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Abstract
When students are first learning to program, they not only have to learn to write programs,
but also how to trace them. Code tracing involves stepping through a program step-by-step,
which helps to predict the output of the program and identify bugs. Students routinely
struggle with this activity, as evidenced by prior work and our own experiences in the
classroom. To address this, we designed aCode Tracing (CT)-Tutor. We varied the level of
assistance provided in the tutor, based on (1) the interface scaffolding available during code
tracing, and (2) instructional order, operationalized by when examples were provided, either
before or after the corresponding problem was solved. We collected data by having
participants use the tutor to solve code tracing problems (N= 97) and analyzed both learning
outcomes and process data obtained by extracting features of interest from the log files. We
used a multi-layered approach for the analysis, including standard inferential statistics and
unsupervised learning to cluster students by their behaviors in the tutor. The results show
that the optimal level of assistance for code tracing falls in the middle of the assistance
spectrum included in the tutor, but also that there are individual differences in terms of
optimal assistance for subgroups of individuals. Based on these results, we outline oppor-
tunities for future work around personalizing instruction for code tracing.

Keywords Code tracing .Tutoring system .Assistance .Workedexamples . Programming
instruction

In memory of Jim Greer

Back in the 2000s when I was in my early years of graduate school, I first met Jim
at one of the AIED conferences. He was introduced to me by my close friend
Andrea Bunt, a fellow graduate student who knew Jim from her time at the
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University of Saskatchewan. A conference can be intimidating for those new to
the community – everyone seems to know each other and while we are told to
network and meet people, that can be challenging. I’ve always appreciated Jim’s
kindness and mentorship – since that first introduction, he took time to talk to me
during the various subsequent conferences, even though he had many people to
talk to as he knew everybody in the community. I got to know his work over the
years, and his impact on AIED scholarship cannot be overstated. He and his
students have consistently produced groundbreaking work in diverse areas,
including Bayesian student modeling, programming education, peer help sys-
tems, and the evaluation of tutoring systems, to name a few. One of his areas of
expertise was Bayesian student modeling, something I also worked on for my
Ph.D. research. Jim was my external examiner for my Ph.D. defense. Frankly,
like many candidates I was anxious about his report, especially given his
extensive expertise but there was no need. Jim was constructive, kind, and fair.
I held on to his external report, both as a happy memory and as a standard for
how to write such reports for others. In addition to these exceptional qualities,
Jim also had a brilliant sense of humour. I still remember him doing the opening
remarks for AIED’07. It was the first day of the conference and it was early.
While typical opening sessions are notoriously dry, Jim had us laughing from
start to finish. The last time I saw Jim was at ITS in Montreal in 2018. As always,
we chatted briefly, and I left with a feeling of gratitude that I had the chance to
bump into him and we could share a moment. Jim had that effect on people that
those rare individuals with confidence, humility, and wisdom have. The AIED
community will sorely miss him.

Kasia Muldner

Introduction

Programming involves writing instructions, called code, that tell a computer how to
accomplish a specific task. Because computers do not understand human languages like
English, programs are written using a specialized programming language. Since the
influential Wing (2006) article promoted the need for everyone to learn computational
thinking skills, there has been increased recognition of the broad value of these skills in
general, and programming in particular (Grover and Pea 2013). For instance, program-
ming classes are being integrated into primary and secondary schools around the world
(Brown et al. 2013; Rich et al. 2017), and some universities require that all students, not
only computer science majors, take a programming class (Nelson et al. 2017).

Learning to program does come with challenges. Students frequently struggle with
syntax errors (Denny et al. 2011), understanding the logical flow of a program (Lam
et al. 2008), building mental models of common program elements (Hertz and Jump
2013), and tracing through programs to understand them (Vainio and Sajaniemi 2007).
In general, many students find programming difficult, with the failure rate hovering
around 30% in introductory university classes (Bennedsen and Caspersen 2007). Given
the challenges related to learning to program, some early work focused on identifying
expert programmers’ mental representations (Gilmore and Green 1988), and how these
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representations could be incorporated into teaching activities to help novices learn
(Schank et al. 1993; Soloway 1986). There was also interest in computational support
for programming activities delivered through tutoring systems (Anderson et al. 1989;
Bhuiyan et al. 1994). Jim Greer and colleagues championed some of this work. To
illustrate, Greer and McCalla (1989) proposed that automated diagnosis of students’
programs in tutoring systems could be facilitated by using hierarchical representations.
These representations, referred to as granularity hierarchies, allowed the system to
detect student errors at different levels of abstraction. A subsequent project involved the
PETAL learning environment (Bhuiyan et al. 1994). This system scaffolded Lisp
program generation through a variety of tools (e.g., syntactic support as well as high-
level analytic support that helped students design and implement recursive programs).
Other tutoring systems have also supported program generation by providing hints
(Price et al. 2019; Price et al. 2017; Rivers and Koedinger 2017) as well self-
explanation prompts (Fabic et al. 2019). For example, Rivers and Koedinger (2017)
used data-driven techniques to tailor hints to a given student, so that when an impasse
was encountered, students were given tailored help aimed at helping them overcome
the impasse. An alternative (or complimentary) approach to tutoring systems involves
providing peer support. The i-Help system pioneered by Greer and colleagues (Greer
et al. 2001) assisted learners in a variety of problem-solving activities, including
programming. Students enrolled in university classes could post questions to public
forums and could also ask for 1-on-1 help from a peer, who would be located by an i-
Help agent. There is also work outside the AIED community on supporting novices
through the design of environments for programming activities (Costa and Miranda
2017; Whittall et al. 2017; Bau et al. 2017; Weintrop and Wilensky 2018).

As summarized above, there is a range of support available for program
generation. While knowing how to write code is clearly an important skill, a related
critical skill is code tracing. Code tracing involves the simulation of a computer
program step-by-step. This activity helps identify bugs (errors in programs), predict
code output, and in general improves learning outcomes as well as engagement
(Cunningham et al. 2017; Lopez et al. 2008; Hertz and Jump 2013; Venables et al.
2009; Kumar 2013; Murphy et al. 2012). Despite the fact that students struggle with
code tracing, to date there is little work on how to support students during this activity.
This project takes a step in filling this gap. The project was inspired by our experiences
teaching first-year programming. In our department of cognitive science, all students,
regardless whether they are in the computer-science concentration or not, have to take a
first-year programming course, currently taught in Python. As reported in prior research
involving computer science majors, our teaching experiences highlighted that code
tracing is challenging for students first learning to program. One reason for this may be
lack of adequate practice opportunities that provide assistance and encouragement for
the process. Thus, our long-term goal is to develop an intelligent tutoring system for
code tracing activities and incorporate it into our course, so that students have ample
opportunities to practice code tracing and receive the tutor’s feedback and assistance.

Here we describe the first phase of this project, namely the design and evaluation of
a code-tracing tutor protype called Code Tracing (CT)-Tutor. The tutor scaffolds the
process of code tracing through two forms of assistance: interface design and worked-
out examples incorporated into the tutor. Currently, the tutor is not an intelligent
tutoring system because it does not include a student model and so does not personalize
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instruction (beyond basic correctness feedback). While adding intelligent support is
certainly a future goal, we wanted to evaluate the present prototype prior to adding
functionalities to it. Before describing the tutor, we present related work.

Programming and Code Tracing: Foundations and Related Work

Code Tracing: Background

Code tracing involves the simulation of a computer program step-by-step in order to
predict how the program manipulates data and what output (if any) it produces. How
should code tracing be realized? One option is specially-designed debuggers that allow
a user to step through a program. However, our anecdotal experience in the classroom
with introducing debuggers to novice programmers was that students were not com-
fortable with debuggers because they presented an additional technical hurdle (learning
the debugger interface in addition to learning to program). Another option for realizing
code tracing is through paper and pencil activities. Such activities are more familiar to
students and there is evidence they are effective for tracing short programs of the types
novices initially learn to produce. To illustrate this process, Fig. 1, left, shows a short
python program that tallies a user’s expenses, and one way to trace this program (right),
with the column labels corresponding to the program variables that need to be traced
(amount, net expenses, total) – the code trace involves keeping track of the variable
values during program execution. Even this brief example illustrates that keeping track
of variables in working memory is not feasible, given that variable values change as a
program runs (e.g., because a variable is in a loop). Indeed, Cunningham et al. (2017)
found a positive association between code tracing on paper and test performance, with
students who code-traced effectively scoring higher on a post-test than students who
did only partial tracing, rewrote parts of the code, or did not code trace at all. The
instructor also had an effect on how much students code traced and the quality of the
traces, suggesting that modeling the code tracing process is beneficial. While this was
not an experimental study, it provides promising indications that code tracing is
associated with learning and is a skill that can be taught.

Other work, also relying on observational methods, reported a positive association
between code tracing on paper and programming performance (Lopez et al. 2008;
Venables et al. 2009; Kumar 2013; Lister et al. 2009). A complimentary skill that
emerged from these studies is code explanation, namely describing a program in plain
English rather than with programming jargon (Venables et al. 2009; Lister et al. 2009).
To illustrate, one potential explanation of the program in Fig. 1 is that it asks the user

Fig. 1 A short python program (left) and its code trace (right)
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for their expenses and calculates the total amount spent as well as the number of
expenses. Subsequent work replicated the finding that code explanation is positively
correlated with the ability to write code (Murphy et al. 2012). We hypothesize that code
explanation and code tracing are complementary skills: code explanation involves
understanding the program from a high-level perspective, while code tracing identifies
the low-level blocks needed to realize the high-level goal.

Support for Code Tracing

Both code tracing and code explanation are challenging for novices (Simon and Snowdon
2011; Murphy et al. 2012; Lahtinen et al. 2005), and so support is needed to help students
learn these skills. One way to provide such support is through teaching practices. Hertz and
Jump (2013) adopted code-tracing centered instruction after observing that students held
incorrect mental models of programs. The instruction corresponded to a lesson on a code-
tracing topic, followed by an application phase during which students worked in groups.
Students reported that this style of teaching was helpful, and the drop/fail rate in the course
was reduced from 25% to 8%. However, even after this overhaul of the pedagogy, students
often did not code trace on their own, something we also found in our classrooms. This
highlights the need for additional code-tracing guidance, such as that provided by educa-
tional technologies. To date, however, little technological support exists for code tracing,
with a notable exception we now describe.

Nelson et al. (2017) developed the PLTutor, which provides an interface for stepping
forward and backwards during the execution of a program (both at the line level and at
higher levels of granularity), along with explanations at salient steps. For example, PLTutor
will stop during an evaluation of an if statement to provide an explanation of what the
program is doing, aimed to help students understand how the parts of the program relate to
each other. The theory underlying the PLTutor’s design is that novice programmers will
learn to code trace by being exposed to the rules of how code is processed by a programming
language’s interpreter. Thus, PLTutor’s explanations include technical terms like
namespaces and stacks. This is certainly suitable for a traditional computer science audience
but would need to be adapted for students from less traditional backgrounds, including non-
computer science majors. This is the case for our target audience, as our students come from
interdisciplinary backgrounds and many are not computer science majors. PLTutor was
evaluated by comparing learning outcomes of students who worked with the tutor against
outcomes of students learning from Code Academymaterials. The total learning gains were
greater for the PLTutor participants than the Code Academy participants. This is a positive
finding, although the results have to be interpreted with caution as there were a priori
differences between the groups at pre-test.

One way to support code tracing is by giving students access to explanations,
similar to hints, as the PLTutor did. An alternative approach is to supplement code
tracing activities with examples of code traces to illustrate the process of code
tracing. We recently incorporated code-tracing examples into instructional videos
about code tracing (Lee and Muldner 2020). We found that overall the videos
significantly improved learning, but in this work we did not manipulate instruction
related to the examples, such as where they occurred in the instructional sequence.
While to the best of our knowledge the work reported in this paper is the first to
incorporate examples about code-tracing activities into a computer tutor, examples
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have been successfully used in tutoring systems in other domains (Conati and
Vanlehn 2000; Muldner and Conati 2010; McLaren et al. 2016; Najar and
Mitrovic 2013), including program construction (Hosseini and Brusilovsky 2017).
In general, there is established evidence that examples are highly beneficial for
novices (Chi et al. 1989; Renkl 2014; Sweller and Cooper 1985; van Gog et al. 2011)
with the caveat that this positive effect diminishes as expertise develops (Sweller
et al. 2003). A seminal work illustrating the benefits of examples is the Sweller and
Cooper (1985) study, in which students were asked to study an example of a step-by-
step solution to an algebra problem, and then solve a similar algebra problem without
the presence of the example (each session included a series of example-problem
pairs). Students given examples learned more compared to students who only solved
problems, highlighting the benefit of worked examples. In the context of tutoring
systems, however, recent findings have been mixed, with some studies not finding
evidence that examples are beneficial (e.g., Salden et al. 2009; Corbett et al. 2013). A
possible explanation in the discrepancy of findings is that in the original studies, all
activities were done on paper, while studies not finding benefits of examples
involved tutoring systems. Since tutoring systems scaffold problem solving in
various ways, the effect of examples may be affected by that scaffolding.

When examples are available, learning outcomes are maximised when students
invest time and effort to study the examples. Chi et al. (1989) showed that students
who self-explain example solutions learn more than students who merely paraphrase
example solutions. Self-explanation can involve inferences that go over what is
explicitly shown in the example, for instance to identify the rules that generated the
example solution steps. The self-explanation effect has been replicated through hun-
dreds of studies (e.g., Rittle-Johnson et al. 2017; Wylie and Chi 2014; Weerasinghe and
Mitrovic 2006) and various learning environments have added tools to encourage
students to self-explain, in domains such as physics, mathematics, and program
generation (Conati and Vanlehn 2000; Fabic et al. 2019).

There are various ways that examples can be integrated into instructional activities. A
common approach is to show the example first, followed by the problem (Sweller and
Cooper 1985), or alternatively, to show the example alongside the problem (Jennings and
Muldner 2020). In either case, the example can guide learning of the procedure required for
solving the subsequent problem. In contrast, van Gog (2011) asked students to first solve a
problem and then be given the corresponding example, comparing this less traditional
instructional order to the standard approach of showing the example before the problem;
the domain for this study was electric circuits. Intuitively, if the problem is presented first,
students may struggle to solve the problemmore than if the example is first. This is because
an example-problem ordering provides more assistance than a problem-example ordering,
as the example illustrates the procedure before the problem has to be solved, rather than after
the problem is attempted. Van Gog speculated this initial struggle may actually have
beneficial effects, but this was not confirmed: students in the problem-example order
performing similarly to students in the example-problem order (i.e., no significant difference
between instructional orders was found). A second study by van Gog et al. (2011) found a
significant learning advantage of showing the example before the problem, rather than after
the problem. In general, however, more work is needed before concluding that a given
instructional ordering is best, given that other work, albeit using a different instructional
design, has found precedent for challenging students by giving them the problem-solving
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activity first, before instruction. Specifically, in the productive failure paradigm (Kapur
2014; Kapur 2016; Kapur and Bielaczyc 2012) students are asked to solve open-ended
problems that they lack knowledge to successfully complete and only once they have
struggled with them are they provided with the canonical solution in the form of a lesson.

To summarize, little work exists on the design and evaluation of educational
technologies that provide support for code tracing activities, particularly for novice
programmers not enrolled in a traditional computer science stream. To fill this gap, we
have been working on designing and implementing a code tracing (CT)-Tutor, and now
describe the prototype that we built as a first step towards filling this goal.

Code Tracing (CT)-Tutor

As will become evident shortly, the CT-Tutor is not like a debugger, because it aims to
support code-tracing activities in a manner similar to how novices trace programs on
paper. Compared to paper activities, however, a computer-based tutor has several
advantages because it can (1) explicitly scaffold the process by requiring that students
perform the code trace in a prescriptive, principled way, (2) provide assistance such as
immediate feedback for correctness, and (3) log student actions that can be subsequent-
ly mined to identify patterns of behaviours that are beneficial (or not) for learning.

Our goal was to make the tutor usable for students who are not computer science
majors and who are just starting to learn to program. Thus, we avoided integrating
technical terms into the design of the tutor. In general, the CT-Tutor interface was
designed based on both our experience teaching programming as well as prior research

Fig. 2 The CT-Tutor interface with high scaffolding
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reporting how novice students trace programs on paper (Cunningham et al. 2017). Each
problem in the CT-Tutor corresponded to a short Python program (e.g., Fig. 2, top left
panel) and instructions asking the student to trace the program in order to predict the
program’s output. We integrated two types of support for code tracing into the tutor,
namely interface scaffolding and examples, as we now describe.

Assistance for Code Tracing Through Interface Scaffolding

Students struggle with code tracing and one potential reason for this is insufficient
scaffolding (i.e., knowing where to start, which variables to track). To investigate the
effect of scaffolding, we implemented two tutor interfaces: high vs. reduced scaffolding
for code tracing.

High-Scaffolding Interface

As the name implies, the high-scaffolding interface is designed to provide a lot of
guidance for the code tracing process, by informing students which variables to track
and by requiring they enter values of those variables step-by-step as the variable values
changed during the program. This scaffolding is realized through the Code Tracing
Work Area panel, top right, Fig. 2. The design of the Code Tracing Work Area is based
on the table format used by effective learners using paper and pencil materials
(Cunningham et al. 2017). To illustrate, for the problem in Fig. 2, students are guided
to keep track of the counter and result variables – since the program involves a loop,
the table includes multiple rows to reflect that the variable values change for each loop
iteration. The tutor provides immediate feedback for correctness on each entry (correct
entries are coloured green; incorrect entries are coloured red).

To guide the process of code tracing, students are not allowed to skip steps and their
entries in a given row in the code-tracing table have to be correct before they can move
on to the next row. Thus, initially all the rows in the code-tracing table are locked (and
grayed out slightly), with the exception of the first row. Once the entries for the first
row are correctly generated, the tutor unlocks the second row, and so on. Based on
piloting, the tutor generates a warning message when a locked row is clicked, telling the
user they have to first produce the prior rows’ entries.

This form of scaffolding is fairly strict. While it is an open and empirical question as to
whether allowingmore flexibility in terms of solution generationwould be beneficial, there
is some precedent for strict tutor guidance in other domains (e.g., Anderson et al. 1995). In
the present domain, one argument for the benefits of this restrictive interface design is that
it might encourage code tracing. This conjecture is based on prior work showing that if
students do not know which variables to track or how to track them, they tend to avoid
code tracing altogether or make mistakes because they skip steps (Cunningham et al.
2017). However, the alternative possibility is that this design will make students overly
reliant on producing the correct answer, without self-explaining how the answer was
obtained. We address this question through an empirical study we describe below.

In addition to guiding students in the code tracing work area and providing feedback
for correctness, a third form of scaffolding for code tracing comes in the form of
encouraging students to enter a high level, plain English explanation of what the code
does (see the panel under the “What does the code do? Explain” label, bottom left, Fig.
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2). If students try to move on to the next problem without providing an explanation (by
clicking the Next Problem button, not shown in Fig. 2), the tutor reminds them to
provide one. The tutor does not currently check the content of what is typed in the
explanation box, although this is something we plan to integrate in future versions.

Reduced-Scaffolding Interface

To evaluate the effect of interface scaffolding for code tracing, we created a second
version of the CT-Tutor interface that provided only reduced scaffolding for code
tracing. An example of the reduced-scaffolding interface is shown in Fig. 3. As was the
case for the high-scaffolding interface, the reduced version also requires students to
predict the output of the target program and to type their answer into the provided entry
boxes (see boxes labelled counter and result, bottom right, Fig. 3); also as in the high-
scaffolding interface, this version provided immediate feedback for correctness on the
entries related to the these final values.

However, there are several key differences between the reduced- and high-
scaffolding interfaces. The reduced-scaffolding interface does not enforce a specific
strategy for code tracing, instead providing a free-form textbox that students could use
(but are not required to), see Code Tracing Work Area, middle right, Fig. 3. Because
the entries produced in this textbox are free form and not guided in any way, and thus
challenging to automatically grade, the tutor does not evaluate their correctness. Thus,
in this interface, the feedback for correctness is provided only for the final answer, but
not the intermediate steps. Moreover, the reduced-scaffolding interface does not ex-
plicitly ask students to generate a plain English explanation of the code, although
students are free to do so in the code-tracing work area.

Assistance for Code Tracing Through Examples

Beyond interface scaffolding, the second form of assistance for code tracing in the
CT-Tutor is in the form of worked examples. In the context of code tracing, a
worked example shows all the intermediate solution steps related to code tracing, as
well as the final solution. Since students naturally use a table design when code

Fig. 3 The CT-Tutor interface with reduced scaffolding
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tracing (Cunningham et al. 2017), like the one used in the high scaffolding interface,
the format of the examples in the CT-Tutor followed this approach. Fig. 4 shows an
example in the CT-Tutor. While the example appears similar to a problem in the high-
scaffolding interface, in the example the explanation and the code-tracing entries are
filled in with correct answers, and all text boxes are locked (i.e., cannot be edited).

As described above, the examples in CT-Tutor were shown separately from the
problems - either before the problem was presented or after (instructional order was one
of the factors we varied in our study because wewanted to analyze its effect on learning).
If the example came before the problem, then it offered higher assistance than if the
example came after the student attempted to solve the problem (van Gog et al. 2011).

CT-Tutor Logistics

While we have benefited from the CTAT tutoring framework for tutor construction for
several projects (Borracci et al. 2020; Sale and Muldner 2019), for this project we needed
more flexibility in terms of the tutor functionalities (e.g., rapid problem integration). Thus,
we implemented the tutor from scratch, without relying on any tutor-building frameworks.

In the present tutor prototype, a human author provides a text file that specifies the
necessary parameters: (1) the problem file name, which contains a screenshot of the python
program shown in the interface; (2) a corresponding explanation of the program; (3) a
specification for the code tracing interface (i.e., how many rows and columns to include in
the table); (4) a solution for each of the entries in the interface. The CT-Tutor automatically
builds the tutor interface based on the author specification. This latter feature allows the
program to flexibly adjust the look and feel of the interface based on the problem, since
different Python programs may require different code-tracing layouts. This flexibility was

Fig. 4 An example showing a step by step solution to a code-tracing problem, including the variable values as
the loop executes in the code trace panel (see right panel), as well as a plain English explanation (bottom left)
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important to us because, when we do integrate the tutor into our programming class, we will
have the ability to easily add and modify problems in the tutor.

Evaluation of CT-Tutor: Methods

The CT-Tutor protype described above provides feedback for correctness and two types of
assistance (interface scaffolding, worked examples). Before we integrated more complex
forms of help and AI methods to enable personalization, we evaluated the tutor through a
study that provided data on what was working (and not) in terms of the tutor’s design.

In the present work, our goal was to investigate the impact of the two types of
assistance in the CT-Tutor on learning and performance. We hypothesized that com-
pared to reduced-scaffolding, the high-scaffolding interface will increase learning
because it provides assistance to code tracing (H1). We did not have a hypothesis for
the effect of instructional order on learning or interactions between it and scaffolding
because there is not yet sufficient prior research related to these aspects. As far as
performance, we had a variety of within-tutor variables related to time and correctness
of entries (described below), some of which were exploratory and so did not have
corresponding hypotheses. For the variables that did, we hypothesized that the number
of problems finished will be greater in the high-scaffolding conditions and the example-
first conditions (H2), because these provide higher assistance than reduced scaffolding
and problem-first conditions. Similarly, we hypothesized students would spent less
time solving problems in the high-scaffolding and example-first conditions (H3). As far
as error rate based on entries the tutor flagged as incorrect, we did not have specific
hypotheses. Error rate, operationalized here errors flagged by the tutor, is affected by
the number of opportunities to receive error feedback, and this is higher in the high-
scaffolding interface (recall that the reduced-scaffolding interface only provides feed-
back on the final solution). While we did normalize this variable, we could not fully
control for the inherent difference in the two interfaces.

Participants

The study participants were undergraduate students in a medium-sized Canadian University
who were enrolled in a first-year class that presented a broad overview of cognitive science
(N = 97, 67 female). To avoid ceiling effects, participants were not eligible for the study if
they had taken any university-level computer science courses. Compensation was 2% bonus
course credit for the class, which was added as a percent to their final grade in the course.
The study was reviewed and approved by the university ethics board.

Materials

Python Lesson

To provide background knowledge for coding with Python, participants were given a
tutorial on the basics of programming and code tracing, including variables, assign-
ment, input and output statements, basic conditional statements, and basic while loops.
The tutorial was organized using a slide-deck PowerPoint format with 11 slides. Based
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on prior work showing that questions in instructional materials can foster learning
(Craig et al. 2006; Driscoll et al. 2003), each slide included “speech bubbles” from
hypothetical students asking questions, along with an answer (see Fig. 5). The slide
deck included two brief videos (approximately two minutes each) demonstrating how
to code trace, including how to keep track of variables and their values.

Problems and Examples Used in the CT-Tutor

We populated CT-Tutor with four code-tracing problems and four corresponding examples.
The problems that participants had to code trace were short Python programs that involved
while loops and conditional statements (for an example see Fig. 3, left, Python program).
These types of short programs are included in introductory programming classes to
familiarize students with programming basics. However, the use of loops makes tracing
even these basic programs challenging due to the need to keep track of variables and how
their values repeatedly change inside a loop (all problems involved while loops).

For each problem, we created a corresponding example that showed a step-by-step
worked out solution to a similar problem (but with different variable names and values).
The examples were shown either before the problem or after.

Pre-Test and Post-Test

The pre-test and post-test were identical except that variable names and values were
varied between the two (the pre-test is in Appendix 1). The test had two parts: code
tracing and code explanation. The code tracing questions were worth 10 points: four
brief 1-point questions related to programs that did not include loops and three 2-point
questions related to programs with loops. The two explanation questions related to the
loop programs and were worth 2 points each. Thus, the test was scored out of 10 points
for code tracing and out of 4 for explanation. We kept these scores separate in our
analysis to see how CT-Tutor affected each skill, with a focus on the code-tracing score
as this is currently the focus of CT-Tutor’s assistance.

Experimental Design and Study Conditions

We used a between subjects design with two factors: interface scaffolding (high, reduced)
and instructional order (example first, where CT-Tutor showed the example before the

Fig. 5 A snippet of the tutorial showing hypothetical student questions and subsequent answers
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corresponding problem, and problem-first, where the example was provided after the
corresponding problem). Thus, there were four conditions: reduced-scaffolding problem-
first, reduced-scaffolding example-first, high-scaffolding problem-first, and high-scaffolding
example-first. Given the between-subjects design, each participant experienced only one
condition. Note that the example interface in each of the four conditions was always the
same (see Fig. 4 for an example). The four conditions captured three levels of assistance
when considering both instructional design and level of scaffolding: (1) the reduced-
scaffolding problem-first condition provided low assistance (2) the reduced-scaffolding
example-first and high-scaffolding problem-first conditions provided intermediate assis-
tance, and (3) the high-scaffolding example-first condition provided high assistance.

Procedure

Each experimental session was conducted in a quiet room (most sessions were run
individually, but several included 2–3 participants, who sat at opposite ends of a large
room). Participants were assigned to conditions in a round robin fashion and the
procedure for the four conditions was the same. After participants signed an informed
consent form, they completed an online survey which gathered demographics data and
additional questionnaires (10 min; the questionnaires included items on mindset and
related factors – we do not present analysis from these here and so do not describe
them). Participants were then asked to read and study the python lesson (20 min). Once
they signalled they were done, the materials were taken away and participants com-
pleted a paper and pencil pre-test to evaluate their programming knowledge (15 min).
The pre-test was done after the instructional materials rather than before because we
wanted to have a clean assessment of how much the CT-Tutor influenced learning (we
used a similar design in prior studies for the same reason, Muldner et al. 2014).

After the pre-test, participants were introduced to the CT-Tutor and were given
40 min to work on code tracing with the CT-Tutor. The programs they had to trace and
the corresponding examples were identical in the four conditions (same four problems
and same four examples). CT-Tutor imposed minimal time thresholds, as follows: (1)
an example had to be studied for at least one minute (and if a participant tried to move
on before that, CT-Tutor informed them they had to study the example more), and (2) a
problem had to be worked on until it was either correct or a minimum amount of time
had passed. Specifically, if the solution was incomplete or had errors, participants could
not move on to the next item (problem or example depending on the condition) unless
three minutes had passed (if the solution was complete and correct, they could move on
whenever they chose). If participants tried to leave a problem after the three minute
threshold but before they had a complete solution, the tutor asked them if they were
sure they want to move on and pointed out the missing components (e.g., incomplete
solution, missing explanation in the high scaffolding conditions). Participants could
choose to say “yes” to move on or could choose to stay (to move on, participants used a
button in the interface). Once participants left a problem or example they were not
allowed to go back (they were informed about this prior to starting their work). We
chose relatively low time thresholds for viewing the example and solving the problem
(e.g., one minute may not be sufficient to fully study an example). We did not impose
longer thresholds because we were concerned this might induce negative emotions in
some students (e.g., frustration over being blocked from moving on).
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Once participants completed the tutoring session or time was up, they were given a
post-test (as well as a questionnaire to measure mindset etc., not analyzed in the present
study). The entire experiment took no more than 2 hr.

Evaluation of the CT-Tutor: Results

As stated above, the broad goal of our work was to investigate the impact of different
types of assistance in the CT-Tutor on learning and performance. Thus, in our analysis,
we had two categories of outcome measures: learning and performance in the tutor. To
operationalize learning, we used the standard approach of calculating the gain from pre-
test to post-test (post-test – pre-test).1 We had two types of questions on the test: code
tracing and plain explanation. Our primary interest was in the code tracing outcomes
because the interface scaffolding component focused on this, but for the sake of
completeness, we also analyzed learning related to the plain-English explanations for
the primary analyses.

We operationalized performance through behaviors in the CT-Tutor, based on
information extracted from the log files.2 We focused on a set of features prior work
has found informative (e.g., Baker et al. 2009; Gobert et al. 2015; Sao Pedro et al.
2013), including:

& Number of problems finished: the number of problems correctly solved (recall
that students could choose to leave a problem before finishing it after three minutes
had passed).

& Number of attempts: number of attempts on average per problem needed to
produce the correct answer for a given step (this measure was normalized by taking
the total number of attempts and dividing by the number of text boxes that had to be
used to enter the solution, to account for the fact that the high-scaffolding CT-Tutor
included more entry boxes per problem than the reduced-scaffolding tutor).

& Problem time: average time spent on a problem (calculated by dividing total time
spent on the problems by the number of problems attempted).

& Time on correct entries: average median time per problem spent generating
correct entries, calculated by obtaining the median time spent on correct entries
for a given problem, and then finding the average value by dividing by the number
of problems attempted. Median was used rather than mean because the logger failed
to record when participants were writing in the explanation area for the two
corresponding conditions in the high-scaffolding interface. Thus, for these two
conditions, the explanation time was lumped together with the subsequent step
time, which could inflate the overall step time. By using the median step time, this
should exclude the explanation time as participants tended to produce the explana-
tion as a “one-shot-deal” at the end, based on a review of the log files; however,

1 Alternative ways of assessing learning include using normalized gain scores and using ANCOVA with
pretest as the covariate (Bonate 2000). While the former method is not advocated (Bonate 2000), the
ANCOVA is a good alternative. For the sake of completeness we re-ran the analysis for learning for each
of these two alternatives and the same pattern of results emerged.
2 Two log files were lost
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since we cannot guarantee that some may not have, the time on correct measure
needs to be interpreted with caution.

& Time on incorrect entries: average median time per problem spent on incorrect
entries, calculated using the method for correct entries described above.

& Example time: average time spent on an example (calculated by dividing total time
spent on the examples by the number of examples opened).

We present the results at multiple levels of granularity, starting with aggregate out-
comes for all participants, followed by outcomes for participants who gained from pre-
test to post-test, followed by groups of participants identified by cluster analysis. For
the first two sets of analyses, we used null hypothesis significance testing – since our
study design had two factors, interface scaffolding and instructional order, the
primary analyses were run as two-way between subjects ANOVAs with these factors
as the independent variables and the learning and performance measures as the
dependent variables. We report results as significant when p < .05 and as marginal
when p is between .05 and .10; we also report effect sizes. Outliers flagged as outside
3* interquartile range were not included in the analysis (so df might vary slightly). To
check for normality of the data, we calculated the residuals for each dependent variable
and obtained normality parameters (skewness and kurtosis) for each residual variable
(see Appendix 2 – note that obtaining residuals within the context of the full model, as
we did, accounts for the experimental conditions in the analysis). George and Mallery
(2019) indicate that skewness and kurtosis values less than |1| can be considered
excellent and less than |2| as acceptable – the majority of the normality values fell into
the excellent category and the remaining fell into the acceptable category. In general,
perfectly-normal distributions are not typical in real data samples (Blanca et al. 2013)
and the ANOVA is robust to violations of normality (Blanca et al. 2017).

Effect of CT-Tutor on Learning and Performance (All Participants)

We begin with the results for all participants, regardless of whether they learned from
their interaction with the CT-Tutor, followed by analysis for participants who did learn.
Learning is operationalized by our primary learning variable, namely code tracing gains
(below, unless otherwise stated, when we refer to learning outcomes, we mean ones for
code-tracing). The interaction between interface scaffolding and instructional order
was not significant for any of the dependent variables. Thus, we focus on reporting the
main effects for each factor, starting with the results for interface scaffolding.

Effect of Interface Scaffolding

Learning Descriptives for the effect of interface scaffolding on learning are in Table 1;
the learning gains in each condition are also shown graphically in Fig. 6. Overall,
collapsed across conditions, participants improved significantly from pre-test to post-
test, t(96) = 9.8, p < .001. However, in contrast to our hypothesis (H1), participants
learned marginally less from interacting with the high-scaffolding version of the CT-
Tutor as compared to the reduced-scaffolding version, F(1, 93) = 3.4, p = .069, ηp2 =
.04. This result was not biased by a priori differences between groups (i.e., as expected
given the assignment method, there were no differences between the four conditions on
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code tracing pre-test scores, verified with an ANOVA on the pre-test scores). One
potential explanation for this result is that the high-scaffolding CT-Tutor was less
effective at promoting constructive behaviors needed for learning as compared to the
reduced scaffolding interface. We have some evidence from the log files for this
proposal that we now outline.

First, as shown in Table 2 (bottom row), the reduced-scaffolding group spent more
time attending to the examples, F(1, 87) = 7.5, p = .008, ηp2 = .07. Time spent on
examples could be indicative of constructive behaviors like self-explanation of the
example solution. While we do not have evidence that students were self-explaining,
self-explanation from examples takes time (Muldner and Conati 2010), and so there is
indirect evidence of self-explanation occurring more in the reduced-scaffolding group.
In addition to the self-explanation in the context of an example, self-explanation can
also take place in the context of solving a problem (Aleven and Koedinger 2002; Loibl
et al. 2017. Since the reduced-scaffolding interface did provide less assistance, it may

Table 1 Descriptives (mean and SD) for the code tracing pre-test, post-test, and pre- to post-test gains shown
as percentages for each condition as well as marginal means for each factor collapsing by the other factor (all
participants included in the analysis)

Reduced Scaffolding High Scaffolding Marginal
(instructional order)

pre- test %
N = 97

Problem-first 38.4% (16.6), n = 28 34.3% (23.2), n = 28 36.3% (20.6), n = 56

Example-first 33.5% (20.1), n = 17 34.0% (15.5), n = 24 33.8% (17.3), n = 41

Marginal (scaffolding) 36.6% (17.9), n = 45 34.1% (19.8), n = 52

post-test %
N = 97

Problem-first 57.1% (23.6), n = 28 50.0% (30.6), n = 28 53.6% (27.3), n = 56

Example-first 58.5% (26.0), n = 17 48.3% (20.2), n = 24 52.6% (23.0), n = 41

Marginal (scaffolding) 57.7% (24.2), n = 45 49.2% (26.1), n = 52

gain %
N = 97

Problem-first 18.8% (15.7), n = 28 15.7% (21.5), n = 28 17.2% (18.7), n = 56

Example-first 25.0% (20.9)), n = 17 14.4% (12.9), n = 24 18.8% (17.3), n = 41

Marginal (scaffolding) 21.1% (17.9), n = 45 15.1% (17.8), n = 52

Effect of scaffolding for gain scores shown in bold

Fig. 6 Graphical depiction of code tracing pre- to post-test gains; dashed line shows main effect of scaffolding
(all participants included in the analysis)
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have encouraged more constructive behaviors like self-explanation, because it put more
responsibility on the student to generate the solution.

A second piece of evidence regarding constructive behaviors comes from the
free-form text box in the interfaces (used to generate explanations and take notes,
see Fig. 7 and Fig. 8). While participants in both interface versions had a textbox for
taking notes, they used these textboxes quite differently. In the high-scaffolding
interface, participants tended to follow the instructions to provide a high-level
explanation of what the program did (see Fig. 8) and did not use this area for
additional code tracing notes (this is not surprising since the code tracing table in
this interface required them to code trace step-by-step in the provided table). In
contrast, in the reduced-scaffolding interface, participants were not given scaffold-
ing from the tutor and so they used this textbox to code trace (see Fig. 7) and to
make explicit how variables changed in the program. By sketching how these
values changed, reduced-scaffolding participants were constructive because they
produced traces that went well over and beyond the instructional materials (Chi and
Wylie 2014). This construction may have boosted their code tracing scores on the
post-test. In general, however, as illustrated in Figs. 7 and 8, in both interfaces there
was variability in terms of how effectively participants used the textboxes,
highlighting that some students did not use these tools as well as others.

Table 2 Descriptives (mean and SD) for the performance measures for each condition as well as marginal
means for each factor collapsing by the other factor (all participants included in the analysis)

Reduced
Scaffolding

High
Scaffolding

Marginal
(instructional order)

# problems finished Problem-first 1.9 (1.4), n = 28 2.4 (1.3), n = 27 2.2 (1.4), n = 55

Example-first 2.4 (1.6), n = 17 2.8 (1.3), n = 23 2.7 (1.4), n = 40

Marginal (scaffolding) 2.1 (1.5), n = 45 2.62 (1.3), n = 50

# attempts Problem-first 1.8 (0.9), n = 26 1.5 (0.4), n = 26 1.7 (0.7), n = 55

Example-first 1.5 (0.7), n = 15 1.3 (0.3), n = 21 1.4 (0.5), n = 38

Marginal (scaffolding) 1.7 (0.8), n = 43 1.4 (0.4), n = 50

time on problem (sec) Problem-first 326.9 (100.3), n = 28 353.3 (102.6), n = 27 339.9 (101.4), n = 55

Example-first 241.5 (136.8), n = 17 290.4 (115.4), n = 23 269.6 (125.6), n = 40

Marginal (scaffolding) 294.7 (121.4), n = 45 324.4 (112.1), n = 50

time on correct (sec) Problem-first 4.3 (1.8), n = 24 9.26 (3.4), n = 27 6.91 (3.7), n = 51

Example-first 4.1 (1.8), n = 14 8.17 (3.5), n = 23 6.64 (3.6), n = 37

Marginal (scaffolding) 4.2 (1.8), n = 38 8.76 (3.5), n = 50

time on incorrect (sec) Problem-first 6.27 (3.6), n = 22 12.0 (6.2), n = 27 9.5 (5.9), n = 49

Example-first 7.1 (4.0), n = 12 10.0 (6.9), n = 21 8.9 (6.1), n = 33

Marginal (scaffolding) 6.6 (3.7), n = 34 11.1 (6.6), n = 48

time on example (sec) Problem-first 96.8 (25.3), n = 28 84.98 (20.6), n = 27 91.2 (23.7), n = 51

Example-first 136.2 (31.9), n = 17 118.2 (25.6), n = 23 125.8 (29.4), n = 40

Marginal (scaffolding) 112.0 (33.8), n = 44 101.2 (28.4), n = 47
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Performance Descriptives for the effect of interface scaffolding on the target per-
formance measures are in Table 2. The high-scaffolding interface improved cor-
rectness of entries compared to the reduced-scaffolding version. Specifically, the
high-scaffolding group needed significantly fewer attempts to produce the required
answer for a given text box in the interface, F(1, 84) = 4.0, p = .048, ηp2 = .05. We
predicted that this group would finish more problems correctly (H2), and while
descriptively this was the case, this trend did not reach significance, F(1, 91) = 2.6,
p = .11, ηp2 = .03. Contrary to our prediction (H3), high scaffolding did not,
however, improve performance in terms of time. The high-scaffolding group spent
longer than the reduced-scaffolding group on the problem overall, F(1, 91) = 2.6,
p = .11, ηp2 = .028; this was also the case for correct and incorrect entries (correct
entries: F(1, 84) = 51.0, p < .001, ηp2 = .4; incorrect entries, F(1, 78) = 11.4, p = .001,
ηp2 = .13). We acknowledge it is challenging to compare the results for the number of
attempts, and time on correct and incorrect entries given that there were more entry
boxes in the high-scaffolding condition than the reduced-scaffolding condition (see Fig.
2 vs. Figure 3). To attempt to account for this difference, as noted above, we normalized
these variables by dividing the number of attempts and time spent by the number of
entries to achieve an average time for each entry box.

Fig. 7 Two examples of participants’ code traces in the reduced scaffolding interface, with the example on the
left showing more constructive tracing than the example on the right (green = correct, red = incorrect entries)

Fig. 8 Two examples of participants’ explanations in the high scaffolding interface, with the example on the
left showing a better explanation than the one on the right
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Effect of Instructional Order (Problem-First vs. Example First)

Above, we presented results related to the main effect of interface scaffolding – we now
report on instructional order (descriptives are in Table 1 and Table 2). Recall that the
example either came first in the instructional order (and was followed by the problem),
or came second (and so was preceded by the problem); the example-first order provides
more guidance than the problem-first order, because in the former, participants were
able to study the example prior to solving the problem. We did not find evidence that
instructional ordering affected learning, F(1, 93) = .4, p = .511, ηp2 < .01. Ordering did,
however, affect performance, as follows. The example-first group spent significantly
more time on average per example, F(1, 87) = 44.5, p < .001, ηp2 = .34, and, as
predicted (H3), less time on average per problem, F(1, 91) = 10.1, p = .002, ηp2 = .02.
While as hypothesized the example-first group did finish more problems correctly, this
did not reach significance, F(1, 91) = 2.2, p = .138, ηp2 = .02. As far as the number of
attempts, the example-first group required fewer attempts to produce a correct answer,
F(1, 84) = 5.1, p = .027, ηp2 = .06. Thus, as hypothesized, there is some evidence that
having the example first in the instructional order improved performance, but not
learning (as there were no learning differences between the two instructional orders).

Explanation-Related Results

While code tracing scores are the primary learning variable of interest, for the sake of
completeness we now report on the explanation-related outcomes (recall there were two
questions on the test asking students to explain code using plain English). The
explanations were graded using a rubric we developed assigning points to the key
explanation components. To illustrate, in question 5 on the pre-test (see Appendix 1),
the explanation was graded out of a total of 2 points using the following rubric: the
program loops around, each time (0.5); counter increases by 1 each iteration (0.5); the
previous value of result is increased by the value of counter each iteration (0.5); the
loop stops when the value of counter becomes bigger than 2 (0.5).

The explanation results are in Table 3. The explanation scores did improve overall
from pre-test to post-test but there were no significant effects of either level of
scaffolding, F(1, 93) = .5, p = .50, ηp2 < .01, or instructional order, F(1, 93) = .3,
p = .57, ηp2 < .01. As predicted, learning code-tracing gains and explanations were
positively correlated, Pearson’s r(95) = .2, p = .044, although the effect was weak.

Effect of CT-Tutor on Learning and Performance (Participants Who Gained From
Pre-Test to Post-Test)

The above analyses included data from all participants, including ones who did not gain
from pre-test to post-test or got worse (referred to as non-gainers below, N = 23). No
participants were at ceiling at pre-test, so there are two reasons why students might not
have learned: (1) they were not motivated to learn and/or complete the post-test to the best
of their ability, and/or (2) the instructional materials were confusing. Since the majority of
students did gain from pre- to post-test (N= 74), this suggests the instructional materials
are not the culprit. However, it may be the case that certain conditions in the tutor were
particularly unsuitable for some participants. There were twice as many non-gainers in the
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high-scaffolding conditions (N = 15) than the reduced-scaffolding conditions (N = 8),
which suggests the high-scaffolding interface was not suitable for this subgroup. Since
the non-gainer sample size is too small to reliably run inferential stats on, we focus on
participants who did gain from pre-test to post-test, referred to as gainers below.

Learning Table 4 shows the descriptives related to learning for the gainers; the gains in
each condition are also shown graphically in Fig. 9. There were no a priori differences
between the four conditions (verifiedwith anANOVAon the code tracing pre-test scores).
Compared to the analysis that included all participants, the effect of condition on learning
became more complicated for the gainers. Specifically, there was a significant interaction
between interface scaffolding and instructional order, F(1, 70) = 6.1, p = .016, ηp2 = .08.

3

Participants in the reduced-scaffolding condition learned more if they were in the
example-first instructional order, whereas participants in the high-scaffolding condition
learned more if they were in the problem-first instructional order (Fig. 9 illustrates this
interaction). Thus, for the gainers, our hypothesis (H1) regarding learning was partially
supported: scaffolding improved learning, but only under certain conditions.

A potential explanation for these results is that participants in the high-scaffolding
condition who were given an example first before solving a problem may have had too
much assistance, an argument similar to the one made above when describing the learning
results that included all participants (not just ones who gained). In this case, assistance from
examples and assistance from the scaffolding may have led to more passive engagement
with the instructional materials. In particular, when it came time to solve the problem, the
example-first high-scaffolding combination may have failed to encourage participants to
apply what they learned from the example, as the scaffolding provided a lot of assistance to
solve the problem. In contrast, participants in the example-first reduced-scaffolding needed
to actively infer information from the example so they could solve the following corre-
sponding problem, as that problem did not provide scaffolding. Participants in the example-

Table 3 Mean (SD) explanation pre-test, post-test, and pre- to post-test gains shown as percentages for each
condition as well as marginal means for each factor collapsing by the other factor (all participants included in
the analysis)

Reduced Scaffolding High Scaffolding Marginal
(instructional order)

pre-test %
N = 97

Problem-first 32.6% (27.7), n = 28 21.9% (26.3), n = 28 27.2% (27.3), n = 56

Example-first 20.6% (24.2), n = 17 33.3% (30.8), n = 24 28.0% (28.6), n = 41

Marginal (scaffolding) 28.1% (26.8), n = 45 27.2% (28.7), n = 52

post-test %
N = 97

Problem-first 52.2% (38.5), n = 28 44.6% (39.7), n = 28 48.44% (39.0), n = 56

Example-first 44.1% (32.5), n = 17 43.8% (33.4), n = 24 43.9% (32.6), n = 41

Marginal (scaffolding) 49.2% (36.2), n = 45 44.2% (36.6), n = 52

gain %
N = 97

Problem-first 19.6% (32.7), n = 28 22.8% (31.5), n = 28 21.2% (31.9), n = 56

Example-first 23.5% (35.1), n = 27 10.4% (42.5), n = 24 15.9% (39.6), n = 41

Marginal (scaffolding) 21.1% (33.3), n = 45 17.1% (37.1), n = 52

3 Main effect of scaffolding and instructional order were not significant
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first reduced-scaffolding condition did indeed study the example the longest (see Table 5,
bottom row) and had the highest learning gains on the post-test (see Table 4).4

Performance Overall, the pattern of results related to the performance measures was the
same for the gainers (see Table 5) as for the analysis that included all the participants
presented above. Like the analysis that included all participants, there was a main effect
of instructional order for the same target variables: the high-scaffolding group needed
significantly fewer attempts to produce the correct answer, F(1, 64) = 2.7, p = .10,
ηp2 = .04, and as predicted finished more problems correctly, F(1, 69) = 4.2, p = .044,
ηp2 = .06. Also like for the analysis including all participants, the example-first group
spent significantly more time on average per example, F(1, 67) = 41.8, p < .001,
ηp2 = .38, and as predicted less time on average per problem, F(1, 69) = 13.6,
p < .001, ηp2 = .16). The only difference between the current analysis and the prior
analysis that included all participants is that for the gainers, there was a significant
interaction between the level of scaffolding and instructional order for the median time
to produce correct answers, F(1, 64) = 4.9, p = .031, ηp2 = .07, and incorrect answers,
F(1, 58) = 6.0, p = .018, ηp2 = .09. The pattern was the same for both correct and
incorrect entries, with the high-scaffolding condition in the problem-first order having
the longest response times and the reduced-scaffolding conditions taking approximately
the same amount of time to produce the answers.

Clustering Based on Behaviours in CT-Tutor

The above analysis provided information on how assistance in the CT-Tutor affected
performance and outcomes using aggregate statistics. An alternative analysis strategy

4 As was the case for the analysis that included all the participants, conditional differences related to
explanation gains were not significant and since they are not the focus, they are not reported here.

Table 4 Descriptives (mean and SD) for the code tracing pre-test, post-test, and pre- to post-test gains shown
as percentages for each condition as well as marginal means for each factor (collapsing by the other factor)
(gainers only)

Reduced Scaffolding High Scaffolding Marginal
(instructional order)

pre-test %
N= 74

Problem-first 39.1% (17.4), n = 23 32.5% (17.1), n = 18 36.2% (17.4), n = 41

Example-first 34.29% (17.1), n = 14 35.0% (16.8), n = 19 34.7% (16.6), n = 33

Marginal (scaffolding) 37.3% (17.1), n = 37 33.8% (16.7), n = 37

post-test %
N= 74

Problem-first 62.4% (22.0), n = 23 60.8% (24.5), n = 18 61.7% (22.8), n = 41

Example-first 64.6% (20.0), n = 14 53.7% (18.6), n = 19 58.3% (19.7), n = 33

Marginal (scaffolding) 63.2% (21.0), n = 37 57.2% (21.7), n = 37

gain %
N= 74

Problem-first 23.3% (13.4), n = 23 28.3% (15.1), n = 18 25.5% (14.2), n = 41

Example-first 30.4% (19.1), n = 14 18.7% (10.7), n = 19 23.6% (15.7), n = 33

Marginal (scaffolding) 26.0% (15.9), n = 37 23.4% (13.7), n = 37

Significant interaction between scaffolding and instructional order for the gain scores in bold
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involves using unsupervised learning to cluster students according to behaviors within the
tutor. Clustering was done in R using k-means, a basic but effective clustering algorithm
commonly used to analyze educational data (Shovon and Haque 2012; Bhise et al. 2013).

This analysis was run on using data from all participants as we wanted to investigate
how participants interacted with the tutor and whether certain combinations of behav-
iours were related to learning. As input to k-means we used the features we extracted
from the log files shown in Table 2 and listed in the introduction to the Results section
– these comprise student behaviors within CT-Tutor. We did not include test data or
condition as features, because we wanted to have the tutor behaviors drive the cluster
results and not bias them with test or conditional information.

As two log files were lost, the initial number of participants for this analysis was N =
95. Any missing data points were imputed with that variable’s mean, allowing us to
include all 95 participants in the analysis. Given that k-means is sensitive to outliers, we
checked and removed them as follows. We performed an initial clustering, and then
calculated the relative distance of data points to their respective clusters. We excluded
from the data five outliers that were far removed from their respective clusters and one
data point that occupied a single cluster (for a total of 6 removed data points).5 This left
us with 89 data points corresponding to 89 participants (including gainers and non-
gainers). After removal of these cases, we re-ran k-means. We used the elbow method
to determine the number of clusters (Kassambara 2017), which we set at k = 4. Due to
k-means sensitivity to initial cluster positions, we executed k-means with 50 different
random starting points and k-means subsequently selected the result with the lowest
within-cluster variation.

Clustering Results

Table 6 shows the mean feature value for each cluster (top), and the code tracing and
explanation learning outcomes for each cluster (bottom; note that these were not part of
the features used to train the model and were calculated after clustering was complete).
To analyze how much (or not) the clusters aligned with the four conditions, we also

5 Four of the removed data points were from the reduced-scaffolding problem-first condition and two were
from the high-scaffolding problem-first condition; one of the high-scaffolding problem-first participants was a
non-gainer, while the other outliers were gainers.

Fig. 9 Graphical depiction of code tracing pre- to post-test gains showing the interaction between interface
scaffolding and instructional order (gainers only)
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extracted the number of participants in each condition, see Fig. 10 (note that condition
and learning were not features used during training of the model). We now present the
results of our analysis. We focus on descriptives in our presentation but also include
inferential statistics to highlight key results inferential statistics were conducted using t-
tests between cluster groups; if homogeneity of variance was detected, corrected values
are reported.

In general, cluster 4 had the lowest overall code-tracing learning gains, while
learning related to code tracing was similar between clusters 1–3; clusters 4 and 3 each
had a similar number of individuals from each condition. We labelled cluster 4 as the
struggling unproductively cluster. Overall, participants in this cluster finished the
fewest number of problems (p = .10); half to four times fewer than the other clusters,
see Table 6, and their code-tracing gains were lower than the other clusters (p < .10).
Participants in this cluster may have been uncomfortable making mistakes. Evidence
for this conjecture comes from the high time on both correct and incorrect entries,
substantially higher than for the other clusters (p < .05). This suggests cluster 4
participants were putting in effort (also evidenced by the time spent on examples,
which was higher than for the other clusters, significantly more so than clusters 2 and 3,
p < .05), but this effort was not paying off.

We characterized individuals in Cluster 3 as productive, based on the fact that they
finished more problems than the other clusters (p < .001), spent the least amount of time

Table 5 Descriptives (mean and SD) for the performance measures for each condition and marginal means for
each factor collapsing by the other factor (gainers only)

Reduced
Scaffolding

High
Scaffolding

Marginal
(instructional order)

# problems finished Problem-first 2.0 (1.4), n = 23 2.7 (1.3), n = 18 2.3 (1.4), n = 41

Example-first 2.5 (1.6), n = 14 3.1 (1.2), n = 18 2.9 (1.4), n = 32

Marginal (scaffolding) 2.2 (1.5), n = 37 2.9 (1.2), n = 36

# attempts Problem-first 1.9 (.8), n = 21 1.6 (.3), n = 18 1.7 (.6), n = 39

Example-first 1.4 (.5), n = 13 1.3 (.3), n = 16 1.3 (.4), n = 29

Marginal (scaffolding) 1.7 (.7), n = 34 1.4 (.3), n = 34

time on problem (sec) Problem-first 324.1 (90.0), n = 23 364.6 (73.5), n = 18 341.9 (84.6), n = 41

Example-first 243.4 (138.1), n = 14 269.1 (102.2), n = 18 257.9 (117.9), n = 32

Marginal (scaffolding) 293.6 (115.8), n = 37 316.8 (100.2), n = 36

time on correct (sec) Problem-first 4.4 (1.9), n = 20 10.1 (3.2), n = 18 7.1 (3.9), n = 38

Example-first 4.2 (1.8), n = 12 7.3 (2.5), n = 18 6.0 (2.7), n = 30

Marginal (scaffolding) 4.31 (1.86), n = 32 8.68 (3.2), n = 36

time on incorrect (sec) Problem-first 5.8 (2.7), n = 18 12.6 (6.1), n = 18 9.2 (5.8), n = 36

Example-first 6.8 (3.8), n = 10 7.9 (3.9), n = 16 7.5 (3.8), n = 26

Marginal (scaffolding) 6.18 (3.1), n = 28 10.38 (5.7), n = 34

time on example (sec) Problem-first 97.5 (24.7), n = 22 85.7 (22.0), n = 17 92.3 (24.0), n = 39

Example-first 138.4 (33.3), n = 14 125.0 (23.9), n = 18 130.9 (28.7), n = 32

Marginal (scaffolding) 113.4 (34.5), n = 36 105.9 (30.2), n = 35
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to generate correct entries (significantly faster than cluster 4, p = .003, and cluster 1,
p < .001), and needed fewer attempts to get the correct answer. Of note is that the
cluster 3 pre-test scores were highest overall. While the scores were still relatively low
at 50%, this may have given a boost to cluster 3 participants. The pre-test was given
after the instructional materials were read, and so one possibility is that cluster 3
individuals attended more to these materials and so learned more from them. An
alternative possibility is that they had higher knowledge coming in, because, for
instance, they programmed in high school. As we mentioned above, we did not include
pre-test scores (nor any learning outcomes) as features used to train k-means, and so the
model picked up on the higher knowledge of this group solely based on their behaviors
in the tutor.

The other two clusters, cluster 2 and 1, did reflect some conditional effects in that
they had substantially more individuals from one condition. We labelled cluster 2 as
the productively struggling cluster. Individuals in this cluster needed the most
attempts to produce a correct entry (about twice as many as the other clusters,
p < .001) and compared to cluster 3, finished about half as many problems, and
spent longer on a given problem. This cluster contained five times as many
individuals in the reduced-scaffolding problem-first group as the other three con-
ditions. As mentioned above, the reduced-scaffolding problem-first condition was
the lowest assistance condition, thus explaining why participants may have strug-
gled while working with this version of CT-Tutor. However, we labelled this
struggle as productive because cluster 2 had the highest learning gains (both for
code tracing and explanation, at least from a descriptive standpoint), despite having
low pre-test scores, see Table 6, bottom. This is an example of how clustering can
shed further light on the effect of assistance. Recall that the aggregate statistics
above indicated that moderate assistance was beneficial for learning (i.e., the
reduced-scaffolding example-first and high-scaffolding problem-first conditions).

Table 6 Mean feature values for each cluster (SD shown in brackets, top, and mean gains from pre-test to
post-test (followed by pre-test and post-test scores, respectively, shown in brackets), bottom

Features Cluster 1
n = 34

Cluster 2
n = 16

Cluster 3
n = 31

Cluster 4
n = 8

# problems finished 1.7 (1.1) 2.19 (1.1) 3.74 (.5) .9 (1.0)

# attempts 1.4 (.3) 2.75 (.4) 1.28 (.3) 1.2 (.2)

time on problem 354.6 (111.9) 322.7 (101.8) 232.3 (90.8) 357.9 (102.5)

time on correct entries 14.0 (7.5) 9.0 (5.3) 8.0 (4.3) 32.2 (15.6)

time on incorrect entries 18.2 (6.8) 11.5 (7.2) 14.70(8.1) 48.2 (11.9)

time on example 112.8 (44.7) 93.90 (24.1) 110.2 (31.5) 142.4 (52.5)

code tracing % gains
(pre-test%, post-test%)

18.8%
(28.1%, 46.9%)

22.5%
(27.2%, 49.7%)

19.5%
(50.0%, 69.5%)

9.4%
(25.6%, 35.0%)

explanation % gains
(pre-test%, post-test%)

13.3%
(21.8%, 35.0%)

32.8%
(14.0%, 47.0%)

23.5%
(41.3%, 64.5%)

7.8%
(.22.0%, 29.8%)
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The clustering analysis shows that some individuals can succeed at learning the
materials with low assistance, and indeed benefit from it if they persevere.

We characterized cluster 1 individuals as dedicated problem solvers. Participants in this
cluster spent more time generating entries than clusters 2 and 3 and accordingly had higher
problem time. Their code-tracing learning gains are very similar to cluster 3 and slightly
lower than cluster 2. This cluster has almost twice as many high-scaffolding problem-first
participants in it as compared to the other three conditions. Thus, this cluster reflects at least
in part the aggregate results that some assistance is beneficial, at least for code tracing (this
cluster did particularly poorly on the explanation outcomes).

Discussion

In this paper we described the design and evaluation of the CT-Tutor. The tutor was
designed based on prior research on how novice programmers trace programs using
paper and pencil activities (Cunningham et al. 2017) and provided assistance in two
different ways: through worked examples and interface scaffolding. We implemented
four versions of the tutor to test four conditions corresponding to different ways of
combining assistance. The highest form of assistance was in the high-scaffolding
example-first condition, while the lowest was in the reduced-scaffolding problem-first.
The other two conditions fell in the middle of the assistance spectrum as they each
provided one type of assistance (either through high scaffolding in the high-scaffolding
problem-first condition, or through an example presented before each problem in the
reduced-scaffolding example-first condition).

Howmuch assistance was optimal? The answer depends on the outcome variable (perfor-
mancevs. learning) and individual differences in howparticipants interactedwith the tutor.The
results using null hypothesis significance testing based on the data from all the participants,
regardless of whether they learned or not, showed that both types of assistance (high-interface
scaffolding,examplefirst instructionalorder) increasedthenumberofproblemssolvedandtime
needed to solve them. However, for some combinations of assistance, this came at the cost of
learning. For the analysis considering all participants, we did not find evidence of instructional

Fig. 10 Number of participants in each condition per cluster (conditions are shown ordered from lowest
assistance to highest assistance)
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order effects on learning, but we did find that high-interface scaffolding resulted inmarginally
less learning than reduced scaffolding. Thus, our hypothesis that the high-scaffolding group
would learn more was not supported.We provided a number of explanations for this unantic-
ipatedfindingabove,centeredaroundtheproposal thathigh-interfacescaffoldingmadestudents
less constructive because it provided too much assistance. However, it would be premature to
conclude that the interface scaffolding was detrimental to all participants as this result was
influencedbyasubsetofparticipantswereferred toasnon-gainers (individualswhodidnotgain
frompre-test topost-test).Theparticipantswhodidnotgain faredespeciallypoorlywhengiven
interface scaffolding: there were twice as many non-gainers in the high-scaffolding condition
(N= 15)asinthereduced-scaffoldingcondition(N= 8).Oneexplanationforthisresult is that the
scaffoldingmayhavefacilitatedshallowbehaviorslikeguessingandchecking,aformofgaming
(Bakeretal.2009).Therearemanyreasonswhystudentsgame(Bakeretal.2010;Muldneretal.
2011; Baker et al. 2009), some of which are motivational (Baker et al. 2008). The non-gainers
mayhavebeenparticularlyunmotivated,assuggestedbythefacttheydidnotlearnfromthetutor
(andmany gotworse frompre-test to post-test), and thatmay explainwhy the high scaffolding
interfacewasnotsuitable for them.Whenthese individualswereremovedfromanalysis,amore
nuanced story emerged on the effect of assistance.

For participants who gained from pre-test to post-test, learning was maximized when the
tutor provided one type of assistance (example-first or high-scaffolding). If both types of
assistance were provided, or if neither was provided, then learning was reduced. Thus, our
results suggest that novice students benefit from a specific level of assistance when learning
how to code trace, neither too much, nor too little. While the “too little” aspect is
unsurprising, there is precedent for the “too much” aspect, i.e., that too much assistance is
not helpful. Earlier work in the context of human tutoring proposed that high assistance from
tutors, for instance in the form of explanations, may supress tutee learning because it reduces
opportunities for tutees to make constructive responses (Chi et al. 2001). To test this
conjecture, Chi et al. (2001) compared student learning from a high-assistance condition
where tutors offered many explanations to one where tutors were instructed to prompt
instead (thus offering reduced assistance as the onus was on the students to generate the
answer). While there was no significant difference between the two groups, possibly due to
power issues, there was some promising indications that reduced assistance did promote
better learning. More recently, in a motor learning task, high assistance during the learning
phase resulted in poorer performance thanwhen assistancewas faded out (Tullis et al. 2015).
As a second example, Lee et al. (2015) tested the effect of problem-example similarity in a
problem solving task where examples were used as assistance. Examples that were very
similar to the problem (offered high assistance) resulted in less learning than lower similarity
examples (which offered reduced assistance). Our recent work with an algebra CTAT tutor
echoed this result (Borracci et al. 2020). In general, prior work has shown that help in
tutoring systems is beneficial, but “help helps only so much” (Aleven et al. 2016),
highlighting the key role the student has in processing the assistance provided.

To recap, the analysis using aggregate methods indicated that on average, some assis-
tance is better than no assistance or too much assistance. An even more detailed story
emerged, however, when we clustered participants based on their behaviors in CT-tutor,
using features extracted from the log files. The cluster we labelled as the productively-
struggling group had the highest learning gains and had more reduced-scaffolding problem-
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first participants, suggesting that low assistance was beneficial for some, if they persevered
(this cluster had a greater number of attempts to solve the problem that eventually resulted in
a correct response). We also found that the lowest learning group, labelled the struggling
unproductively cluster, had participants evenly spread across conditions, suggesting that low
learning gains were not always the result of the experimental manipulations (level of
scaffolding, instructional order). The clustering analysis also identified a group we labelled
as the productive group due to their performance within the tutor. These participants had the
highest pre-test scores (which were not included in the clustering algorithm), highlighting
the ability of clustering to identify studentswith higher prior knowledge based solely on their
behaviours within the tutor.

Limitations, Opportunities for Adaptation, and Implications

This paper describes only the first step in a long-term project centered around the design
and evaluation of support for the skill of code tracing. The goal of the present work was
to gain preliminary insight into the design of the CT-Tutor. While we met this goal, we
acknowledge that the relativelymodest sample size in the evaluationmeans further work
and replication is needed. Another limitation is that the CT-Tutor prototype does not
currently personalize its assistance, because we wanted to evaluate the initial prototype
to understand what kind of adaptation would be beneficial. This iterative design
approach is suitable given there is very little work on supporting code tracing and so
it is an open question of how to best scaffold this activity. Our results highlight a number
of opportunities to incorporate adaptation, which we now describe.

Interface Scaffolding

One opportunity for personalization relates to the design of the code-tracing interface (e.g.,
see Figs. 2 and 3). The interface was inspired by our experiences in the classroom as well
as prior work showing that students do not code trace effectively and so we wanted to see
if explicitly scaffolding that process would help. We did not find strong evidence that
explicit scaffolding in the CT-Tutor was beneficial (although if we consider students who
gained, it did promote learning, but only if the example followed the problem). Moreover,
this scaffolding was particularly problematic for some individuals, namely ones who did
not gain from pre- to post-test –we speculated this was because theywere not motivated to
learn, and this interface may have facilitated shallow processing. These observations open
up opportunities for future work, related to the design of code-tracing scaffolding that
does promote constructive behaviors. One possibility is to keep the scaffolding but
incorporate prompts for self-explanation during problem solving. Prior work has found
self-explanation prompts do increase learning (Aleven and Koedinger 2002). Another
possibility is to fade the scaffolding (start high, transition to low). Faded worked-
examples have been shown to be effective in conjunction with tutored problem solving
(Salden et al. 2009).

An alternative solution pertains to removing scaffolding altogether, giving students a
free-form area to code trace in any manner they like. This is already the case for the
reduced-scaffolding interface in the CT-Tutor, but currently there is no feedback
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provided on the typed entries. As Figs. 7 and 8 highlight, some students were more
constructive in their use of this interface than others. Thus, a future step could involve
adaptively providing feedback on the code traces using natural language processing of
the typed code traces. Natural language processing is already used in some tutoring
systems to parse student written entries (Graesser 2016) although to date it has not been
applied to the type of text that free-form code tracing produces (see Fig. 7 – the content
here looks like pseudocode). This type of functionality would also be beneficial for
assessing students’ high-level explanations of what a program does. In addition to
potentially making students more constructive, removing the scaffolding may increase
student agency and in turn student motivation (Wang et al. 2019).

Example Design

In addition to including adaptive prompting for self-explanation during the solution of a
code tracing problem, another opportunity for self-explanation prompts comes in the
context of the worked example of a code trace. While we found that participants did
read the examples provided by CT-Tutor as evidenced by time on task and took longer
doing so if the interface scaffolding was reduced, the overall reading time was not high
(less than two minutes on average). This suggests that students may need encourage-
ment to self-explain the worked-out solution in the example. There are various suc-
cessful examples of self-explanation prompts in intelligent tutors (Conati and Vanlehn
2000), but to date none in the domain of code tracing. To give us insight for what self-
explanation might look like during code tracing, we are currently in the process of
designing a talk aloud study where students self-explain worked examples of code
traces, which will help to identify what types of prompts would be beneficial. Addi-
tionally, another way that students could be encouraged to study the examples effec-
tively is by making the student an active participant in the example presentation, for
instance, by including examples with errors that students need to identify and correct.
Research on erroneous examples in an algebra tutor showed that the examples im-
proved student learning above that of problem solving alone (Adams et al. 2014).
Incorporating methods that increase participant interaction and processing of the
example are valuable areas to target in the next iterations of the tutor.

Initial Lesson

Our instructionalmaterials includeda tutorialoncode tracing.This tutorial came in the formof
a short PowerPoint slideshow. While it was aimed to provide a brief introduction to code
tracing, we acknowledge that learning to code-trace often takes place over a semester(s) in
classroomsandlabswherestudents frequently interactwith instructorsandteachingassistants.
Therefore, the effect of the CT-Tutor on students’ code tracing skills may be different in a
classroom context, due to the ongoing human interaction between the educators and the
students. Incorporating the tutor into standard classrooms is part of our long-term goal.

Adaptive Sequencing

Our results show that instructionalorder affected learning (ifweconsider the studentswhodid
gain from pre-test to post-test). In the CT-Tutor, however, the instructional order was fixed
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within a given condition (e.g., example always came first andwas followed by a code tracing
problem in the two example-first conditions). Recently, Najar et al. (2016) tested the effect of
adapting the typeof assistance ina tutor.Specifically, participantsweregiveneither aproblem
tosolve,anexampletostudy,orafadedexamplethathadsomebutnotallstepsprovided, in the
domain of data base query knowledge. Each participant saw a series of these items (i.e.,
problems,examples, fadedexamples).Thedecisiononwhichitemtopresentwasbasedon the
student model’s assessment of cognitive efficiency, which was derived from a self-reported
measureofmental effort andperformance in the tutor.Thegroupwith the adapted sequencing
did better than the control group that had a fixed sequence consisting of an example always
followed by a problem. Our study included conditions with different combinations of assis-
tance, but the assistance was fixed. Thus, in the future we plan to add adaptivity related to
instructional sequencing to see how it affects the learning of code tracing.Our finding that on
average, too much assistance is not optimal suggests that the adaptation strategy should take
this intoaccount (e.g., ifastudentsawanexample,providingaprobleminthehigh-scaffolding
interfacemay not be a good idea).

It is an open question if and howmuch adding these functionalities will improve learning
related to code-tracing activities, but we are cautiously optimistic. There is certainly room for
improvement –while there were significant gains from pre-test to post-test, the average post-
test score hovered around 55%. While it may be tempting to attribute this to poor tutor
design, the very reason we started this project is because of our teaching experiences in a
first-year programming classroom. Test scores on code tracing questions are notoriously
lower than on code writing questions in our introductory programming class – with many
students scoring below 50%. The hope is that by using a data-driven approach to adapt to
student behaviours within the tutor, we can improve learning more.

Implications

To date, very little work exists on how to support the process of code tracing for novices first
learningtoprogram.Inthispaper,wedescribedaprototypefortheCodeTracing-Tutor,aswellas
anevaluationof fourversionsof the tutor thatvaried levelsofassistance.Thekey implicationsof
ourwork include: (1)consideringall individuals, learningwashigherwhen interfacescaffolding
was reduced, (2) consideringonly the subset of individualswho improvedon their code-tracing
scores, moderate assistance was best (either reduced-scaffolding example-first or high-
scaffolding problem-first), as compared with too much and too little assistance (i.e., high-
scaffolding example-first and reduced-scaffolding problem-first), (3) the difference between
points (1) and (2) suggests a potential future direction, namely personalized assistance, as the
differenceinoutcomesbetween(1)and(2)wasdrivenbyindividualswhodidnotgainfromtheir
interaction with the tutor. Further individual differences emerged from the unsupervised clus-
tering,highlighting,forexample, thatsomeindividualsdofineeveninlowassistanceconditions;
(4)codetracingischallengingforstudentsandmoreworkisneededtohelpthemdoiteffectively.
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Participant ID: ______________________ Date: ___

Please answer the questions on the front and back of these. If you don’t know, put IDK.
For each of the following short programs, given the program (left) show what is printed 
(right) [1 point each for questions 1-4]:

What does the program print?

User types Z - what does the program print?

User types Bob. What does the program print?

What does the program print?

1

2

3

4

Appendix 1: Pre-test
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Appendix 2

Table 7 Skew and kurtosis for primary variables

All Participants
(Skew, Kurtosis)

Gainers
(Skew, Kurtosis)

# problems finished −0.24, −1.0 −.30, −.99
# attempts 1.5, 1.9 .53, .11

time on problem (s) .74, .42 .9, 1.3

time on correct (s) .84, 1.1 .6, .04

time on incorrect (s) 1.1, 1.3 .83, .24

time on example (s) .63, .25 .58, .37

learning (pure gain) .33, −.25 .57, .28
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