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Abstract Logic as a knowledge representation and reasoning language is a fundamen-
tal topic of an Artificial Intelligence (AI) course and includes a number of sub-topics.
One of them, which brings difficulties to students to deal with, is converting natural
language (NL) sentences into first-order logic (FOL) formulas. To assist students to
overcome those difficulties, we developed the NLtoFOL system and equipped it with a
strong assistance and feedback mechanism. In this work, first, we present that feedback
mechanism. The mechanism can provide assistance before an answer is submitted, if
requested, but mainly it provides assistance after an answer is submitted. To that end, it
characterizes the answer in terms of completeness and accuracy to determine the level
of incorrectness, based on an answer categorization scheme, introduced in this paper.
The automatically generated natural language feedback sequences grow from general to
specific and can include statements on a student’s metacognitive state. Feedback is
provided as natural language sentences automatically generated through a template-
based natural language generation mechanism. Second, we present an extensive eval-
uation of the effectiveness of the assistance and feedback mechanism on students’
learning. The evaluation of feedback with students showed that full feedback sequences
lead to greater learning gains than sequences consisting of only flag feedback and
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bottom-out hints (n = 226), and that generic, template-based feedback sequences
are comparable to the utility of problem-specific hints generated by human tutors
(n = 120).

Keywords Feedback framework .Student assistance .Answer categorization . Feedback
sequencing .Error categorization . Feedback effectiveness evaluation . Learning analytics

Introduction

A great variety of different learning systems exist that formulate what is called e-
learning, such as Learning Management Systems (LMS), Computer Assisted Instruc-
tion (CAI) systems, Intelligent Tutoring Systems (ITS), Adaptive Educational Hyper-
media Systems (AEHSs). ITSs constitute a popular type of educational systems that are
becoming a fundamental means of education delivery, leading to impressive improve-
ment in student learning (Aleven et al. 2009). Their main characteristics are that they
provide instructions and feedback tailored to the learners and perform their main tasks
based on Artificial Intelligence methods. The development of tutoring systems and
personalized learning environments, especially those developed for the web, will be
among the most important active research areas in the next decade (Narciss et al.
2014b). Nowadays, more and more universities and educational institutes develop and
use ITSs to assist students in learning and tutors in teaching and managing courses,
supervising students and mining students’ performance data for the best advantage of
them. ITSs have been used with great success in many challenging domains to offer
individualized learning to students and give them the capability to learn in their own
way and at their own pace (Mitrovic et al. 2007, 2009; VanLehn et al. 2005). A
fundamental aspect of a tutoring system concerns its interaction with the learners and
the ability to efficiently assist them during the learning process. To that end, it is
necessary to provide personalized guidance and feedback tailored to the learner’s
needs.

As feedback is considered any message or display that a system presents to learners,
after a request or a response (Wager and Wager 1985) and constitutes a key aspect of
effective learning and instruction (Mory 2004). Feedback can vary in type, time, the
amount of the provided information as well as the way it is offered (McKendree 1990).
Giving semantically rich and personalized feedback to students requires high content
and domain expertise, which is a challenging, time intensive and demanding task for
tutors. So, in many cases it is not possible for tutors to provide detailed feedback and
guidance to students on time (Black and Wiliam 1998).

A major advantage of ITSs is that they can provide students with automatically
customized feedback. They integrate capabilities of generating and delivering various
types of feedback, adapted to the answers of the students (Lopez 2009; van der Kleij
et al. 2012). Formative feedback in educational systems has always been viewed as a
critical factor for the improvement and the construction of knowledge and also for the
acquisition of skills (Shute 2008). From a learner’s perspective, when a student is
developing his/her expertise on a topic, it is imperative that he/she is aware of his/her
level of understanding (Berlanga et al. 2012). Also, feedback provides a way to help
learners improve their understanding, recognize and fix their gaps and inconsistencies
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in their acquired knowledge (Hattie and Timperley 2007) and be more deeply engaged
with educational processes and materials.

ITSs have the ability of generating and delivering to students a wide variety of
feedback types. Feedback in tutoring systems needs to be formulated, framed and
delivered in such a way that attracts learners’ active engagement and critical
thinking (Havnes et al. 2012). Based on the level of the information that is
conveyed in the feedback, the common formative feedback can be distinguished
into Knowledge of Result, Knowledge of Correct Response and Elaborated Feed-
back (Dempsey et al. 1993; Shute 2008). The most common and basic kind of
feedback is KR, which informs students whether their answers are correct or
incorrect. KR can assist students to evaluate their success rate, but it doesn’t
provide principle-based explanations about the reasons of their answers’ correct-
ness or incorrectness (Moreno and Mayer 2007). So, Knowledge of Result feedback
is in most cases coupled with other types of feedback, such as Elaborated Feed-
back. Feedback in tutoring systems should provide students with different levels of
verification and elaboration in order to enhance its effectiveness (Kulhavy and
Stock 1989). Verification concerns the confirmation of whether a student’s answer
is correct or not, while elaboration addresses analysis of the answer and related
topics, discusses particular error(s) and guides the student towards the correct
answer (Shute 2008). The level of elaboration and verification determines the
amount of the provided information.

In addition to the type and the information of the feedback, the timing of the
feedback delivery to the learners can affect its effectiveness (Corbett and Anderson
2001; Mathan and Koedinger 2003). Based on the delivery timing, feedback can be
distinguished into immediate and delayed. Immediate feedback is typically provided
immediately after submitting an answer, while delayed feedback is provided with some
delay, after a block of items are completed, after a few minutes or even longer
(Dempsey and Wager 1988). In general, immediate feedback can promote efficiency
during training, while delayed feedback might lead to better retention and transfer
performance (Mathan and Koedinger 2003). In the literature, there are many research
studies on the effectiveness of the different types of feedback on learning (Mory 2004;
Shute 2008; van der Kleij et al. 2012; Narciss et al. 2014b). The delivery of proper
feedback is a very challenging task, because many educational, learner and situational
parameters can facilitate or hinder the effect of feedback on learning (Narciss et al.
2014a).

In this paper, we present a sophisticated and strong feedback mechanism that
effectively deals with the difficulties met by students in learning a difficult artificial
intelligence process, namely conversion of natural language sentences into logic
formulas. Through it, we actually present a general framework for modeling system
assistance to students. This framework includes, first, a systematic and generic model-
ing of students’ answers. Also, it includes a domain specific error categorization
scheme, which is utilized for recognizing the types of errors made by the students
and for guiding the feedback delivery mechanism. Additionally, an assistance genera-
tion scheme is introduced that models and delivers feedback in an incremental way,
called level-based mode. Furthermore, a general approach for the generation of textual
hints is presented. Finally, we explore the complex nature and sources of feedback and
investigate the learning effect of different feedback forms in the context of a web-based
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intelligent tutoring system for teaching the above mentioned artificial intelligence
process.

The rest of the paper is structured as follows. BBackground^ section presents
background knowledge on the conversion of natural language into logic. BFeedback
Framework^ section introduces the feedback framework utilized in the tutoring system
and analyzes the parts it consists of. Initially, the framework’s approach to model
students’ answer is illustrated and then the domain specific error categorization scheme
is described. After that, the feedback sequencing hierarchy is illustrated. Next, the
approach for generating, in an automated manner, the textual feedback messages to be
delivered to the learner is presented. BEvaluation^ section, presents the evaluation study
conducted and the results gathered in real classroom conditions. Finally, BMethod^
section concludes the paper and provides directions for future work.

Background

Existing Status in Teaching Logic Formalization

Artificial Intelligence (AI) is considered to be an important domain in computer
science, but also, according to our experience, a very hard domain for students to
master. Many tutors acknowledge that Artificial Intelligence courses contain complex
concepts, which are difficult for the students to grasp. Knowledge representation and
reasoning is a fundamental topic of artificial intelligence. A basic knowledge represen-
tation language is First Order Logic (FOL), the main representative of logic-based
representation languages, which is part of almost any introductory AI course and
textbook. So, teaching FOL as a knowledge representation and reasoning language is
a vital aspect, which includes teaching a number of concepts and processes. One of
them is converting natural language (NL) sentences into FOL formulas, a process
called logic formalization of natural language. It is an ad-hoc process, ie there is no
specific algorithm that can be automated within a computer. This is mainly due to the
fact that natural language has no clear semantics as FOL does. Most of existing
textbooks do not pay the required attention to the above process. They simply provide
the syntax of FOL and definitions of the logical symbols and terms (Russell and Norvig
2010). Even more specialized textbooks (Brachman and Levesque 2004) do the same.
At best, they provide extended explanations and examples (Genesereth and Nilsson
1987). However, they do not provide any systematic guidance towards it. Given the
above, students usually find difficulties in learning the process of formalizing NL
sentences into FOL and rely on tutors’ teaching experience. On the other hand, existing
tutoring systems that deal with teaching logic either not deal with the formalization
process (Sieg 2007; Yacef 2002, 2005) or do not offer a systematic teaching way and
do not provide adapted feedback and guidance to the students (Alonso et al. 2007;
Moreno and Budesca 2000).

In most cases, conversion 1 of NL sentences into FOL is taught by means of
examples presented by the tutor. The students practice formalizations by solving

1 We use the terms ‘formalization’, ‘conversion’ and ‘translation’ interchangeably with regards to the NL to
FOL conversion process.
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exercises on paper. However, it is impossible for a tutor to provide meaningful and
personalized feedback to every student in the class, due to limited time. So, feedback in
most cases is delayed and is provided to the students after hours or even days. In
addition, exercises may have many correct answers that are equivalent and so, it is
complex to monitor and specify students’ solution paths while working on exercises
and constructing their answers (Maestro-Prieto and Simon-Hurtado 2015).

To assist students in learning NL formalizations, ie how to manipulate sentences and
convert them into logic, the process presented in (Hatzilygeroudis 2007) was proposed.
It is called the NLtoFOL Structured and Interactive Process (SIP).2 It guides students
how to formalize a NL sentence in a step-based way. The conversion process is split
into specific sub-processes/steps, where each step implements a specific part of the
conversion. In this way, students have to implement a specific procedure of the
translation process in every step and thus form the FOL formula in a constructive,
part-based approach. Moreover, SIP can help students get a deeper understanding of the
conversion process and also face errors and conversion misconceptions.

Afterwards, a web-based interactive system for learning natural language formali-
zation (Hatzilygeroudis and Perikos 2009), based on the NLtoFOL SIP, was developed.
The system offers guidance and assistance to the students during the learning sessions
via a simple feedback mechanism, which adapts to each student’s answers, performance
and behavior in some degree. A small scale evaluation of the system showed satisfac-
tory performance of the system. The feedback mechanism presented in this paper is a
large scale extension of the one outlined in (Hatzilygeroudis and Perikos 2009), as
developed through the past years. The system has been used in our department and a
large scale evaluation has demonstrated very satisfactory performance concerning its
tutoring capabilities and the learning construction and performance of students.

Challenges and Complexity of Formalizations

The conversion of NL sentences into the corresponding FOL formulas is acknowledged
by many logic tutors to be a cognitively hard and complex procedure for the students to
understand and successfully implement (Barker-Plummer et al. 2009; Hatzilygeroudis
2007). Moreover, studies on students’ performance indicate formalization to be an error
prone process resulting in low student performance (Barker-Plummer et al. 2008, 2011,
2012). The above pose two interlinked questions: (a) why formalizations are so hard for
the students? and (b) what we can do to help students to gain a deeper understanding of
this process?

To answer the first question, the NL sentence, the FOL formula and the conversion
process have to be analyzed. There are many factors that have an impact on the
formalization difficulty of NL sentences. A main factor is related to the fact that natural
language tends to have no clear semantics, in contrast to FOL. In fact, written and,
mainly, spoken NL sentences tend to be ungrammatical and informally composed,
suffering from ambiguity, which adds difficulty to their formalization. So, determina-
tion of the elements constituting the corresponding FOL formula may not be explicit
enough in a sentence.

2 An overview of the NLtoFOL SIP conversion process is presented in Appendix A.
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In some cases, sentences may refer to abstract entities, expressed by words
like Bsomeone^ or Bsomething^ or similar, and thus determining the arity and
the arguments of predicates in FOL may not be clear to students. Moreover, the
quantification of the predicates denoting the entities and the objects of the
sentence may not be clear and lapidarian. For example, in the sentences BAll
animals eat some plants^ and BI like someone if he is vegetarian^, the similar
words Bsome^ and Bsomeone^ lead to different quantification, given that in the
second sentence Bsomeone^ actually means Ball^ (vegetarians).

This also stands for the determination of the polarity of the predicates.
Words denoting negative polarity may appear in a NL sentence. They cause
additional difficulty and complexity for students to decide on (1) their appear-
ance or not in the FOL formula and (2) their scope, ie whether a negation
affects an atom, a group of atoms or even a whole formula. For example, the
sentence BThere are no mushrooms that are poisonous and purple^ can be
erroneously translated as B(∀x) mushroom(x) ⇒ ¬poisonous(x) ∧ ¬purple(x)^
instead of B(∀x) mushroom(x) ⇒ ¬(poisonous(x) ∧ purple(x))^. Determination of
a negation's scope may be tricky for students.

Another case of ambiguity concerns determination of connectives. So, exis-
tence of an Band^ in a sentence may not lead to the use of B∧^ connective. For
example, the FOL formula corresponding to the sentence BApples and oranges
are fruits^ is often determined as B(∀x) (apple(x) ∧ orange(x)) ⇒ fruit(x)^,
which is wrong, because nothing is both an apple and an orange.

The aforementioned remarks and examples indicate that an accurate and
precise translation of a NL sentence into FOL may be complex and tricky,
making it difficult for students to understand and implement. Additionally, the
lack of a systematic way to do the translation makes formalization a concep-
tually difficulty and error prone process.

To successfully answer the second question above, we have to look deeper at
the factors concerning the formalization process. First, something should be
done to help students to understand the nature of the conversion process. This
requires looking deeper at the conversion, modeling and dividing it in sub-
processes, to make it conceptually easier and less complex for students to
understand and implement. So, we modeled the process as a constructive
step-based procedure, where each step implements a clear and specific part of
the conversion, and proposed a structured and interactive process (SIP)
(Hatzilygeroudis 2007), which is presented in Appendix A. In addition, from
the tutor’s perspective, for the innate natural language aspects, he/she cannot do
anything to help students apart from providing some explanations about the
sentence semantics. However, during the learning sessions, the tutor can pro-
vide valuable feedback to the students facilitating and cultivating an efficient
learning. For example, the tutor can explain to each student the errors made
and why his/her answer is not correct and also provide directions about how to
correct it.

Based on the above, we developed and used the NLtoFOL tutoring system to
assist students in learning formalizations by using the NLtoFOL SIP process
and additionally by offering guidance and meaningful feedback, through a
sophisticated mechanism, to the students during the learning sessions.
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Feedback Framework

Feedback is provided to users via two components: Error Detection unit (ED) and
Feedback Generation unit (FG), as presented in Fig. 1. The error detection unit is
used to analyze a student’s answer and recognize the types of the errors made.
Initially, it characterizes an answer in terms of accuracy and completeness. Then,
in case the answer is not correct, it recognizes and analyzes the errors made, based
on a domain specific error categorization schema. The feedback generation unit is
used consequently to automatically generate and deliver various types of feedback
messages based on the error(s) made by the learner. It uses a hierarchy of
assistance levels, where each one is associated with specific types of feedback
and hints. The feedback sequencing follows an incremental assistance delivery
approach.

Feedback Delivery Cycle

The feedback delivery cycle is as follows (processes like error detection, answer
categorization and feedback generation are presented in detail in the following
sections):

1. As soon as an answer is submitted, forward it to the error detection (ED) unit to
analyze and categorize it in one of the answer categories.

1.1 If the answer is correct (complete and accurate), proceed to the next step
1.2 Otherwise, forward the answer to error categorization mechanism to deter-

mine the type(s) of error(s) made.
2. Based on the feedback assistance scheme and the student’s answer specify the type

and the parameters of the feedback to be provided.
3. Forward the student’s answer, the recognized error type(s), the proper feedback

type and its parameters to the feedback generation (FG) unit, to generate the proper
feedback message(s) as follows:

Domain
Process

Feedback Generator (FG)

Error Detec�on 
(ED)

Feedback

Fig. 1 An overview of the feedback framework
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& For each error type, analyze the exercise to define the cause(s) of the error and
create the proper explanation(s).

& For each element that is correct, generate the proper positive feedback message.

4. Produce the appropriate textual messages based on the template-based approach.
5. Deliver the feedback messages to the student according to the feedback hierarchy

and in the proper way (ie immediately or on demand).
6. Allow student to provide a new answer and go to step 1.

Types of Feedback in the System

There is extensive research on the types of feedback and the functionality of each
type in tutoring systems (Hattie and Timperley 2007; Mandernach 2005). Findings
indicate that different types of feedback have different effects on the learning
process of a student (Koedinger and Aleven 2007; Mory 2004; Vasilyeva et al.
2008). Providing feedback and hints in every step of a multi-step procedure is an
essential feature of a tutoring system (Gheorghiu and VanLehn 2008). In general,
feedback offered to students, in order to be effective, has to be error specific and
tailored to the student’s needs in terms of performance and knowledge gaps. The
feedback messages provided by the system to a student’s answers and actions can
vary in type, in the information that they contain, in timing and also in the way
they are presented. A categorization of the feedback types that can be provided to
the students has been developed. The categories and the types of feedback have
been determined combining widely used classifications of feedback (Narciss 2008;
VanLehn 2006). The main types of feedback offered by the feedback framework
are the following:

Minimal feedback. The system informs the student whether the answer is correct or
not. Giving just a correct or incorrect notice can dramatically improve the effi-
ciency of learning (Wang and Wu 2008).
Flag feedback. Initially, after a student has submitted an answer to a step, the
system informs him/her whether the answer is correct (colored green) or incorrect
(colored red). Flag feedback (Anderson et al. 1995) provides a binary Bflag^ rather
than further information and is considered to be a special kind of minimal
feedback.
Positive feedback. The system can inform the student about the correct parts of the
answer and provide corresponding justifications on them. Providing positive
feedback can help the students know that they are on the right way and also help
them reinforce the knowledge they have.
Knowledge about concepts. The system provides hints and explanations on terms
and processes and also hints and explanations of the appropriate conceptual
context.
Procedural feedback. The system tries to help the students how to proceed
towards the solution by providing hints on what has to do for the sentence’s
formalization and also what to do next, suggesting the concepts to be used or
rules to be applied.
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Error-specific feedback. When a student’s answer is incorrect the mechanism
recognizes the errors made and provides the proper feedback based on the errors,
taking into account the formalization and the student model.
Bottom-out hints. The system can decide to give to the student the correct answer
or part of it. This can be done after a student’s request or after constant failures and
special learning circumstances.
Knowledge on metacognition. The system analyzes students’ behavior during the
learning sessions and provide metacognitive guiding and hints.

Error Detection

The error detection (ED) unit is responsible to detect and recognize the errors made by
a student. Just after the student submits an answer, the error detection unit is activated
to handle and analyze the student’s answer. The process of error detection is a
fundamental task of an intelligent tutoring system. The pedagogical assumption is that
the motivation for understanding and learning is getting stronger when an error is
detected (Hirashima et al. 1998). The error detection unit performs two basic opera-
tions. First, it characterizes the student’s answer, in terms of completeness and accuracy,
and categorizes it in the proper answer type category. Then, in case that the answer
submitted by the student is not correct, determines the number and the type of errors
made, utilizing a domain specific error categorization scheme.

Answer Categorization

The analysis of a student’s answer is quite important for assessing it as accurately as
possible and also assists the generation of the proper feedback message(s). Therefore, a
generic answer categorization was developed to help the analysis. In this context, a
student’s answer is characterized in terms of completeness and accuracy (Fiedler and
Tsovaltzi 2003). An answer is characterized as complete if all the elements of the
correct answer appear in the student’s answer. In contrast, when the student did not
specify all the elements of the correct answer, his/her answer is characterized as
incomplete. The student’s answer is characterized as accurate when all the elements
of the student’s answer are correct, while is characterized as inaccurate when an
element (or more) of the student’s answer is not defined correctly. The categorization
scheme developed is also enriched in terms of superfluity (Gouli et al. 2006). The
superfluity is used to characterize a student’s answer that contains all the required
elements plus one or more elements that are unnecessary. The term Belement^ is used to
represent any individual piece of information that the student has to specify in an
answer. So, a student’s answer can be characterized as:

& Incomplete – Accurate: An answer with missing elements. However, the existing
elements are correct.

& Incomplete – Inaccurate: An answer with missing elements, where one or more of
the existing elements are incorrect.

& Complete – Inaccurate: An answer that includes all needed elements of a correct
answer. However, one or more of them are incorrect.
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& Complete - Accurate (correct answer): An answer that includes all the elements of a
correct answer and all are correct.

& Superfluous: An answer that includes more elements than needed and one or more
elements appear to be incorrect. This can be further classified as:

& Superfluous – Accurate: the required elements are defined correctly, however
the presence of the extra element(s) make the answer incorrect.

& Superfluous – Inaccurate: one or more of the required elements are incorrect.

In case that a student’s answer is characterized as complete and accurate, the student
has specified the correct answer or a correct answer, in case that more than one answers
are correct. In such a case, the current step of the formalization process has been
completed successfully and the student can proceed to the next one. In all other cases,
the student’s answer is considered as incorrect and the student has to work towards the
correct one. The student’s answer is further analyzed by the error detection unit, in
order to recognize the types of the errors made based on a domain specific error
categorization scheme.

In the context of the NLtoFOL system and based on the step of the NLtoFOL SIP
process, an element may be a word representing a predicate (e.g. city, dog-catcher), a
variable (e.g. x, y), an atomic expression (e.g. city(x)), a connective (e.g. ∧, ⇒) etc. For
example, in the first step of the SIP process, elements of the student’s answer are the words
specified by the student to represent the basic predicates and functions of the sentence.

Error Categorization

In order the error detection (ED) unit be able to specify the errors made in an incorrect
answer, we have designed a domain specific error categorization scheme. This error
categorization scheme has been developed based on (a) an extended analysis and
mining of the errors made by students and (b) general rules and constraints coming
from principles of the domain. Based on the above, the types of possible errors are
classified according to the scheme presented in Table 1.

The possible error types are organized in six major categories. Each category
includes a collection of different error types. More than one type of errors may be
involved in a student’s answer at each step of the process.

An Example Case in NLtoFOL System

As an example, we present handling of some indicative students’ answers during the
process of converting the exercise-sentence BEvery city has a dog-catcher that has been
bitten by every dog living in the city^ into FOL via the NLtoFOL system.

In the first step of the process (see Appendix A), students must specify the predicates
and the functions in a sentence. For the example sentence, let’s suppose that a student
determines three predicates: Bcity ,̂ Bdog^ and Blives-in^. The determined predicates
are correct, but the student has not specified all the predicates of the sentence. Thus, the
system characterizes the student’s answer as Incomplete-Accurate. Suppose that anoth-
er student determines six predicates which are: Bcity ,̂ Bdog-catcher^, Bdog^, Blives-
in^, Bhas^ and Bis-bitten^. The student’s answer is superfluous, because the student has
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specified one more predicate than required. Additionally, it is inaccurate since the
predicates Bhas^ and Bbitten^ are specified in an incorrect way. Thus, the answer is
characterized as Superfluous-Inaccurate.

In the second step of the process, students have to specify the number, the type and
the symbol of each argument of the function symbols and of the predicates. Let’s
suppose that a student has given the answer presented in Table 2. The system
characterizes the answer of the student as Complete-Inaccurate. Complete because
the student has specified all the elements of the correct answer and Inaccurate because
two elements of the answer are not correct. Then, the answer is analyzed by the error
detection mechanism to recognize the errors made. The mechanism recognizes that the
student has defined the predicate Bdog^ incorrectly. More specifically, the student has
made an argument error and even more specifically a cardinality error, having defined
two arguments instead of one. Also, the student has made an order error for the
predicate Blives-in^, by having determined a reverse order for its variable arguments.

Let’s see an example student answer for the third step, where the quantifiers of the
variables are specified: Bx→ ∃^, By→ ∃^, Bz→ ∀^. The student’s answer is complete

Table 1 Error categorization of the natural language formalization process

Error
category

Error type Error explanation

Predicate
error

Number
Error

Plural number of a noun instead of singular is used. E.g. Bmen^ instead of
Bman^.

Person Error Another person instead of singular third-person is used. E.g. Beat^ instead of
Beats^.

Semantics
Error

A wrong word (representing e.g. a function or a constant etc.) is used as
predicate.

Term error Type Error A wrong type is specified for an argument of an atom. E.g. Bconstant^ is
specified instead of Bvariable^.

Semantics
Error

A word denoting a predicate is used as a function symbol (e.g. Bbrother-of^ is
used as a function symbol) or a constant etc.

Argument
error

Cardinality
Error

The number of the arguments of an atom is wrong.

Order Error The order of the arguments of an atom is wrong.

Connective
error

Type Error One connective (e.g. B∧^) is used instead of another (e.g. B⇒^) to connect the
atoms of a formula or a negation is missing.

Scope Error The scope of a connective (e.g. of a negation) is wrong.

Quantifier
error

Type Error The type of a quantifier is wrong.

Scope Error The scope of a quantifier does not cover all occurrences of its variable.

Order Error The order of quantifiers is wrong.

Group error Atoms Error The atoms denoted to form a group are wrong.

Order Error The order of the atoms denoted to form a group is wrong.

Cardinality
Error

The number of the atoms forming a group is wrong.

Number
Error

The number of the created groups is wrong.
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because all the elements of the correct answer are included, but it is inaccurate since
the quantifier of variable Bx^ has been defined incorrectly. The student has defined
Bx → ∃^ instead of Bx → ∀^, which is the correct one. Thus, the answer is
characterized as Complete-Inaccurate. The error detection mechanism recognizes
that the student made a quantifier error, more specifically a quantifier type error.
In the sixth step of the process, the student must specify the connectives between
atoms of each group and create the corresponding logical formulas. A student’s
answer has been the following:

AtomGroup 1 → Form 1: city(x), AtomGroup 2 → Form 2: dog-catcher(y, x)
AtomGroup 3 → Form 3: dog(z) ∨ lives-in(z, x)

The system characterizes the answer as Incomplete-Inaccurate. The student has
failed to determine all the atom groups of the sentence and thus his/her answer has
been incomplete. The answer is also inaccurate because an atom group has been
identified incorrectly. The error detection mechanism recognizes a connective error,
because the connective B∨^ specified by the student for the AtomGroup3 is incorrect.
Furthermore, the answer is incomplete, because the student hasn’t specified the neces-
sary AtomGroup4: Bhas-bitten(z, y)^. Finally, consider as an example answer, in Step
10, the following:

B(∀x)City(x) ⇒ ((∃y) dog-catcher(y, x) ∧ (∀z) (dog(z) ∧ lives-in(z, x)) ⇒ has-
bitten(z, y))^

The system categorizes the answer as Complete-Accurate. The answer is character-
ized as complete, because the student has defined all the elements of the correct FOL
formula, and ‘accurate’, because all defined elements are correct. So, this answer is a
correct one.

Table 2 Student answer and correct answer for step 2 of process

Predicate/Function Arity Argument types Symbols

Student answer (SA)

city 1 variable x

dog-catcher 2 variable, variable y, x

dog 2 variable, variable x, z

lives-in 2 variable, variable x, z

has-bitten 2 variable, variable y, z System’s response
Correct ✓
Correct ✓
Incorrect ×
Incorrect ×
Correct ✓

Correct answer (CA)

city 1 variable x

dog-catcher 2 variable, variable y, x

dog 1 variable z

lives-in 2 variable, variable z, x

has-bitten 2 variable, variable y, z
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Feedback Sequencing

The system’s assistance is structured to consist of levels of assistance, each one giving
increasingly more specific advices. Each assistance level provides students with specific
type(s) of feedback. The system is designed to implement an incremental assistance and
feedback delivery policy. Initially, it starts by delivering feedback associated with the first
level of assistance, scaling up its assistance afterwards to the final level, where the correct
answer is offered. The feedback sequence has been designed based on feedback methodol-
ogies and hinting strategies (Fiedler and Tsovaltzi 2003; VanLehn 2006; Zhou et al. 1999).
In addition, to enhance the system’s assistance, a deeper analysis of the tutor’s behavior
during the learning sessions of the formalization process in real classroom conditions has
been performed. More specifically, the system analyzes an answer and specifies the
feedback to provide, trying to model and simulate the way a tutor does it. A human tutor
is considered to be extremely effective at providing hints and guiding students learning. A
key aspect of the tutor’s behavior is that he/she does not reveal the solution directly, but tries
to engage students in more active learning and thinking. Furthermore, research studies
underpin that computer generated hints can effectively assist students in a similar degree to a
human tutor (Muñoz-Merino et al. 2011; VanLehn 2011). The system's assistance can be
provided in stages, (i) before the student submits an answer to a formalization step of an
exercise and (ii) after the student submits an answer that is not correct.

Assistance Before Answer Submission

A student can request and get assistance for the current formalization exercise’s step,
while working on it and before he/she submits an answer. The assistance schema before
the student submits an answer includes two levels. Each level is associated with specific
types of feedback, each one of which is associated with specific hints/explanations. The
assistance levels, the feedback types and the hints are presented in Table 3.

The first assistance level provides hints implementing knowledge about concept
feedback. These hints can address the characteristics of the involved theory topics and
aim to remind learner about the theoretical context (definitions, syntax etc.) related to
the current step. For example, hints may present to the student specific parts of theory
such as BPredicates representing nouns of the natural language should be in single
person while predicates representing verbs should be in third person^, BWhen using a
quantifier, it must be associated with a variable and every district variable should be
quantified by the proper quantifier .̂

Table 3 Assistance schema before answer submission

Assistance level Feedback type Explanation

First level Knowledge about Concept Hints indicating the involved relevant theory topics.

Hints/explanations of concept definition.

Second level Procedural feedback Hints how to work towards the sentence formalization.

Hints what to do first/next.

Present similar exercises that have completed before.
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At the second level of assistance, procedural feedback is provided to the student.
The hints at this level aim to remind the students of the corresponding learning goal and
provide specific guidance on how to achieve it. For example, hints may present to the
student, the main directions of how to work and what to do first on his answer and hints
may denote that BIn order to specify the functions and the predicates, you need to
specify first the word representing the functions and then the words representing the
predicates^. Also, they aim to focus student’s attention on specific and peculiar
elements of the exercise’s current step process that may be tricky, leading to high error
rates and failing attempts. Furthermore, the system at this level can provide the student
with similar exercises that has successfully completed before. The hint messages are
tailored to the characteristics of the current exercise’s formalization step and are
associated with the hint button. They are displayed after a student’s request for
assistance, ie they are on-demand help.

As an example, let’s consider again the sentence BEvery city has a dog-catcher that
has been bitten by every dog living in the city .̂ A first level assistance during the first
step of the process is a knowledge about concept feedback message that reminds
student of some general principles and relevant theory involved in current SIP step,
as presented in Fig. 2.

Assistance After an Incorrect Answer Submission

The second stage of the system’s assistance is offered after the student submits an
answer that is not correct. After an error occurrence and its recognition by the error
detection unit, the feedback generation unit takes over and generates the proper
feedback messages. The assistance schema consists of four levels of assistance, which
are presented in Table 4.

Fig. 2 An example hint for the first step of an exercise
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The system, at the first level of assistance, informs the student about the correctness
of his/her answer by coloring green the correct and red the incorrect elements of the
answer. This type of feedback (flag feedback) can be offered to the student in two
different ways. First, after the student’s answer is analyzed and the correct and incorrect
elements are determined, the system can provide incremental flag feedback by coloring
one by one the answer elements by the proper color denoting its correctness or
incorrectness. So, the student can incrementally request for additional correctness
notice for the next element of his/her answer. In this way, the amount of the feedback
delivered is handled by the student and can be just as much as the student needs. In the
second way, flag feedback can be offered all at once, by coloring all the elements of the
student’s answer with the proper color. In this way, the student gets the full functionality
of the flag feedback, getting the correctness notices for each element of the submitted
answer. The flag feedback is offered part-by-part in case the student’s answer consists
of many parts and two or more of its parts are incorrect or missing.

The second level of assistance mainly offers specific justifications for the correct
elements of a student’s answer and proper explanations for the errors made. Initially,
hints are presented based on the type of the student’s answer. More specifically, the
system can inform the student about the type of the answer provided in terms of
completeness and superfluity. For example, hints may denote that BSome predicates are
not denoted/missing^ or that BYou have determined more function symbols than
needed^. After that, the system offers specific hints about each error. The student has
already been informed about the correctness of each element of his/her answer by the
assistance of the previous level and now the system provides hints justifying the correct
elements and explaining each one of the errors made. Indeed, student’s newly acquired
knowledge may have high probability of uncertainty and hence could benefit from
confirmation through positive feedback (Mitrovic et al. 2013).

The third level of assistance provides the student with procedural hints. First, the
system’s third level hints can remind student of the step’s goal and provide hints of how
to correct his/her answer. For example, hints can address specific errors made such as
BWord love should be in third person^, BWord dogs should become a predicate^. In
addition, the system based on the student’s exercise history may present similar
exercises that the student has completed successfully along with the corresponding
correct answers. For example, a hint may denote that BA similar exercise that you have

Table 4 Assistance schema after an incorrect answer

Assistance level Feedback type Explanation

First level Flag feedback Correctness notice for one element of the answer each time.

Correctness notices for all the parts of the answer.

Second level Positive feedback Analysis and justification on correct answers.

Error-specific feedback Answer analysis and error explanations.

Third level Procedural feedback Hints how to work towards the sentence formalization.

What to do next.

Present similar exercises that have completed before.

Fourth level Bottom-out Reveal one element of the correct answer each time.

Reveal the correct answer.
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completed successfully was the sentence [exercise remark] where the correct answer to
the current step was [exercise step answer]^. The aim of this kind of hints are to provide
the proper similar and analogous exercises and provide clues of how to fix their
answers and determine the correct answer.

The fourth assistance level provides the student with the correct answer or a part of
it. The correct answer can be offered in two ways. First, after a student’s request for
assistance, the system can reveal an element of the correct answer. After having seen
some elements of the correct answer, the student can work towards the correct answer.
Second, the system can offer all the elements of the correct answer at once. The correct
answer is offered to the student part-by-part in case that the answer consists of many
parts and two or more of the parts of the student’s answer are incorrect or missing. In
addition, the student receives proper explanations and then he/she can proceed to the
next step of the sentence’s formalization process.

For example, for the first step of the conversion process of the sentence BMaria loves
all dogs that love their master^, the student has specified three predicates (Bloves^,
Bdogs^, Blove^) and one function (Bmaster-of^). The system has colored green the
correct parts (Bloves^, Bmaster-of^) of the answer and red the incorrect (Bdogs^,
Blove^). The student can request additional assistance. In Fig. 3, a second level
assistance message providing error-specific feedback is presented.

Metacognitive Assistance

In most tutoring systems, the learner holds the control of assistance. Thus, the learner
must decide how to use the system’s assistance, something that requires that the learner
is in position to make good judgments about his/her own knowledge and that is also

Fig. 3 Flag feedback and error analysis for the student’s answer during step 1

490 Int J Artif Intell Educ (2017) 27:475–514



able to judge when he/she can benefit from assistance (Aleven and Koedinger 2000).
Effective help seeking behavior can result in better learning in educational systems
(Aleven et al. 2016; Goldin et al. 2013; Roll et al. 2011). However, in many cases, a
learner may not use the assistance of tutoring systems in the proper way, something that
can diminish the learning capabilities of the tutoring process (Aleven et al. 2003,
2006a, b). So, a special part of the system’s interaction with the student is based on
the student’s metacognitive learning behavior. Modeling students’ metacognitive skills
and using these models to scaffold students learning, can lead to more effective and
efficient learning (Mathan and Koedinger 2005; Roll et al. 2014). During learning
sessions, the system records all the students’ actions, analyzes them and tries to specify
each student’s metacognitive behavior. The metacognitive behavior concerns modeling
the student’s metacognitive help using and seeking strategies, which can provide the
system with meaningful information regarding the student’s learning characteristics.
The metacognitive model specifies how a student uses the help facilities of the system.
Based on it, the system can intervene and propose to the student to request system’s
assistance or not. In Table 5, basic cases of the student’s metacognitive behavior are
presented.

The system can make recommendations to the learner giving suggestions to request
assistance or even immediately provide the student with the proper hint. For example,
when the learner repeatedly fails to specify a specific element of the answer, the system
can make a suggestion to him/her to request the system’s assistance. In such cases, a
pop up will appear stating the system’s recommendation. However, if the learner
neglects the recommendation, the system can intervene and provide the learner with
the proper hint messages immediately after his/her answer.

The suggestions to make and the way to deliver them in terms of timing and
content are specified by a rule-based expert system. All students’ actions in the
system are recorded and parameters such as the number of submissions on an answer,
submissions time, help requests and meta-parameters concerning the analysis of the
errors made are specified. Student-related parameters can provide meaningful infor-
mation regarding aspects of student’s help seeking behavior. The expert system
consists of two main types of rules. Profile assignment rules specify and update
aspects of a student’s help seeking behavior and indicate whether a student is active or
inactive while working on an exercise. Recommendation rules are used to make help
suggestions. Below, three example rules are presented (one of profile assignment type
and the others of recommendation type). For the sake of readability, they are
expressed in natural language.

Table 5 Example feedback based on student’s behavior

Student behavior Feedback

Student is taking too much time to submit an answer. Try to take a hint.

Student is constantly requesting hints before trying to submit an answer. (help abuse) Try to submit an
answer.

Student isn’t requesting any help and is striving to specify the correct answer. (help
refusal)

Try to take a hint.
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R1: IF (student_creates_events is high)
THEN (student_is_working_on_the_exercise is yes)

R2: IF (time_between_submission is high)
and (answer_score is low)
and (hints_delivered are low)
and (student_is_working_on_the_exercise is yes)

THEN (take_hint_recommendation).

R3: IF (submitted_answers is low)
and (answer_score is low)
and (hints_delivered are many)

THEN (do_not_take_hint_recommendation)
and (submit_answer_recommendation).

The development of the rules was based on historical data on students learning in
combination with the experience and the guidelines of experienced tutors. Student
characteristic parameters are constantly updated during the student’s learning sessions
based on their interactions with the system.

Textual Feedback Generation Approach

The Feedback Generation (FG) mechanism is used to generate and provide students with
various types of feedback according to their actions. The aim is to model and automate the
process of feedbackmessages generation. The automatic generation of feedbackmessages is
an essential part of the assistance and feedback delivery within educational systems (Gerdes
et al. 2016). The mechanism takes as input the exercise and the type(s) of error(s) made and
provides the appropriate feedbackmessage(s). The generation of feedbackmessages ismade
using a template-based approach. More specifically, the error types and the system hints are
associated with a suitable feedback template.A template consists of threemain components:
(i) the error category associated with the current error, (ii) the type of the error made and (iii)
the message texture pattern to bear the specific textual message. In Table 6, some examples
of feedback texture templates are illustrated.

The instantiation of a pattern concerns filling in the template with the proper
information regarding the elements of the student’s answer. Example student errors
and the corresponding feedback messages during the translation process of the sentence
BMaria loves all dogs that love their master^, are presented in Fig. 3.

Table 6 Example feedback templates

Error category Error type Pattern

Predicate error Number Error [element of the student answer] is not correct because [explanation].
You should [remedial action].

Predicate error Person Error [element of the student answer] is not correct. It is not in third person.

Quantifier error Type Error Quantifier [element of the student answer] is not correct because
[explanation] is associated with the word [explanation].
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As an example consider the first step of the process, where a common error concerns
the specification of the proper predicates. Let’s suppose that a student has specified as
predicates the words Blove^, Bdogs^ and the word Bmaster-of^ as a function symbol.
The error detection recognizes the errors and informs the feedback generation unit
about the types of errors the student has made. The sentence is analyzed and the word
Blove^ is recognized as a verb and that it is not in the third person in the student’s
answer. So, it is incorrect. Also, it is recognized that the word Bdogs^ is a noun, it is in
plural number and thus, it is incorrect. Then, an instance of the feedback framework
will be created by filling in the gap in the feedback message pattern with the word
Blove^. The feedback generation mechanism instantiates the templates:

[element of the student answer] is not correct because [explanation].

[element of the student answer] is not correct. It is not in third person.

By filling in the proper parts, the feedback messages to be given to the student, as
illustrated in Fig. 3, produced:

The word dogs is not correct because it is in plural number.

The word love is not correct. It isn’t in third person.

As a second example, errors during the third step of the process, where the student
specifies the proper quantification for the variables that represents the predicates determined,
are presented. A common error concerns the incorrect quantification of the variables. Let’s
suppose that a student in his/her answer has specified for the variable Bx^, which he/she has
denoted to represent the entity Bdog^, the existential quantifier B∃^, which is incorrect. The
feedback generationmechanism based on this answer analysis and the diagnosis conducted,
can instantiate as a second level, error-specific feedback message, the following template:

Quantifier [element of the student answer] is not correct because [explanation] is
associated with the word [explanation].

By filling in the pattern with the proper information, the feedback that is given to the
student is the following:

Quantifier specified for the variable Bx^ which represents Bdogs^ is not correct
because the entity dogs is associated with the word Ball^.

The textual messages mainly concern the generation of the hints associated with the
second and the third level of assistance.

Evaluation

Experimental studies were conducted to evaluate the NLtoFOL system assistance and
feedback mechanism during learning. To that end, two different experiments were
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designed and implemented. Participants of the experiments were students of the
Artificial Intelligence class at the computer engineering and informatics department
of the University of Patras. All students were in the 4th year of their study and their age
ranged from 21 to 23 years. Also, they had attended the AI course lectures on logic as a
knowledge representation and reasoning language and had the necessary knowledge on
background topics. The main objective of the experimental studies was to obtain an
assessment of the effectiveness of the feedback framework developed for the NLtoFOL
system, by comparing the effects of different feedback scenarios on learning. In the
experiments, we followed a pre-test/post-test approach.

First Experiment

Method

The participants in the first experiment were 226 undergraduate students (male and
female). All students participated in a session of 1 h and 15 min consisted of two
activities: (i) introduction and explanation of how to use the NLtoFOL system (15 min),
(ii) pre-test (1 h). The experiment included four stages: pre-test, learning phase, post-
test, questionnaire (see Fig. 4).

The students were randomly divided into two equal size groups, of 113 students
each, namely Group A and Group B. The rates of girls and boys in Group Awas almost
the same as those in Group B. Initially, all participants took a pre-test aiming to assess
students’ domain relevant prior knowledge on converting NL sentences into logic. The
pre-test consisted of ten exercises of various difficulty levels, ranging from very easy to
advanced (Perikos et al. 2011, 2016). More specifically, the test consisted of one very

All Participants

Taking Pre-Test

Group A
(113 students)

Group B

(113 students)

Taking Post-Test 

Group A

NLtoFOL with flag 

feedback & bottom out 

hints

Group B

NLtoFOL with full 

feedback based on 

the framework

Practice session 

2 weeks

1 hour

1 hour

Questionnaire 20 minutes

Fig. 4 Structure of the first experiment
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easy exercise, two easy, four medium, two difficult and one advanced exercise. Each
correct conversion was assigned one point and the maximum pre-test score was 10
points. The duration of the pre-test was 1 h and it was conducted in the computer room
area of the department.

After the pre-test, access was given to all participants to register and use the
NLtoFOL system for learning the formalization process. During registration, the
students had to fill in their personal and demographic information such as, name,
gender, age, year of study etc. The students used the system for 2 weeks, to study how
to convert natural language sentences into FOL using SIP, as described in the back-
ground section. Group A used the system with a scenario where flag feedback and
bottom out hints only were provided in case of an incorrect answer. Group B interacted
with the system with a scenario where the system provided the full assistance and
feedback framework, as presented in the previous section. The students of both groups
had the ability to take hints before they give an answer. During the 2 weeks’ period,
both groups had access to the exact same set of exercises which consisted of 80
exercises ranging from very easy to advanced difficulty level. Also, both groups were
asked to aim at daily sessions of at least 30 min and also to experiment with all the
exercises that were available in the system. During the learning sessions, students’
actions were recorded by the system.

After the 2 weeks learning phase, all the participant students took a post-test. The
post-test consisted of 10 formalization exercises of the same difficulty levels as the pre-
test and the students were given 1 h to do the formalizations and submit their answers.
The exercises were presented to the students in an incremental difficulty level way,
starting from exercise 1 (very easy) to exercise 10 (advanced). The exercises of post-
test were in accordance with those in pre-test. More specifically, exercises of the same
difficulty level were content equivalent, covering the same aspects of the formalization
process and necessitating the same steps of the SIP process. Moreover, the answers of
exercises of the same difficulty level were either slightly different in (logical) structure
or logically equivalent. However, students couldn’t be aware of or trace those similar-
ities, due to the different NL expressions. In addition, all exercises were selected not to
suffer from ambiguities and ellipses so that the textual feedback messages could be
created accurately by the feedback generation mechanism. For each exercise of the
post-test, the students were given the NL sentence and had to write the corresponding
FOL formula without the help of the system. So, a student’s submitted answer to the
post-test consisted of 10 FOL formulas, one for each exercise (sentence). After a test
submission, answers (FOL formulas) were automatically graded using the system’s
automatic assessment mechanism (Perikos et al. 2012) in a consistent way. The
automatic assessment achieves high accuracy in grading students’ exercises, in line
with the tutor’s marking behavior. The assessment results and the analysis of the errors
made were available to tutors and to students almost immediately after the tests’
submission.

In addition, the students of both groups were asked to fill in a questionnaire. The
questionnaire was designed by the tutors of the course for evaluating the usefulness of
assistance and feedback, asking for the students’ experiences and opinions about the
learning impact of the NLtoFOL system. The questionnaire of Group A included 12
questions and the questionnaire of Group B 18, where the six additional questions were
related to students’ stance towards aspects of the textual characteristics of the hints.
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From the 12 common questions, 9 questions required answers based on a five point
Likert scale (1- strongly disagree to 5-strongly agree) and 3 were open ended questions.
Some example Likert scale questions are the following: BI enjoyed learning with the
NLtoFOL system^, BThe feedback offered was accurate^, BThe feedback helped me
understand my errors^, BWhen an error was made, the assistance helped me to fix my
answer^, BFor the items that I answered incorrectly, I examined the feedback^, BThe
system intervened to give me suggestions that were accurate and needed^. The open
ended questions were provided at the end of the questionnaire to allow students to write
their comments about the different types of feedback and the NLtoFOL system. An
example open question: BWhat do you feel are the strong and the weak points of the
offered feedback?^. After analyzing the students’ responses to the questionnaires, the
reliability of the questionnaire was checked using the Cronbach’s alpha (Cronbach
1951) metric. Reliabilities of the scales were good for the two groups with internal
consistency coefficients α = 0.73 for Group A and α = 0.82 for Group B.

Results and Discussion

By the analysis of the learning phase in the first experimental study, one of our aims was to
verify and assess the learning that took place between the pre-test and post-test and also look
for differences in learning between different learning conditions. A one-way, between-subjects
analysis of variance (ANOVA) was conducted, to evaluate the hypothesis that the two groups
of undergraduate students (Group A and Group B) did not significantly differ as far as prior
knowledge on natural language formalization at pre-test is concerned. The participants of
Group A had amean pre-test score of 3.12 (SD=0.66) and those of Group B amean score of
2.97 (SD=0.65). Indeed, therewere no significant initial differences between the groupmeans
(F= 2.99 > 1, p= 0.085 > 0.05). The test had statistics power 40.53% and its effect size
(Cohen 1988) was small (d= 0.23). Hence, the groups were roughly of the same knowledge
level before starting learning about the formalization process.

Another objective of this study was to examine the effectiveness of feedback on
improving the learning achievements of the students. To determine the impact of
feedback, we conducted an Analysis of Covariance (ANCOVA) to extract the differences
between the two groups using the pre-test scores as the covariate and the post-test scores
as dependent variables. The results indicate that after controlling for initial quantitative
ability, the differences in post-test scores are statistically significantly different between
the two groups: F(1222) = 14.98, p < 0.001, partial eta squared = 0.063.

Table 7 presents the ANCOVA results, in which the adjusted mean values of the
post-test scores were 5.72 for Group A (flag feedback & bottom out hints), and 7.50 for
Group B. Moreover, a significant difference was found between the two groups with

Table 7 ANCOVA results

Groups N Mean SD Adjusted mean

Group A (Flag Feedback & Bottom out hints) 113 5.72 0.57 5.68

Group B (Full Feedback) 113 7.50 0.90 7.53
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F(1222) = 14.98 and p = 0.00 < 0.05, implying that the system had significantly positive
effects on the learning achievements of Group B, where assistance and feedback based on
the full developed framework was provided to the students during learning the formali-
zation process in the NLtoFOL system. A descriptive analysis of the results was conduct-
ed. In Fig. 5, the boxplot of leaning scores of Group A and Group B before the interaction
of the students with the system (pre-test) and after the interaction (post-test) are presented.

The results show an increase in the score, indicating that the students have learned in
both cases. Students of both groups performed better in the post-test, achieving greater
marks than in pre-test. However, the students of Group B performed much better than
those of Group A. In the post-test, they made fewer mistakes and got a deeper
understanding of the formalization process.

In addition, in the context of the first experimental study, the analysis of the Groups
questionnaires showed that 80.5% of Group A and 84% of Group B enjoyed the experience
of using theNLtoFOL system.Also, 81.5%of the students of GroupA and 91%ofGroupB
answered that they were helped in learning formalizations. Regarding the accuracy of the
feedback, 93% of the students of Group A and 80.5% of Group B answered that feedback
was accurate. The difference is probably due to the use of the simple type of feedback (flag
and bottom out feedback) only for the students of group A, which, because of its nature,

Fig. 5 Learning gains boxplots of Group A vs Group B
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always produces precise hints. As far as facing errors is concerned, 35.5% of Group A and
86.5% of group B indicated that the feedback helped them in understanding their errors.
Additionally, 76% ofGroupA and 83%ofGroupB declared that feedback assisted them fix
their answers. Furthermore, students of Group B found textual message to be of high quality
(80.5%), grammatically correct and comprehensive (76%), with appropriate length (84%).
They also expressed that the system’s interventions, suggesting help-related actions, were
accurate and needed (79.5%). Finally, most of the students (87.5%ofGroupA and 95.5%of
Group B) suggested integrating the system into the course curriculum and be given to next
year’s students.

Mining Students Learning Actions

In this part of the analysis, we examine the learning data recorded during the learning
phase of the students of both groups. The analysis was designed to provide a deeper
and more complete insight of the students’ learning process, their performance and their
knowledge construction. Also, it aimed to shed light on the efficiency of the feedback
schema and examine how well the schema worked in students’ learning progress.

Initially, based on the recorded data, 25 exercises of the system that all students of
both groups had practiced with were selected. The exercises covered all of the different
difficulty levels. Students’ actions during the learning sessions of those exercises were
retrieved and undergone deeper analysis. From that analysis, we were able to calculate
metrics regarding the students’ learning actions, indicating how students behaved during
their dealing with those exercises. So, for those 25 exercises, we calculated (i) the total
attempts and answers submitted by the students of both groups, (ii) the feedback
messages provided by the system, (iii) the bottom out hints provided by the system,
(iv) the performance of the students after the delivery of different hints. The calculated
metrics are presented in Table 8. Regarding the submitted answers from students of
Group A, an average of 7.2 answers submitted per exercise’s step. This indicates that the
students submitted 6.2 answers, on average, after a first incorrect answer. In the learning
scenario of Group A (and of Group B), the system after the first erroneous answer,
immediately provided flag feedback indicating the correct and the incorrect elements of
the submitted answer. However, students of Group A submitted an average of 5.2
erroneous answers, until they were able to fix their answer and submit the correct or a
correct one. On the other hand, the students of Group B submitted, on average, 3.9
answers per step of sentence conversion process. Subsequently, 2.9 answers were
submitted after a first incorrect one. Furthermore, it is calculated that the students needed
to make another 1.9 submission attempts before fixing their answer and submitting a
correct answer. A metric of great importance concerns the calculation of the system’s

Table 8 Student behavior in the learning phase

Group A Group B

Average attempts (per step) 7.2 3.9

Hints provided (except flag feedback) 51% 76%

Bottom out hints (% per step completed) 51% 12%
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assistance provided to the students of both groups. As system’s assistance, we consider the
feedback messages given to the student during the steps of the process and after the student
submits an answer. So, in the learning scenario of Group A, this assistance concerns the
delivery of bottom-out hints, which provided to students with an element or the entire correct
answer. In the learning scenario of Group B, the system’s assistance concerns the delivery of
feedback based on the full feedback framework. The results indicate that students of Group A
completed 51%of the formalization stepswith the assistance of the system, offered in the form
of bottom out hints. On the other hand, the students of GroupB completed 76%of the steps of
the exercises based on the system’s second level and third level assistance. The delivery of
bottom out hints, provided to both groups, has been also analyzed. The students of Group B
completed 12% of the process steps based on the assistance of bottom out hints, in contrast to
Group A, which completed 51% of the formalizations steps based on bottom out hints.

Further results from the analysis indicate that the system’s second and third level
assistance helped the students of Group B to complete 64% of the formalization steps
without bottom out hints, out of the 76% of steps, for which students requested assistance.
In the second and third level of assistance, the system provides students with positive,
error-specific and procedure feedback and the results denote that these types of feedback
helped students to fix their errors and submit a correct answer. Moreover, it can be also
seen that the students of Group Awere in need of true help, since they submitted many
incorrect answers, much more answers than the students of Group B, and also completed
half (51%) of the formalizations steps with the delivery of a part of (or the entire) correct
answer. What is more, students of Group A after the delivery of flag feedback, in 51% of
the exercises’ steps, were not able to specify the correct answer and requested for bottom
out help. That indicates that the previous offered assistance (flag feedback) wasn’t so
effective in helping them to correct their answers. In contrast, Group B students were able
to complete 64% of the steps with hints of the second and third level of assistance and
completed only 12% of the steps with the assistance of bottom out hints.

Another interesting aspect to examine concerns the analysis of the students’ perfor-
mance, after the system’s assistance, in relation to different assistance levels. In cases
that students had submitted an answer that was not correct, hints of different assistance
levels were delivered based on the assistance schema. We examined the degree that
those hints assisted students to fix errors and specify the correct answer. For this
purpose, students’ answers that were submitted just after students had got some kind
of hints from the system were analyzed. In Table 9, the percentages of correct answers
submitted after the delivery of hints for each assistance level are presented.

The results indicate that the delivery of flag feedback assists students to immediately
specify the correct answer in 17% of the cases for Group A and in 20% of the cases for

Table 9 Correct answers percentage per assistance level given after hints provision

Correct answer rates Group A Group B

Flag feedback 17% 20%

Second level – 64%

Third level – 34%

Fourth level 81% 92%
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Group B. The second level assistance of the system and the delivery of positive
feedback and error specific hints assisted students of Group B to immediately fix the
errors made and submit a correct answer in 64% of the cases. The third level assistance,
when requested and delivered to the students, assisted them to correct their answer in
almost one third of the cases (34%). Finally, bottom out hints assisted students to fix
their answers and submit a correct one in 81% of the cases of Group A and in 92% of
the cases of Group B. For the analysis of the fourth assistance level, cases where bottom
out hint offered part (and not the entire) of the correct answer to the students were
collected. Those cases mainly concerned inaccurate answers, where bottom out hints
corrected one element that was incorrectly specified, or incomplete answers, where
hints provided a missing element. The difference of the effectiveness of the bottom-out
hints in assisting students of both groups to submit a correct answer is mainly due to the
fact that students of Group B, when were given bottom out hints, they had, in general,
less errors and thus it was easier for them to correct their answers.

In addition, the analysis revealed some interesting situations that seem to confuse
students. For example, an interesting situation was reported when students submitted a
superfluous–accurate answer. The results of the analysis revealed the submission of
many incorrect answers, after the delivery of flag feedback in a superfluous–accurate
answer. This situation was not expected, since in such a case, a student had submitted
an accurate answer and had defined all the required elements correctly. Analyzing the
students’ answers that were submitted after a superfluous-incorrect answer, we found
that in most cases (approximately 81%) the students tried to fix the extra element of the
answer, which was colored red. It seems that flag feedback created the misconception to
the students that the red element should be fixed rather than removed. The operational
behavior of the flag feedback tends to direct the students to work on fixing the red
colored element rather than to remove it. Consequently, it seems that the delivery of
flag feedback in case of superfluous - accurate answers is not a good choice.

Furthermore, a third analysis of the first experiment’s data was conducted, regarding a
deeper analysis of the students’ post-test data. More specifically, we analyzed the perfor-
mance of the students of the two groups in the exercises of the post-test and concentrated
on the errorsmade. The number of the errorsmade is particularly important as the outcome
of the diagnosis had an impact on the adopted pedagogical strategy. The post-test consisted
of 10 exercises and their difficulty levels were as follows: exercise 1 was very easy, 2–3
were easy, 4–7 were medium, 8–9 were difficult and exercise 10 was of advanced level.
For each exercise, the answers provided by the students (FOL formulas) of both groups
were retrieved and the number of errors made at each exercise was calculated. In Fig. 6, the
average number of errors made by students of both groups is presented.

The results show that students of Group A made in the post-test more errors than
students of Group B. The average number of the errors made per question by Group A
is approximated between 5 and 9, while average errors made by Group B range
between 2 and 7 errors per question. In addition to the score achieved, errors analysis
indicates that the full feedback framework helped students of Group B in getting and
retaining a better understanding of the formalization process.

Moreover, an additional study was conducted with the aim to analyze the system’s
metacognitive level of feedback and its effect on students learning. For this purpose,
students’ learning actions after the provision of metacognitive hints, were analyzed. A
first aim was to examine the degree that students accepted and followed the system’s
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metacognitive assistance and the corresponding suggestion made. In Table 10 the
acceptance rates of the metacognitive recommendations are presented.

The results reveal that the majority of students follow the system’s recommenda-
tions. Students of GroupA followed system’s recommendation to request for assistance
in 81% of the cases offered and students of GroupB in 89% of the cases. In addition, the
students’ performance in those cases was deeper analyzed. More specifically, after the
students’ requests for assistance and the delivery of the corresponding hints messages,
the degree that those hints assisted students to fix their answers was examined. The
students’ answers that were submitted just after they had got the hints were analyzed
and the percentages of correct answers are illustrated in Table 11.

The analysis showed that the effectiveness of hints is quite good and greater
compared to the results of Table 9. The difference of the effectiveness of hint messages

Fig. 6 Average errors made by the students

Table 10 Students acceptance of metacognitive recommendation

Hint type Acceptance

Group A GroupB

Request assistance recommendation 81% 89%

Submit answer recommendation – 72%
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can derive from the fact that the recommendations for requesting assistance were offered to
students when they have worked on the current exercise and have examined possible
solutions with only system’s flag feedback.

Second Experiment

Method

A second experiment was conducted with the aim to examine the degree that the
feedback provided by the system assisted students’ learning compared to the feedback
specified by the tutor. In this experiment, 120 students were selected and randomly
divided into two groups. The first group, namely Group FF, consisted of 60 students
and used the NLtoFOL system with a scenario, where full assistance and feedback were
provided by the system. The second group, namely Group TF, consisted of 60 students
and used the NLtoFOL system with a scenario, where tutor feedback was provided to
the students. More specifically, students of this group were asked to study specific
exercises for which the feedback messages where inserted by the tutor of the course.
The tutor had encoded the feedback messages as text templates in a similar way to that
used by cognitive tutors (Aleven et al. 2009). Tutor had examined the exercises that
were available to students and had associated specific exercises, error types and
constraint violation cases with proper feedback templates to generate the hint messages
or even with exact hints messages to be offered to students. The concept was the tutor
to specify appropriate feedback template messages and hints to exercises, solution
stages and error types freely according to the assistance plan that he/she follows in real
class conditions. For example, some cases of feedback template messages were
BPredicate third person violation. Predicate [word] is not correct.^, BThe number of
the arguments specified for the predicate [predicate] is incorrect.^. Feedback messages
cover generic and specific cases and were offered to students often enough according to
the tutor’s assistance plan. Hint messages were provided to learners in a similar manner
like in the framework and more specifically, flag feedback was provided instantly on
students’ answers and tutor’s hints were offered on learner’s demand for assistance. The
structure of the second experiment is illustrated in Fig. 7.

Initially, both groups took a pre-test, which consisted of 10 exercises of various
difficulty levels. Each correct conversion was assigned one point and the maximum
pre-test score was 10 points. The duration of the pre-test was 1 h and it was conducted
in the computer room area of the department. After that, both groups were given access
to use the NLtoFOL system to study formalization process for 1 week. The system
during the learning sessions provided the students of Group FF with feedback according

Table 11 Hints effectiveness after recommendations for request assistance

Correct answer rates Group A Group B

Flag feedback – –

Second level – 67%

Third level – 39%

Fourth level 84% 94%

502 Int J Artif Intell Educ (2017) 27:475–514



to the full feedback developed schema and to the students of Group TF feedback based on
themessages inserted by the tutor. After the two groups studied for 1week, the students took
a post test. The post-test consisted of ten formalization exercises of various difficulty levels
and the students were given 1 h to do the formalizations and submit their answers. The post-
test was conducted in the department’s computer area.

Results and Discussion

A preliminary analysis of the pre-test scores was performed using one-way analysis of
variance (ANOVA) to investigate the hypothesis that the two groups of undergraduate
students (TF and FF) did not significantly differ on prior knowledge on formalizations at
the pre-test. The participants of group TF had amean pre-test score of 3.39 (SD = 0.83) and
those of group FF a mean pre-test score of 3.20 (SD = 0.87). The results show that there
were no significant initial differences between the pretest group means (F = 1.52 > 1, p =
0.22 > 0.05). The test had statistics power 33.7% and its effect size was small (d = 0.23).

An Analysis of Covariance (ANCOVA) was conducted to extract the difference
between the groups using the pre-test scores as the covariate and the post-test scores as
dependent variables. Table 12 summarizes the ANCOVA results, in which the adjusted

Table 12 ANCOVA results

Groups N Mean SD Adjusted mean

Group TF (Tutor feedback) 60 7.03 1.10 6.95

Group FF (Full Feedback) 60 6.90 0.10 6.96

All Participants

Taking Pre-Test

Group TF
(60 students)

Group FF

(60 students)

Taking Post-Test

Group TF

NLtoFOL with 

feedback inserted 

by tutor

Group FF 

NLtoFOL with 

feedback based on 

the framework

1 hour

1 hour

Practice session 

1 week

Fig. 7 Structure of the second experiment
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mean values of the post-test scores are 7.03 for Group TF and 6.90 for the FF.
Moreover, no significant differences between the two student groups (TF and FF)
was found (F (1116) = 1.39 and p = 0.24 > 0.05, ηp

2 = 0.012), the effect size was 0.11
and the power of the test 0.22, implying that the groups learned and performed in the
same degree. In Fig. 8, the learning gains of the two groups are presented.

Results show an increase in the score indicating that the students have learned in both cases.
Also, both groups returned a p-value, which was less than 0.001 and it can be concluded that
the student’s score increased significantly by using the NLtoFOL system in both learning
scenarios.Also, it can be seen that both tutor inserted hints and the textual hints provided by the
system based on the feedback framework assisted the students to the same degree.

Conclusions and Future Work

In this paper, we introduce a general framework for modeling system assistance to
students in an intelligent tutoring system. This framework includes, first, a systematic
and generic modeling of students’ answers. Also, it includes an assistance generation
scheme that models feedback types into levels of assistance and delivers feedback in an

Fig. 8 Learning gains of the two groups
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incremental, level-based way. Furthermore, a general template-based approach for the
generation of natural language hints is presented. The above framework is validated
through its instantiation in a specific intelligent tutoring system, called the NLtoFOL
system, which deals with teaching/learning a specific AI topic, namely the conversion
of natural language sentences into logic formulas. For the utilization of the feedback
framework in the tutoring system, the domain’s error categorization scheme was
formulated, which is used for recognizing the types of errors made by students and
for guiding the feedback providing mechanism.

Moreover, we study the complex nature of feedback and we investigate the learning
effects of different feedback types on the NLtoFOL tutoring system. Extended experimental
studieswere conducted to evaluate the effectiveness of the framework in the tutoring system.
The analyses indicate that the developed feedback framework effectively guides students
during their learning sessions and assists them at a similar level as human tutors do.

The framework is quite generic and for its utilization in educational activities in various
domains and tutoring systems, an error categorization of the domain and the formulation of
the textual feedback templates of the errors would be required to be designed. An aim of the
framework is to provide a systematic way to model students’ answers, model the feedback
types into levels of assistance and also provide a blueprint of how textual feedbackmessages
could be generated automatically. The feedback hierarchy is generic and can be adopted as
presented. The modeling of students’ answers introduced is quite suitable for educational
activities, where students’ answers can be decomposed into parts. In contrast, it cannot be
directly applied as it is to open answer questions.

As future work, we plan to make a larger scale analysis of the students’ educational data
and study the feedback effectiveness on additional aspects, like for example in relation to the
difficulty of the exercises and the students’ level and performance. Furthermore, we aim to
examine the possible utilization of the feedback framework in educational systemsmainly in
the context of symbolic logic and mathematics, where it seems to be suitable due to the
characteristics of the skills taught, the nature of the exercises and the students’ answers to
them. Exploring this direction is a key aspect of our future work.

Acknowledgments The authors would like to thank the anonymous reviewers for their valuable and
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Appendix A - NLtoFOL SIP Conversion Process

The NLtoFOL SIP conversion process was introduced (Hatzilygeroudis 2007) to assist
students in learning and implementing the translation of NL sentences into logic. Themain
purpose of SIP is to help the students face the cognitive complexity of the translation by
modelling it as a step-based process and offering to the students a structured way to
implement it. SIP process consists of ten steps. At each step the student has to do a specific
task for converting to and constructing the FOL formula. The steps are the following:

1. Spot the verbs, the nouns and the adjectives in the sentence and specify corre-
sponding predicates or function symbols.

2. Specify the number, the types and the symbols of the arguments of the function
symbols (first) and the predicates (next).
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3. Specify the quantifiers of the variables.
4. Construct the atomic expressions (or atoms) corresponding to predicates.
5. Divide produced atoms in groups of the same level atoms.
6. Specify the connectives between atoms of each group and create corresponding

logical formulas.
7. Divide produced formulas in groups of the same level formulas.
8. If only one group of formulas is produced, create the next level formula and go to step 10.
9. Specify the connectives between formulas of each group, create the next level

formulas and go to step 7.
10. Place quantifiers at the right places in the produced formula to create the final

FOL formula.

The steps of the process that are needed to be implemented in order to convert a NL
sentence into FOL depend on the sentence characteristics and semantics and so different
sentences may require the implementation of different steps of the process. Below, the
NLtoFOL SIP process is illustrated through an example conversion, that of the sentence:

Every city has a dog-catcher that has been bitten by every dog living in the city

Step 1: Spot the verbs, the nouns and the adjectives in the sentence and specify
corresponding predicates or function symbols.

There are five such items here:

city → predicate: city
has a dog-catcher → predicate: dog-catcher
has been bitten → predicate: has-bitten
dog → predicate: dog
living in → predicate: lives-in

Predicates must be expressed in singular number (in cases of nouns or adjectives)
and in third person (in cases of verbs). Also, auxiliary verbs (like Bhas^) are not
represented by a predicate in the FOL formula. They are usually absorbed by related
nouns, adjectives or regular verbs. For example, the Bhas a dog-catcher^ case above.

Step 2: Specify the number, the types and the symbols of the arguments of the
function symbols (first) and the predicates (next).

We do that in the following table: (Table 13).

Table 13 Sentence’s Step 2 analysis

Predicate/Function Arity Argument types Symbols

city 1 variable x

dog-catcher 2 variable, variable y, x

dog 1 variable z

lives-in 2 variable, variable z, x

has-bitten 2 variable, variable y, z
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The arity of a predicate is the number of entities that the relation represented by
the predicate involves. For example, Bcity^ has arity B1^, because it is a relation
of an entity with itself, ie represents an attribute of an entity. Similarly, Blives-in^
has arity B2^, because it relates two entities, e.g. a dog and the place where he/she
lives. The number of arguments of a predicate is equal to its arity. An argument of
a predicate can be either a constant (if it refers to an individual entity, e.g. John) or
a variable (if it refers to a set of entities) or a function (if it refers to entities defined
via introduced functions). What is the type of an argument depends on the NL
sentence. For example, in the given sentence there is no reference to any
individual/specific entity (like a dog name, a city name etc.) and also there are
no functions defined, so all arguments of all predicates are variables. The symbols
used for variables usually belong to a pre-specified set of symbols (e.g. x, y, z, w,
s, r, t) possibly with indexes. Another issue here is which arguments of which
predicates will be the same variable(s). This again is based on the semantics of the
NL sentence. For example, Blives-in^ and Bdog^ have a common variable (Bz^),
because according to the sentence it refers to dogs living in the city.

Step 3: Specify the quantifiers of the variables.
x → ∀ (due to Bevery^), y → ∃ (due to Bhas a^), z → ∀ (due to Bevery^)
A variable is assigned a universal quantifier (B∀^) if, according to the

sentence, represents a whole category of entities (e.g. variable Bx^ that
represents all cities). It is assigned an existential quantifier if it represents
some unknown member(s) of a category of entities (e.g. By^ that represents
‘some’ dog-catcher of a city, not all).

Step 4: Construct the atomic expressions (or atoms) corresponding to predicates.
We construct as many atoms as the predicates:

Atom 1: city(x), Atom 2: dog-catcher(y, x), Atom 3: dog(z),
Atom 4: lives-in(z, x), Atom 5: has-bitten(z, y)

This is straight forward, if we know the predicates and their arguments, and is
based on the syntax of an atomic formula in FOL.

Step 5: Divide produced atoms in groups of the same level atoms.
This mainly refers to grouping atoms that should be connected with each

other with some connective:

AtomGroup 1: {city(x)}, AtomGroup 2: {dog-catcher(y, x)},
AtomGroup 3: {dog(z), lives-in(z, x)}, AtomGroup 4: {has-bitten(z, y)}

The criterion for finding atoms that belong to the same group is to have their
predicates in a compact, semi-autonomous part of the NL sentence, like a subordi-
nate clause or a sub-clause that is the subject or the object of another predicate in the
sentence. For example, in our case, Bdog^ and Blives-in^ belong to the sub-clause
Bevery dog living in the city ,̂ which is the subject of the predicate Bhas bitten^ or the
object of the predicate Bhas been bitten^). So, they will be in the same group.

Step 6: Specify the connectives between atoms of each group and create correspond-
ing logical formulas.

We form the formulas corresponding to the groups of step 5.
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AtomGroup 1 → Form 1: city(x), AtomGroup 2 → Form 2: dog-catcher(y, x),
AtomGroup 3 → Form 3: dog(z) ∧ lives-in(z, x), AtomGroup 4 → Form 4: has-
bitten(z, y)

Which connective will be used to join two atoms totally depends on the
semantics of the corresponding part of the NL sentence.

Step 7: Divide produced formulas in groups of the same level formulas.
This usually corresponds to specifying the left and right parts of an

implication:

FormGroup1-1: {city(x)}, FormGroup1-2: {dog-catcher(y, x)},
FormGroup1-3: {dog(z) ∧ lives-in(z, x), has-bitten(z, y)}

The guidelines here are similar to those of Step 5, but for groups of atoms
instead of single atoms, ie at an upper level.

Step 9: Specify the connectives between formulas of each group, create the next level
formulas and go to step 7.

FormGroup1-1 → Form1-1: city(x), FormGroup1-2 → Form1-2: dog-catcher(y,
x),
FormGroup1-3 → Form1-3: (dog(z) ∧ lives-in(z, x)) ⇒ has-bitten(z, y)

Also, it solely depends on the NL sentence semantics.

Step 7: Divide produced formulas in groups of the same level formulas.

FormGroup 2–1: {city(x)}
FormGroup 2–2: {dog-catcher(y, x), (dog(z) ∧ lives-in(z, x)) ⇒ has-bitten(z, y)}

Step 9: Specify the connectives between formulas of each group, create the next level
formulas and go to step 7

FormGroup 2–1 → Form2-1: city(x)
FormGroup 2–2 → Form2-2: dog-catcher(y, x)∧ (dog(z)∧ lives-in(z, x)) ⇒ has-
bitten(z, y)}

Step 7: Divide produced formulas in groups of the same level formulas.

FormGroup 3–1: {city(x), dog-catcher(y, x) ∧ (dog(z) ∧ lives-in(z, x)) ⇒ has-
bitten(z, y)}

Step 8: If only one group of formulas is produced, specify the connectives between
formulas of the group, create the next level formula and go to step 10.

FormGroup 3–1→ Form 2–3: city(x) ⇒ (dog-catcher(y, x) ∧ (dog(z) ∧ lives-in(z,
x)) ⇒ has-bitten(z, y))
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Step 10: Place quantifiers in the right places in the produced formula to create the
final FOL formula.

The produced final FOL sentence is as follows:

B(∀x) city(x) ⇒ ((∃y) dog-catcher(y, x) ∧ (∀z) (dog(z) ∧ lives-in(z, x)) ⇒ has-
bitten(z, y))^

Appendix B - Natural Language Analysis for Generating Error
Explanations

A major purpose of the system’s assistance is to help students understand their
errors and misconceptions. So, the feedback mechanism automatically generates
proper justifications and explanations in order to cultivate an effective learning
process. The error explanations can help the learner get a clear understanding of
why his/her answer is erroneous and can have a crucial impact on knowledge
revision and construction (Bitchener 2008). When a student submits an erroneous
answer, the system performs a deep analysis of the errors in order to trace their
origin regarding the structure and the semantics of the exercise (natural language
sentence). Specifically, the analysis of the errors concerns the identification of the
exercise’s elements and the semantics that are translated incorrectly as well as the
constraints that may be violated during the translation. So, alongside the student’s
error analysis, the NL sentence is also analyzed and the errors made by the student
are semantically associated with the proper elements of the sentence.

The system analyzes the structure of each exercise-sentence with the use of
natural language processing tools, which are integrated into the system. The
natural language processing tools that the system utilizes are the Stanford parser
(De Marneffe et al. 2006) and the Stanford NER (Finkel et al. 2005) tools.
Initially, the Stanford parser, which is a very popular morphosyntactic analysis
tool, is used to determine the grammatical structure of a sentence and specify for
each word its base form (lemma) and its grammatical role in the sentence. Also, it
specifies the relationships between the sentence’s words and determines the
corresponding dependencies, which provide remarkable assistance in sentence
analysis. The dependency tree represents the grammatical relations between the
sentence’s words in a tree based approach. Those relationships are presented as
triplets consisting of the name of the relation, the governor and the dependent
respectively. Dependencies indicate the way that words are connected and interact
with each other. When the sentence morphosyntactic analysis is completed and the
dependency tree is created, special parts of the dependency tree and specific words
are further analyzed. The dependency tree is analyzed and the relationships and
types of interactions/connections between the sentence words are examined.

First, the words that specify entities are specified. These words can represent general
classes of entities such as humans, animals etc. and their determination is made based
on the words’ grammatical role in the sentence. Words that represent entities constitute
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the predicates of the sentence’s corresponding FOL formula. After entity words are
recognized, the system performs a deeper analysis regarding their role in the sentence
and the type of their relationships/connections with other words. More specifically, it
tries to analyze special types of relationships that may appear with quantification
words. These relationships are recognized as modification - ‘mod’ dependencies in
the dependency tree developed. So, these dependencies, connecting entity words with
quantification words, are analyzed and a quantification word’s impact defines the way
that the entity has to be quantified in the corresponding FOL formula. Following, the
system specifies the existence of named entities in the sentence. The determination of
named entities is made with the utilization of Stanford Named Entity Recognizer
(NER) tool. The tool labels sequences of words in a sentence which are the names of
things, such as person names and company names with the proper category label.
Examples of named entities can be a person (e.g. Maria), locations such as a country
(e.g. Greece), a city (e.g. Athens) etc. Named entities constitute the constants of the
sentence’s corresponding FOL formula and the recognition of the named entities in a
sentence is of extreme importance. For example, the dependency tree of the exercise-
sentence BMaria loves all dogs that love their master^ as specified by the parser tool is
depicted in Fig. 9.

In addition, the named entity recognizer tool has specified that the word
BMaria^ represents a person. The nodes of the dependency tree are the
sentence’s words and the edges specify the existing relationships between the
words. For each word, its grammatical role (depicted just under the word) in
the sentence and the way it interacts with other words are specified. The
interaction between two words is denoted by the existence of an edge and
the exact type of interaction is denoted by the edge’s name. Basic information
concerns the determination of the predicates/functions, which are the verbs, the
nouns and the adjectives of the sentence. The grammatical role of each word
designates that predicates and functions are formulated by the words Bloves^,
Bdogs^, Blove^ and Bmaster^, since these are the nouns and the verbs of the
sentence. The recognition of the word BMaria^ as a person, designates that it
will be represented by a constant in the FOL formula. The relationship Bdet^
between the words Bdogs^ and Ball^ designates that the quantifier of the

Fig. 9 Dependencies of the sentence BMaria loves all dogs that love their master^
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variable representing Bdogs^ will be the universal one. The relationships of the
word Bloves^ (nsubj with the word BMaria^ and dobj with the word Bdogs^)
designates that the predicate Bloves^ has two arguments, which are the constant
BMaria^ and the variable representing Bdogs^.

The analysis of the sentence-exercise provides substantive information regarding the
sentence characteristics and can assist the feedback generation mechanism to provide
meaningful assistance to the learner in different ways. The elements of the student’s
answer are associated with the proper words of the NL sentence and the information of
each word provides valuable data in order to explain the reason.

The mechanism, in case of errors, can automatically identify the semantics of
the error and provide proper explanations denoting the reason why an element
of the answer is incorrect. Also, can provide semantic justifications why an
element of the answer is correct and make suggestions on how to proceed with
the formalization process denoting what to do to fix an incorrect element of the
answer, what to do next and why. The hints provided to the student are
generated as simple, short NL sentences by the feedback generation mechanism.
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