46 89% 34,000 92 sec

Python 9 73 100% 21,000 180 sec
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biases. In particular, our goal is not to find the single best difficulty or complexity
measure. It is worth reiterating that there is no such thing as the best difficulty or
complexity measure—the suitable choice depends on the intended application.

For instance, Alvarez and Scott (2010); Sheard et al. (2013) considered the use of
complexity measures for estimating the difficulty of programming assignments and exam
questions. For such use, we seek a complexity measure that highly correlates with a
difficulty measure.Which difficulty measure to use for evaluation depends on which aspect
of student performance we care about; the failure rate is insufficient if we are concerned
about the speed of coding and quality of the resulting code. We might care about multiple
aspects of performance, in which case we would use multiple difficulty measures for
evaluation. When reporting results, clearly distinguishing between the complexity and
difficulty measures would be crucial since only the complexity measures can be used in
the real situation—no performance data are available at the time of difficulty estimation.

Now consider a different use case: monitoring the quality of already deployed items.
A mismatch between the complexity and difficulty can help us to detect misbehaving
items; for example, an item intended to practice loops that many students solve with
just a sequence of commands. Note that if such mismatch occurred in the previous case
(difficulty estimation), we would try to improve the complexity measure, even at the
cost of lower interpretability. In contrast, interpretability is helpful when diagnosing
issues with items, and the reasonable action might well be updating the item rather than
trying to fix the complexity measure.

Measures

In programming exercises, complexity can be measured using either the problem
statement or solution. Using the problem statement, we can measure its length,
linguistic complexity, and references to external domains (Sheard et al., 2013). Using
the solution, we can measure its length, the number of programming concepts, the
number of flow-of-control structures (Alvarez & Scott, 2010), cyclomatic complexity
(Whalley & Kasto, 2014), and Halstead complexity measures based on the number of
operators and operands (Ihantola & Petersen, 2019).

The complexity can be influenced by other aspects, such as background story,
scaffolding (e.g., an initial partial program to complete), and the context in which the
item is solved. The background story seems not to significantly impact the difficulty of
introductory programming problems (Bouvier et al., 2016; Craig et al., 2017). In
contrast, a problem-solving context, such as previously practiced problems, can alter
Bloom’s level of intellectual complexity (Thompson et al., 2008; Gluga et al., 2012).

In the analysis that follows, we explore complexity measures that are based on the
number of concepts since these are universally applicable across all programming

initial program:
right(15)
forward(100)

solution:
for i in range(4):
  right(15)
  forward(100)
  right(150)
  forward(100)
  left(75)

Fig. 3 Compass – example of an item from Turtle Python exercise
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exercises. We either search for predefined keywords or extract the concepts by
traversing the abstract syntax tree; the latter option allows us to detect some program-
ming patterns such as nested loops and recursion. We compare several ways of
aggregating the numbers of occurrences of individual concepts into a single number,
and we also explore the impact of incorporating scaffolding into the concept-based
complexity measures.

We compare these complexity measures to three simple difficulty measures: the
failure rate, median response time, and the median number of attempts. As the attempts
we typically count all executions, except for the Python exercise, where only evaluations
on hidden test cases are recorded. In addition, we explore two partially decontextualized
estimates of difficulty using item difficulty parameters of IRT and Elomodels adapted to
predict problem-solving times (Pelánek & Jarušek, 2015; Pelánek, 2016).

Concepts

One way to measure complexity in introductory programming is to consider all the
concepts needed to solve the item. To define a specific measure for a given exercise, we
need to decide what the relevant concepts are and how to aggregate them into a single
number.

Concept Extraction

Concepts can be extracted either from the item statement or the solution. The solution,
being a program, is much more amenable to automatic processing. Regardless of
whether the students use a block-based or a text-based programming language, the
program can be transformed into an abstract syntax tree (AST), allowing for concept
extraction techniques that are independent of the specific exercise. The item statements,
in contrast, are more diverse; they can include a grid world (Spaceship exercise), a
picture to draw (Shapes and Turtle exercises), or a text statement in a natural language,
together with some test cases (Python exercise). Moreover, the involved concepts are
usually more apparent from the solution than from the statement.

A straightforward approach to extract concepts from the solution is to search for a
set of keywords, such as for and left. Alternatively, the concepts can be extracted
by traversing the abstract syntax tree of the solution. As the nodes of the tree typically
correspond to reasonable concepts, this approach can be applied to any introductory
programming exercise, without the need to specify keywords to search for. It may be
useful to look not only at the node types but also at their content; for example, to
distinguish calls of different functions, to find local variables, and possibly to extract
individual literal values, such as angles in the Turtle exercises. Looking at the structure
of the abstract syntax tree, we can even detect programming patterns such as nested
loops and recursion.

Granularity of Concepts

Instead of attributing each keyword or AST node type to a distinct concept, we may
define some meaningful groups. It seems, for instance, plausible to consider all
comparison operators as a single concept. The granularity decision is not just a binary
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one; the concepts form a hierarchy. For example, left(75) command could be
considered as a fine-grained concept or as an instance of one of the following broader
concepts: left, rotate, turtle movement, turtle commands, or, most broadly, any com-
mands. We need to decide which level of detail to use.

The difference between various granularities has an especially marked effect once
we use specific values in AST nodes. Since considering each literal value as a distinct
concept would result in dozens of concepts, most of which are not much meaningful,
we may wish to group all angles, all numbers, or even all literals as a single concept.

As an example of various granularity levels, consider the Compass item (Fig. 3).
Distinguishing individual commands and literals, we may obtain up to 9 fine-grained
concepts: for, forward, left, right, int4, length100, angle15, an-
gle75, angle150. By grouping similar commands and types of literals, we end
up with six medium-grained concepts: for, move, rotate, int, lengths, an-
gles. We may even decide to use just three coarse-grained concepts: loops,
commands, literals.

It is unclear which granularity is useful to distinguish. Partially, it depends on the
expected population of users; distinguishing between various arithmetic operators may
be important for the primary school students, but probably not so much for high school
students. Furthermore, with higher granularity, there is a trade-off between interpret-
ability and the predictive power, so the purpose of the complexity measure should be
taken into account as well.

Aggregation of Concepts

Having found the counts of individual concepts, we now need to aggregate them into a
single number. Two basic approaches are counting the total number of occurrences of
all concepts (counts aggregation) and counting just the number of unique concepts
(binary aggregation). In the case of binary aggregation, the contribution of each
involved concept is the same, irrespective of how many times it appears in the solution.
Between these two extremes, there are many ways to account for the number of
occurrences while avoiding the excessive contribution of a single concept, for example,
by logarithmically scaling the counts (log-counts aggregation).

To illustrate these three aggregations, consider the Compass item (Fig. 3) again.
Assume that we extract just keywords (no literals), group all turtle commands, and
obtain two coarse-grained concepts: for (1�) and commands (5�). The binary
aggregation results in complexity 2, while the counts aggregation to complexity 6.
For log-counts aggregation, we transform the counts by ln 1þ nð Þ (to ensure nonzero
values) and obtain complexity ln 1þ 1ð Þ þ ln 1þ 5ð Þ≈0:7þ 1:8 ¼ 2:5.

The difficulty of different concepts is not the same; for instance, the forward
command is an easier concept than for-loop. To account for the difficulty of individual
concepts, we can assign them weights before aggregating their contribution. The
weights could be either set manually by the author of the items or estimated from the
available data. For example, in the case that we have already collected performance
data on many other items from the exercise, we can fit the weights to maximize the
predictive performance of the complexity measure (Benedetto et al., 2020; Yaneva
et al., 2019).
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An alternative approach to set the concept weights, which does not rely on historical
performance data, is to assign lower weights to the concepts that appear frequently,
leading to a statistic known as inverse document frequency (IDF) in the context of
ranking relevant documents for a given term (Robertson, 2004). Treating concepts as
terms and items as documents, we obtain the following formula for a smoothed IDF:
ln N=nð Þ þ 1, where N is the total number of items in the exercise, n is the number of
items involving the concept, and the þ1 term ensures that all weights are strictly
positive.

Let us illustrate the IDF on the Compass item. The for-loop is used in 36 out of 46
items, so IDF of for is ln 46=36ð Þ þ 1≈1:25. Turtle commands are used in all items, so
IDF of commands is ln 46=46ð Þ þ 1 ¼ 1. The weights can be combined with any of
the three aggregations; the only change is that the sums are now weighted. For
e x a m p l e , t h e I D F - w e i g h t e d l o g - c o u n t s c o m p l e x i t y i s
IDFðforÞ⋅ln 1þ n forð Þð Þ þ IDFðcommandsÞ⋅ln 1þ n commandsð Þð Þ≈2:7.

Analysis

We compared five concept extraction approaches described in Section 5.3: (1) key-
words-based, (2) node types in the AST, (3) AST-based concepts utilizing node content
but excluding literals, (4) AST-based concepts utilizing node content and including
literals, and (5) AST-based concepts including literals and two programming patterns:
nested loops and recursion. We aggregated the concepts using log-normalized counts
weighted by IDF and measured Spearman’s rank correlation coefficient with the
median solving time. The results are shown in Fig. 4.

Utilizing AST leads to a higher correlation than keywords-based extraction across
all five exercises, even though the basic AST approach is more automatic in the sense
that it does not require specification of keywords for the given exercise. Even among
the AST-based approaches, there are sometimes significant differences. Whether to
include literals depends on the exercise: if figuring out the numbers requires some math
(as is the case for lengths and angles in the Shapes and Turtle exercises), then including
the literals is likely to improve the correlation.

To explore the granularity, we used the full set of AST-based concepts, including
literals and programming patterns, and manually defined a hierarchical clustering of the
concepts into seven levels in each exercise. The lowest granularity levels contain about
four concepts (e.g., commands, control flow, variables, math), while the highest
granularity levels have tens of concepts (individual functions, operators, and even

Fig. 4 Impact of used concepts on the Spearman correlation with median solving time, using log-normalized
counts weighted by IDF as a complexity measure
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literals). To create the hierarchy, we started with the most granular concepts and
gradually grouped those that we perceived as the most similar, e.g., left and right
as turn, then turn, forward, and backward as move, etc.

For each granularity, we computed six aggregated complexity measures, using three
options for normalizing the concept counts (binary, log-normalized, untransformed
counts) and optionally weighting the concepts by IDF. Finally, for each granularity
and aggregation, we measured the Spearman’s rank correlation coefficient with the
median solving time. The results are shown in Fig. 5.

The granularity seems to be a crucial choice, especially for the binary aggregation.
In our case, the highest correlations with the time difficulty were achieved at the highest
granularities. Whether the increase in the correlation is worth the increased number of
concepts and worse interpretation of the complexity measure depends on the intended
application.

The type of aggregation can be a crucial choice as well, but the differences between
the aggregations tend to get smaller if the granularity is sufficiently high. Across
examined exercises, the log-normalized counts with IDF weights usually achieve either
best or close to best correlations with the time difficulty. We have also measured
correlation with the failure rate; the log-IDF measure is also among the best in this case,
although it is usually slightly outperformed by the binary-IDF measure.

Relations Among Measures

There are many complexity and difficulty measures, but it is not obvious how they
relate to each other and which of them to use for decision making. Some measure
similar aspects and are thus redundant; others add new information to the mix.

Measure Similarity

The similarity of individual measures is illustrated in Fig. 6. This figure shows
Pearson correlation coefficients for every pair of measures across our exercises. The
first six measures represent different aspects of difficulty, and the last three represent
complexity. Concepts coarse, medium, and fine are log-counts aggregated AST-based
concepts, including literals and programming patterns of granularity 1, 4, and 7 (as used
in Section 5.3).

We identified four general emerging patterns. (1) Difficulty measures correlate more
with other difficulty measures than with complexity measures and vice versa. (2) There

Fig. 5 Impact of concept granularity in the complexity measures on the Spearman correlation with median
solving time. Each line corresponds to one possible aggregation of the concepts into a single number
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are differences in correlations within difficulty and complexity groups of measures
across exercises. (3) Failure rate and median attempts tend to correlate less with other
measures. One possible explanation for low correlations of failure rate is the effect of
biases that are discussed later in Section 5.6. (4) Measures median log time and Elo
time correlate almost perfectly in all exercises.

Canonical Correlation Analysis

Fig. 6 showed that difficulty measures and complexity measures form two groups that
do not correlate as well with each other. However, for a task like problem sequencing, it
is desirable to estimate the difficulty of a new problem solely based on complexity. To
improve the correlations, we turn to Canonical Correlation Analysis (CCA) (Hotelling,
1936; Thompson, 1984).

CCA is a statistical method for analyzing correlations between two or more sets of
random variables. It does so by finding linear combinations of variables in each set,
creating canonical components. The coefficients in linear combinations are chosen in
such a way that the correlation between canonical components is maximized.

CCA can be naturally used to study the relationship between difficulty and com-
plexity measures. It can be used to study two questions: 1) Which aspects of student
performance (difficulty) can be predicted based on the properties of item statements
(complexity)? 2) How should we sequence problems? The first question is answered by
analyzing correlations (referred to as loadings) of individual measures with the corre-
sponding canonical component. Difficulty measures with higher loadings are better
explained by complexity measures. The second question is answered by looking at
canonical components that provide a compromise between difficulty and complexity.
The CCA computation automatically filters measures that are “reasonable.” If we were

Fig. 6 Pearson’s correlation coefficients of difficulty and complexity measures for programming exercises

219International Journal of Artificial Intelligence in Education  (2022) 32:196–232



to use some unrelated measure of problem complexity (difficulty), it would not have
any relation to student performance (problem properties), and thus it would have a
small loading.

Python Exercise Example

We now illustrate the computation of CCA on the Python exercise. The two sets of
variables are difficulty measures (failure rate, median attempts, median time, median
log time, Elo time, expected solving time) and complexity measures (concepts coarse,
concepts medium, concepts fine). The exact linear combinations of measures for each
canonical component are specified in Fig. 7 next to each axis.

Fig. 7 shows a scatter plot of combined difficulty and complexity measures, together
with the Pearson correlation coefficient. Each dot represents a single problem, and its
color represents the level it belongs to. It shows a reasonable correlation and suggests
the feasibility of estimating difficulty based on complexity. Fig. 7 then shows correla-
tions of individual measures with the canonical component. For Python exercise,
median log time has a very good correlation with difficulty, and it will be best estimated
using complexity measures. On the other hand, the median attempts measure does not
correlate at all, which suggests it is not a useful measure for this exercise.

Results for All Exercises

We applied the same analysis to all programming exercises; the results are in Fig. 8 and
Table 5. Correlations between difficulty and complexity is very good in all five
exercises. The relation between them is mostly linear and subsequent levels contain
both more complex and difficult problems. The only exceptions to this are Spaceship
exercise, where difficulty is not increasing as much with complexity, and Python
exercise, where the level focused on drawing with text is significantly more difficult
and complex. There are visible gaps between problems in Spaceship and Turtle Python

Fig. 7 Left: Scatter plot of difficulty and complexity canonical components for Python exercise. Next to each
component, there is its definition in the form of a linear combination of measures. The ρ in the bottom right
corner is the Pearson correlation coefficient. Right: Correlations (i.e., loadings) of individual difficulty and
complexity measures with their corresponding canonical component
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exercises that could be filled with new, appropriately complex problems to make the
transition between levels smoother.

Table 5 allows a deeper inspection of individual measure importance. Correlations
of failure rate vary due to biases that are discussed later in 5.6. Median attempts
measure is inconsistent between exercises as well. This time because of implementation
details and what is considered an attempt in different exercises. Median time and
median log time have very good correlations across exercises. Median log time is
better suited for the Spaceship exercise, where solving times increase quickly for the
last problems. Conversely, median time is better suited for the Turtle Python exercise,

Table 5 Correlations of individual difficulty and complexity measures with their corresponding canonical
component across all exercises

Measure Shapes Spaceship Python Turtle P. Turtle B. Avg.

failure rate 0.58 0.78 0.16 0.85 0.59 0.59

median attempts 0.51 0.60 � 0:01 0.84 0.64 0.52

median time 0.93 0.80 0.93 0.98 0.98 0.92

median log time 0.91 0.96 0.98 0.91 0.95 0.94

Elo time 0.90 0.97 0.91 0.88 0.95 0.92

expected solving time 0.89 0.93 0.94 0.81 0.94 0.90

difficulty avg. 0.79 0.84 0.65 0.88 0.84

concepts coarse 0.97 0.99 0.80 0.87 0.96 0.92

concepts medium 0.91 0.97 0.87 0.93 0.97 0.93

concepts fine 0.94 0.99 0.94 0.95 0.83 0.93

complexity avg. 0.94 0.98 0.87 0.92 0.92

Fig. 8 Measures for programming problems: CCA projection
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where solving times grow linearly with increasing complexity. Elo time and expected
solving time also behave similarly, and their correlations are negatively affected by
outliers seen in Fig. 8.

Differences in complexity measures are much less pronounced than in difficulty
measures. All granularities of concepts correlate very well. Finer concepts are more
important for text-based exercises (Python and Turtle Python exercise). For block-
based exercises, even coarse concepts are sufficient predictors of problem complexity.

Scaffoldings

Programming problems are notoriously known to be too difficult for students due to the
high cognitive load they impose. One strategy to decrease the intrinsic cognitive load of
programming problems is to provide scaffolding in the form of a partial program to
complete (Van Merrienboer & Krammer, 1990; Kelleher & Hnin, 2019). Students can
examine and run the provided code, and they need to modify or extend it to solve the
problem. By reducing the intrinsic cognitive load, such scaffolding can considerably
impact the difficulty of the problem. How to incorporate the information about the
scaffolding into a complexity measure is, however, unclear.

Four out of the five examined exercises use scaffolding in the form of an initial
partial program. Only some items have such scaffolding, and this proportion varies
across exercises; specifically, these proportions in the Shapes, Turtle Blockly, Turtle
Python, and Python exercise are 44%, 60%, 89%, and 100%, respectively. The extent
of the scaffolding in the individual items varies as well; from just a single command or
a function header, to a whole function to use, to almost a correct solution that requires
just a slight modification, basically serving as a worked example. The median number
of lines (or Blockly blocks that correspond to a new line) in the provided initial
program is 2.5 or 3 in all four exercises.

Scaffolding-Aware Measures

One simple way to account for the scaffolding in a complexity measure is to reduce the
weight of the concepts that appear in the scaffolding. We have used the following
weights, parametrized by a scaffolding penalty α. The higher the penalty, the more
discounted the scaffolded concepts are; setting α ¼ 0 corresponds to the complexity
measures that do not account for the scaffolding while α ¼ 1 results in no contribution
of the scaffolded concepts to the complexity.

For binary aggregation, the non-scaffolded concepts have weight 1, while the scaffolded
ones 1−α. For the counts aggregation, the weights are nsol−αnsc, where nsol is the number
of occurrences of the concept in the solution, and nsc is the number of occurrences in the
scaffolding. Similarly, the log-counts aggregation use weights ln 1þ nsol−αnscð Þ. For
example, the scaffolding-aware log-counts complexity of the Compass item (Fig. 3), using
α ¼ 0:5, is ln 1þ nsol forð Þ−αnsc forð Þð Þ þ ln 1þ nsol commandsð Þ−αnsc commandsð Þð Þ≈2:3.

The accounting for the scaffolding interacts with the choice of the concepts,
including their granularity and weights. In the Turtle exercises, for instance, scaffolding
is often used to free the students from guessing the size of the drawing or an atypical
angle. If the scaffolding in the Compass item were right(90) instead of
right(15), it would not be much helpful. It suggests that accounting for the
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scaffolding could be more effective when used with sufficiently granular and weighted
concepts.

Results

Fig. 9 shows that even such a simple accounting for the scaffolding can be helpful.
Across all exercises, reducing the weight of the scaffolded concepts increased the
Spearman correlation with the median solving time. The concepts in the scaffolding
should not, however, be disregarded completely: for α ¼ 1, the correlation is in most
cases lower than when the information about scaffolding is unused (α ¼ 0). In the
examined exercises, α between 0.25 and 0.5 typically results in the highest correlation.

While this straightforward accounting for the scaffolding increased the correlation
with median solving time, it decreased the correlation with the failure rate. This effect
might be partially attributed to the following bias: first items in each level usually
provide an extensive scaffolding, so they appear simple when scaffolding is accounted
for; at the same time, these items have a relatively high failure rate. As they introduce
new concepts, they might be difficult to solve even with scaffolding. Moreover, they
are often visited by users who just briefly explore the content and do not seriously
attempt to solve it.

Biases

Biases are the inherent product of imperfect, i.e., not uniformly random, data collection.
Anything from structured content to personalized interactions, while useful traits from
the pedagogical point, can cause biases in collected data. The data being collected
simply does not cover the whole reality, but only part of it. This missing information is
the reason why it is hard to combat and compensate for biases. It is worth noting that
biases only affect difficulty; complexity, independent of performance data, is not
affected.

In this section, we focus only on the ordering bias (Čechák & Pelánek, 2019). There
are also other biases; these include attrition (Eagle & Barnes, 2014), mastery (Nixon
et al., 2013; Murray et al., 2013; Pelánek, 2018), and self-selection biases (Brooks
et al., 2015).

Ordering bias occurs when students are solving problems in a similar order. The
causes are typically fixed problem order in the system or students being incentivized to
solve problems in a predefined order. Under these conditions, the observed difficulty of

Fig. 9 Impact of accounting for scaffolding in the complexity measures on the Spearman correlation with
median solving time. Each line corresponds to one possible aggregation of the concepts into a single number.
The concepts that occur in scaffolding are discounted by the scaffolding penalty
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problems at the beginning of the solving sequence is overestimated, and the difficulty
of problems later in the solving sequence is underestimated. This is caused by at least
two underlying effects: student learning and student attrition.

To illustrate this point, we compare two problems on opposite ends of ordering in
Python exercise, Multiples and Nonzero product. Initial scaffolding and example
solution codes of both problems are in Fig. 10. Arguably, Nonzero product should
be more difficult than Multiples as it requires knowledge of multiple programming
constructs and the use of the idea of accumulating intermediate results. However, both
problems have similar median solving times of 144 and 140 seconds for Multiples and
Nonzero product respectively. The majority of students visited Multiples as their first
problem, while the majority of students visiting Nonzero product have already seen at
least 17 other problems. Such difference in student population in terms of their prior
experience is what causes observed difficulty to be similar even for problems with
arguably dissimilar true difficulty.

We present one more example of ordering bias found in the Python exercise. The
problems in this exercise are grouped into levels and presented visually as such. This
creates multiple natural entry points at the start of each level for incoming users. Some
of these users are just exploring the system, trying out a few problems, and not solving
problems seriously. Non-serious attempts artificially increase the failure rate despite
difficulty being comparable to difficulties at the given level. Non-serious attempts are
not distributed evenly across problems; they tend to occur mainly at the beginnings of
levels. Hence, the failure rate of problems is biased based on the order in the level.

Fig 11 (left) demonstrates that problems at the same level are solved by students
with widely different degrees of experience in the system. It shows distributions of
solving sequence ordering, i.e., how many problems a student has visited, for the fifth
level of Python exercise. Most students visiting the first problem at the level have very

Fig. 11 Left: Violin plot showing the distribution of problem orders in individual solving sequences. It shows
only problems from a single level of Python exercise. The shape and width of the violin are given by kernel
density estimation of the underlying distribution of solving sequence ordering. Inside each violin, there is also
a box plot with a white dot marking the median. Right: Bar chart showing unfiltered and filtered failure rates
for the same problems used in the left plot

initial program:
def multiples(n):
   print("Two times", n)

initial program:
def nonzero_product(numbers):
    return 0

Fig. 10 Initial program (scaffolding) and the author’s solution to Multiples and Nonzero product problems
from Python exercise
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little or no prior experience in the system. In contrast, students have typically visited at
least 30 other problems prior to visiting the last four problems of the level.

Fig 11 (right) shows the largest change in the failure rate for the first problem in the
level when non-serious attempts are accounted for. It shows differences in failure rates
of problems in the fifth level of Python exercise after filtering. We filtered out attempts
of students with less than three visited problems in total and kept only students with at
least three visited problems. The figure shows a drop in failure rates after filtering,
especially for the first three problems of the level that are most affected by ordering
bias. To further prove the reasonability of filtering, the filtered failure rate for Python
exercise has higher correlations with concepts by 0.3–0.4.

Note that the level and exercise used for Fig. 11 have been deliberately chosen to
demonstrate the bias. Other levels of Python exercise show lower sensitivity to
filtering—differences between filtered and unfiltered failure rates are around 0.1.
Similarly, filtering has a small effect on the failure rate in other programming exercises
that we explored. One factor leading to the high effect of filtering is the topic of the
used level. It focuses on editing existing code and finding errors in nearly correct
solutions. Other levels require students mostly to write new code from scratch. Al-
though filtering is not always necessary, it is highly useful in some cases.

Discussion

To conclude, we summarise the main points of our review and outline directions for
future work.

The Use of Complexity and Difficulty in AIED

One of our points in this paper is that it is useful to distinguish between complexity and
difficulty. However, we do not argue for a search for some correct, universal measures
of these concepts. Measures of complexity and difficulty can be used in several ways in
the development of adaptive learning systems. When using these notions, it is neces-
sary to take the purpose of their application into account and to choose specific
measures accordingly. Let us discuss several typical AIED applications and their
requirements on measures.

Adaptive choice of items. In computerized adaptive testing and adaptive practice,
one of the aims is to present students with items of appropriate difficulty, i.e., neither
too easy nor too difficult (Pelánek et al., 2017). In these applications, the difficulty
measures are thus the main focus. Complexity measures here serve as a proxy that helps
with the “cold start” problem with difficulty measures—before we have (sufficiently
large) student data, difficulty measures cannot be computed. In this case, we are thus
interested in a complexity measure that correlates with difficulty as much as possible
(Benedetto et al., 2020). The interpretability of such complexity measures is not
fundamental.

Preparation of items. Another case where we seek a high correlation between
complexity and difficulty measures is the preparation of items, particularly automated
content generation (Kurdi et al., 2020). One approach to content generation is to
generate many items and then use the difficulty prediction to filter suitable ones. Good
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predictions of difficulty are also valuable for human content authors. Using such
measures, the authors can get instant feedback while preparing items and can tune
the item to a better fit for the expected use of items. Note, however, that this application
requires care. In the case of text complexity, this approach has been described as
“writing to the formula” (Benjamin, 2012); mechanical use of this approach can lead to
pedagogically unsuitable material.

Sequencing of items. Learning systems that are not adaptive provide to students
items in a fixed sequence. In this case, it is usually a good practice to order the items
from easier to more difficult, i.e., with respect to difficulty (Scheiter & Gerjets, 2002).
However, it makes sense to take into account also complexity measures, e.g., it may not
be a good idea to start with an item that is easy (can be answered correctly by most
students), but otherwise rather complex (and thus potentially discouraging to new
students). If we want to automatize the construction of such ordering, we may need a
suitable compromise measure.

Item management and feedback for content authors. Difficulty and complexity
measures are useful for the management of items (e.g., the removal of unsuitable items,
updates of items) and as feedback for content authors (e.g., which items work as
expected). In this case, we are interested in measures that are easily interpretable, and
we do not require a single number. For this use case, it is useful to have measures that
consider different aspects of items, and we do not necessarily seek measures that highly
correlate. In fact, outliers and misalignment of measures can give us useful insight
useful for the management and further development of items.

The use case significantly influences the choice of exact metrics and the interpreta-
tion of results. Consider as a specific example the case of items for which two measures
do not correlate. In the adaptive choice use case, this situation indicates a “problem
with measures”—we want to find measures that correlate well for all items, i.e., the
action taken should be “try to find better measures.” In the item management use case,
the result may indicate a “(potential) problem with items”—if other items correlate, but
a few do not, it may mean that these items are in some way problematic and should be
removed or updated.

Measures and Their Relations

Details of complexity and difficulty measures depend on specific applications. Never-
theless, there are many common elements. Particularly difficulty measures are mostly
universal since they depend on data on student performance, not on specifics of items.
The common difficulty measures are the failure rate, median response time, and their
group invariant (de-biased) versions computed by models (e.g., item response theory
models or the Elo rating system).

Complexity measures depend on the specific format of items. Nevertheless, even for
them, it is possible to find several common approaches:

– size, i.e., how long is the item statement (e.g., word, sentence, or text length, the
length of an expression or equation, the number of lines of code of a program, the
size of a grid of a logic puzzle),

– the length of solution (e.g., the number of steps in a sample solution),
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– concepts (e.g., part-of-speech tags or types of subordinate clauses, arithmetic
operations, control structures in code), which are quantified as a simple count or
a weighted sum, often using weights based on a variation of TF-IDF (term
frequency—inverse document frequency).

Whatever specific application of complexity and difficulty measure we are aiming for,
it is useful to understand relations among candidate measures. A primary tool for this
analysis is a simple pairwise correlation analysis. When we have a large number of
measures, it may be useful to use unsupervised machine learning techniques to find
clusters of related measures. For example, several studies have used principal compo-
nent analysis to group complexity measures (Sheehan et al., 2014; Graesser et al.,
2004). In our analysis, we have illustrated the use of the canonical correlation
analysis—a technique used to study relations between two sets of variables. This
technique naturally fits the setting of complexity and difficulty measures and can
provide useful insights.

As our overview of results from several domains clearly shows, relations between
complexity and difficulty measures vary quite a lot. In some cases, we can get a high
correlation between complexity and difficulty even when using relatively simple
measures. This is the case for some logic puzzles (e.g., Rush hour where the length
of the solution path is predictive of difficulty) or introductory programming (where the
number of concepts used in the sample solution is predictive of difficulty).

In other cases, it is challenging to capture complexity using measures that can be
easily computed, and it may be nearly impossible to obtain a high correlation between
complexity and difficulty using reasonably simple measures. This is the case particu-
larly for items that combine natural language text and some underlying domain
principles—a typical case is word problems in mathematics, which we discussed in
some detail. Consequently, for some domains, some of the above-outlined applications
may not be achievable. However, even simple measures can be useful; we just have to
focus on applications other than prediction. For example, even simple complexity
measures can be useful for sequencing or for feedback to content authors.

Distinguishing Complexity and Difficulty

We believe that it is useful to carefully distinguish the notions of complexity and
difficulty. The measures that we have discussed could be, of course, used even without
such distinction. We can analyze and employ measures like the length of item statement
or median response time without giving them labels complexity and difficulty measures
(or giving them all the same label). However, distinguishing the two notions leads to
greater clarity, easier communication, and inspiration for both research and
development.

The clear treatment of complexity and difficulty is helpful particularly for highlight-
ing similarities between studies in different educational domains. There are many
studies that focus on the prediction of a difficulty measure based on complexity
measures (see, e.g., our discussion in Section 4). However, when discussing the work
directly in terms of specific measures, these studies may look quite unrelated. Once we
have clear terminology, transfer across domains is easier. For example, text complexity
measures can be very useful in the development of systems for learning mathematics or
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programming (Daroczy et al., 2015; Sheard et al., 2013). A well-used terminology can
lead to easier communication and better presentation of research results—a message of
a study is clearer when presented as a relationship between complexity and difficulty
measures instead of a relationship among a group of specific measures.

A clear terminology also facilitates generalization and provides inspiration relevant
for both practice and research. In the introductory programming setting, we may start
with a question “Should we sequence problems with respect to success rate or the
number of used programming concepts?” Once we have the clear terminology of
complexity and difficulty at hand, this naturally leads to a more general question
“Should we sequence problems with respect to difficulty or complexity?” And this,
in turn, suggests other useful questions: “Has this question been studied in other
domains? What other complexity and difficulty measures may be relevant?”

Limitations and Future Work

An important topic concerning complexity and difficulty measures is the role of
context. In this paper, we focus mainly on basic measures that do not take the context
into account and provide only a brief discussion and illustrations of the role of context
and potential biases. This topic requires further clarification and research into methods
for dealing with it.

Another topic that requires more attention is how to incorporate scaffoldings into
measures of difficulty and complexity. The use of scaffoldings is a crucial pedagogical
principle in learning systems (Jumaat & Tasir, 2014). However, with basic measures of
complexity, scaffoldings tend to lead to paradoxical results: increasing complexity
(item statements are longer) but decreasing difficulty (items are easier to solve). We
provide an analysis of the role of scaffoldings for the case of programming exercises,
and the analysis suggests a suitable way of incorporating scaffoldings into measures.
The topic, however, deserves more attention in further work.

A similar but more challenging topic is the use of hints. Hints can be seen as an
inherent part of an item, which influences both its complexity and difficulty. The role of
hints is very dependent on their specific use in a particular learning system, particularly
on the chosen approach to the availability of hints. When are hints available? On-
demand (whenever students want), after a time limit, or based on a decision of an
adaptive algorithm based on a student model? The presence of hints can also lead to
“gaming the system” behavior, which can have a nontrivial impact on difficulty
measures (Baker et al., 2008). For these reasons, it is challenging to study difficulty
and complexity measures in the presence of hints. Nevertheless, due to the common
presence of hints in intelligent tutoring systems, this challenge should be addressed in
future research.
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