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Abstract This paper presents an overview of 10 years of research with the Betty’s
Brain computer-based learning environment. We discuss the theoretical basis for Betty’s
Brain and the learning-by-teaching paradigm. We also highlight our key research
findings, and discuss how these findings have shaped subsequent research. Throughout
the course of this research, our goal has been to help students become effective and
independent science learners. In general, our results have demonstrated that the learning
by teaching paradigm implemented as a computer based learning environment (specif-
ically the Betty’s Brain system) provides a social framework that engages students and
helps them learn. However, students also face difficulties when going about the
complex tasks of learning, constructing, and analyzing their learned science models.
We have developed approaches for identifying and supporting students who have
difficulties in the environment, and we are actively working toward adding more
adaptive scaffolding functionality to support student learning.

Keywords Open-ended learning environments . Learning by teaching . Pedagogical
agents . Adaptive scaffolding . Coherence analysis . Characterizing student behaviors

Introduction

Betty’s Brain was designed to make science learning an active, constructive, and
engaging process for students (Brophy et al. 1999; Biswas et al. 2001). A primary
innovation in our computer based learning environment was to leverage the learning by
teaching paradigm (Bargh and Schul 1980; Benware and Deci 1984; Biswas et al.
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2005) to get students to research and construct models of science phenomena in the
guise of teaching a virtual agent named Betty. Students actively engaged with Betty
during the learning process by asking her questions and getting her to take quizzes that
were provided by a mentor agent named Mr. Davis. When asked to answer questions or
to take a quiz, Betty used simplified qualitative reasoning mechanisms to chain together
a sequence of links and generate answers like, BIf deforestation increases, the amount
of heat trapped by the earth will increase^ (Leelawong and Biswas 2008). Betty’s
performance on the quizzes (i.e., an indication of which of the quiz answers were
correct and incorrect) provided the feedback that students needed to check their map
and come up with strategies for identifying and correcting errors and omissions in their
maps. When asked, Betty could provide explanations for her derived answers, and this
helped students identify and analyze the individual links that she used to generate her
answers. Betty also provided motivational feedback by expressing happiness when her
scores on the quiz improved, and she expressed disappointment when her quiz scores
did not improve. Additional feedback was provided by the mentor agent in the form of
learning strategies that students could employ when they were not performing well.

This paper presents an overview and a reflection of the trajectory of our research with
Betty’s Brain, from the work that led to our Bclassic^ paper (Leelawong and Biswas 2008)
to our more recent work in understanding how students tackle the Betty’s Brain learning
task, the difficulties they face, and approaches we have been developing to support
students as they learn with Betty’s Brain. Results of studies we conducted in middle school
classrooms over the years have demonstrated that the learning by teaching paradigm
implemented as a computer based learning environment provides a social framework that
engages students and helps them learn. However, students also face difficulties when
going about the complex tasks of learning, constructing, and analyzing their learned
structures that are represented as causal maps. A deeper analysis of these difficulties has
led us to refocus our research on effective ways of scaffolding students in open-ended
learning environments like Betty’s Brain. The goal is to engage students with differing
capabilities and prior knowledge in the challenging task while also providing additional
support to help them succeed in their learning and problem solving activities.

The Original Betty’s Brain Learning Environment

Our initial design and development of the Betty’s Brain system was guided by the
social-constructivist theories of learning (e.g., Palincsar 1998), reciprocal teaching (e.g.,
Palincsar and Brown 1984), and peer-assisted tutoring (e.g., Willis and Crowder 1974;
Cohen et al. 1982). Researchers (e.g., Bargh and Schul 1980; Benware and Deci 1984)
have shown that people learn more when their grade depends on their pupils’ perfor-
mance instead of their own. However, unlike previous learning by teaching systems
(e.g., Chan and Chou 1997; Michie et al. 1989; Obayashi et al. 2000; Palthepu et al.
1991) our goal was not to make learning agents that, for instance, learn by example or
by observing user behaviors. Instead, our design focused on creating an agent that
students must explicitly teach. In response, the agent reasons with and can answer
questions only on what she was taught, nothing more and nothing less.

Therefore, the learning by teaching paradigm adopted in Betty’s Brain explicitly asks
students to read about a science topic and develop an understanding of it by creating a
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shared representation (i.e., a visual causal map). This facilitates learning about science
knowledge and applying it to problem solving processes (Biswas et al. 2005b;
Leelawong and Biswas 2008). In addition, the shared representation also promotes a
shared responsibility where the student teaches Betty; and Betty uses that knowledge to
answer questions. Students may not know how to reason with the map, but they can
(and do) learn by observing Betty (Leelawong and Biswas 2008). Ideas of shared
responsibility were implemented in early work on reciprocal teaching (Palincsar and
Brown 1984), socially-mediated cognition (Goos 1994), and collaborative learning
(Dillenbourg 1999). The combination of shared representation and shared responsibility
helps distribute the cognitive work (Arias et al. 2000) and at the same time provides a
visual formal language for building models of science phenomena in ways that promote
learning (Scardamalia and Bereiter 1989; Vygotsky 1978).

In our early work on Betty’s Brain, we built up on the combined ideas of shared
representation and shared responsibility to design a comprehensive learning by teach-
ing system that adopted the following design principles (Biswas et al. 2005a, b): (i)
teaching through visual representations that help organize the science content and
reasoning structures; (ii) developing an agent that performs independently and provides
feedback on how well it has been taught; and (iii) building on familiar teaching
interactions (preparing to teach, asking questions, and monitoring and reflecting on
Betty’s performance) to organize student activity. The novelty in this approach was that
students not only got to organize their understanding in a formal representation, but
they also learned to reason with the causal map and answer questions. We believed that
the ability to see Betty’s approach to reasoning would support students’ ability to
monitor and regulate their understanding of the domain knowledge they were teaching.

The paradigm builds on research from educational psychology that has identified a tutor
learning effect in people from diverse backgrounds, and across subject matter domains
(Roscoe and Chi 2007). The findings state that people generally learn as a consequence of
teaching others, and this effect has been observed in multiple tutoring formats. In effect, the
learning by teaching paradigm leverages the power of an immersive narrative (learning by
teaching) to motivate students. This was demonstrated both in our earlier work (Biswas
et al. 2005a, b; Tan and Biswas 2006; Tan et al. 2006;Wagster et al. 2007) and in additional
studies by our colleagues at Stanford University who have identified a protégé effect:
students who constructed causal maps for the purposes of teaching Betty were more
motivated and exerted more effort than students who constructed causal maps for them-
selves (Chase et al. 2009). Students who taught also associated social characteristics with
their agents by attributing mental states and responsibility to them. The authors mused:
BPerhaps having a TA invokes a sense of responsibility that motivates learning, provides an
environment in which knowledge can be improved through revision, and protects students’
egos from the psychological ramifications of failure^ (p. 334).

The interface to the original Betty’s Brain system is shown in Fig. 1. The system was
configured to teach middle school students about science topics such as river ecosys-
tems and climate change. The system provided three primary functions: (1) teach Betty
using a causal map; (2) ask Betty questions; and (3) quiz Betty. Students could seek
help from Mr. Davis, the mentor agent, at any time by clicking on an BAsk Mr. Davis^
button. The help Mr. Davis provided included answers to general questions like BHow
do I build a concept map?^, BHow do I search for specific information in the
resources?^, and BHow does Betty answer a question using the concept map?^ After
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Betty took a quiz, Mr. Davis graded it, and, if asked, provided specific feedback on how
to find errors and make corrections to the map.

To engage students in the learning by teaching narrative, we designed Betty and Mr.
Davis to interact conversationally with the students. In addition to engaging with the
student socially (e.g., BThanks for teaching me about climate change!^), these interac-
tions were also designed to support students in developing and employing
metacognitive strategies for teaching Betty (Schwartz et al. 2007; Tan and Biswas
2006; Wagster et al. 2007). These strategies included: (1) reading the resources
carefully to find new causal links; (2) re-reading resources in a targeted manner to
correct erroneous links; and (3) when necessary, probing further by posing queries and
checking explanations to find incorrect links. Additional details of the Betty’s Brain
system and earlier experiments conducted with this system are summarized in (Biswas
et al. 2005a, b; Leelawong and Biswas 2008).

Transition into the Classroom

Our early studies with Betty’s Brain were conducted as pull-out studies; researchers
worked with small groups of students and were available to offer guidance and support
when students were unsure of how to proceed. Overall, these studies demonstrated the

Fig. 1 Original Betty’s Brain system showing a causal map and the query window
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promise of the system and its theoretical framing; we found that the learning by
teaching approach led to better pre-post learning gains for students. Further, students
who received feedback on metacognitive processes demonstrated more effective learn-
ing behaviors (Biswas et al. 2005a, b; Leelawong and Biswas 2008). They used more
systematic methods for checking the correctness of their maps and made better use of
the system’s interface features.

Following these successes, we began focusing on integrating Betty’s Brain into
middle school science classrooms (Wagster et al. 2008). The most consequential
change resulting from this shift was the fact that students needed to work more
independently on teaching Betty; we did not have enough researchers to provide the
level of support we could in the pull-out studies. It was during these classroom
evaluations that we noticed the wide variation in students’ learning and performance
with Betty’s Brain (Kinnebrew et al. 2013; Segedy et al. 2014; Segedy et al. 2012a). A
number of students struggled with understanding how to use the system productively;
they struggled to teach Betty the correct links. Further probing and analysis of these
students, including their log files and conversations with researchers, showed that many
of them were unsure of how to identify causal relations as they read the text resources,
translate those relations into the causal modeling language provided by the system, and
use Betty’s quiz results to monitor the quality of the causal map. Overall, this led to
perpetually low quiz scores, frustration, and disengagement for a significant proportion
of students. For example, one study of 40 students (reported in Kinnebrew et al. 2013)
found that 18 of the students made very little progress in teaching Betty the correct
material. Of the remaining 22 students, 16 taught Betty a correct (or nearly correct)
map, and 6 students made meaningful progress in their teaching. Thus, while some
students struggled considerably, just as many students showed good understanding and
succeeded at the task.

We found this dichotomy intriguing, and much of our subsequent analyses went into
understanding and contrasting how these more and less successful students used the
system. The resulting analyses, which utilized hidden Markov models, differential
sequence mining, and statistical analyses (Biswas et al. 2010; Kinnebrew and Biswas
2012; Kinnebrew et al. 2013; Segedy et al. 2012a, b; 2014) were revealing. More
successful students: (1) exhibited significantly higher science learning gains; (2) were
more accurate in their causal map edits; and (3) performed actions that were more often
related to their recent previous actions, suggesting that they were more focused and less
random in their activities. This was further supported by the fact that more successful
students were more likely to productively combine map editing, reading, and quizzing
behaviors when compared to less successful students.

Repeated classroom evaluations of Betty’s Brain conducted between 2009 and 2011
consistently showed this performance dichotomy. The dichotomy persisted even as we
designed new feedback for students to help them overcome their difficulties. This
feedback, channeled through Mr. Davis, was designed to provide metacognitive strat-
egy suggestions by telling students how they might be able to improve Betty’s quiz
scores. For example, Mr. Davis would encourage students to read the resources about
the concepts that Betty used to generate her incorrect answers in order to find mistakes
in the links connecting these concepts. These suggestions were embedded in contextu-
alized conversations (Segedy et al. 2013a, b). Mr. Davis contextualized his suggestions
in Betty’s current map, her most recent quiz results, and the student’s recent activities.
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Moreover, he delivered the feedback through conversations that were mixed-initiative,
back-and-forth dialogues between the student and the agent implemented as conversa-
tion trees (Adams 2010).

As we continued to study students’ learning behaviors, particularly the behaviors of
students who struggled to succeed in Betty’s Brain, we collected careful observations of
how they used the system. Surprisingly, these students did not seem to pay attention to
and try to implement suggestions and advice provided by Mr. Davis and Betty. In one
study, we analyzed video data from students using Betty’s Brain and found that 77 % of
the feedback delivered by Betty and Mr. Davis were ignored by students (Segedy et al.
2012b). These observations led us to realize that students had difficulties in under-
standing and interpreting the importance of the strategy suggestions provided by the
mentor agent. Additional observations seemed to imply that this could be attributed to
underdeveloped cognitive skills that are essential to being successful in the system. For
example, many students, when presented with a paragraph of text, struggled to identify
the causal relationship described therein.

This prompted us to analyze the Betty’s Brain tasks in more detail; what pre-requisite
skills might students not possess, and how can we help students develop those skills? In
answering these questions, we developed a task model that captures these tasks and
their dependency relationships (Segedy et al. 2014; Kinnebrew et al. 2014). Using this
model as a framework, we re-conceptualized and redesigned Betty’s Brain. The new
system, presented in the next section, has allowed us to study students’ approaches to
learning with Betty’s Brain in greater detail than was previously possible. It also
features new approaches to scaffolding students’ learning in Betty’s Brain.

The Re-Designed Betty’s Brain: Focus on Open-Ended Learning
Environments

In redesigning Betty’s Brain, we realized that our system shares several characteristics
with other computer-based learning environments developed by the research commu-
nity. Students are presented with a modeling task (building a causal map), provided
with resources for learning about the science knowledge needed to build the model, and
given tools for building and testing their causal maps. In other words, Betty’s Brain fits
the definition of an open-ended learning environment (OELE; Clarebout and Elen
2008; Land et al. 2012; Land 2000). OELEs are learner centered; they provide a
learning context and a set of tools for exploring, hypothesizing, and building solutions
to authentic and complex problems, and are typically designed Bto support thinking-
intensive interactions with limited external direction^ (Land 2000; p. 62). As such,
these environments are well-suited to prepare students for future learning (Bransford
and Schwartz 1999) by developing their abilities to independently make choices when
solving open-ended problems.

Under this conceptualization, students learning with Betty’s Brain must solve the
open-ended problem of teaching Betty the correct causal model by gaining an under-
standing of the science topic, translating that understanding into a causal model, and
using the results of Betty’s quizzes as feedback to help guide subsequent learning,
teaching, and model development activities. Our conceptual understanding of these
tasks is shown as a hierarchical task model in Fig. 2 (Segedy et al. 2014; Kinnebrew
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et al. 2014). This model characterizes the tasks that are important for achieving success
in OELEs generally and Betty’s Brain more specifically. Since the overall task is open-
ended, students have to learn how to analyze the current state of their model and find
combinations of the different subtasks that help them make progress toward teaching
Betty the correct science model. In other words, students must develop and apply
metacognitive strategies for setting goals, developing plans for achieving these goals,
monitoring their plans as they execute them, and evaluating their progress toward their
goals in ways that can help them make decisions on whether to continue, refine, and
change their approach so they can continue to make progress.

The task model (Fig. 2) defines three broad classes of OELE tasks related to: (i)
information seeking and acquisition, (ii) solution construction and refinement, and (iii)
solution assessment. Each of these task categories is further broken down into three
levels that represent: (i) general task descriptions that are common across many OELEs;
(ii) Betty’s Brain specific instantiations of these tasks; and (iii) interface features in
Betty’s Brain that help students accomplish these tasks. The directed links in the task
model represent dependency relations. Information seeking and acquisition depends on
one’s ability to identify, evaluate the relevance of, and interpret information. In the
Betty’s Brain system, primary information about the domain is provided in the form of
hypertext resources. Feedback provided by the mentor and Betty provides students with
additional information on how they can improve Betty’s current map. Solution con-
struction and refinement tasks depend on one’s ability to apply information gained from
both the information seeking tools and the solution assessment results to constructing
and refining the solution in progress. In the Betty’s Brain system, this translates to
building and refining the causal map structure. Finally, solution assessment tasks
depend on one’s ability to interpret the results of solution assessments as actionable
information that can be used to refine the solution in progress. This involves asking
Betty to take quizzes and trying to interpret why certain questions were answered
correctly and others were not. In order to accomplish these tasks in Betty’s Brain,
students must understand how to perform the related Betty’s Brain specific tasks by
utilizing the system’s interface features.

The structure of the task model makes it easy to see why a number of students
struggled to succeed in teaching Betty. To be successful, students must learn to perform
a diverse set of tasks. Some students may fail because, while they are good readers,
they are unfamiliar with (and, therefore, unable to grasp) the causal modeling language
and reasoning mechanisms. Others may fail because they do not understand how to use
Betty’s quiz results to determine what links in their map are correct and incorrect. To
truly help students succeed, we need to develop accessible scaffolds that are targeted
toward supporting students’ development of these skills. The idea, derived from the

Fig. 2 Task model for OELEs
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learning sciences literature, implies that students will be more receptive to learning a
new skill when they realize its importance in successfully completing a task, and
learning the skill in context will help them operationalize it more effectively (Bransford
et al. 1990; Bransford et al. 2000; Cobb and Bowers 1999; Lave and Wenger 1991). To
do this, we redesigned the Betty’s Brain interface, and simultaneously began creating
new scaffolding functions for Betty and Mr. Davis.

Figure 3 presents the new Betty’s Brain interface. Like its predecessor, this new
system allows students to read about a science topic, teach it to Betty, and ask her to
answer questions and take quizzes. However, the interfaces for acquiring information,
constructing the causal map, and testing the map by having Betty take quizzes have
been redesigned so that at any time when the student is interacting with the system,
only one of these interfaces is visible. This allows the program to determine more
precisely what the student is focusing on at any time and track shifts between reading,
teaching, and quizzing. In addition, the system includes several new tools for students
to use while learning and teaching. The quiz interface, for example, allows students to
click on a quiz question and immediately see the links that Betty used to generate her
answer. This makes it easier for students to determine the set of links used in correct
and incorrect answers on the quiz. When Betty’s answer to a quiz question is correct, all
of the links used to answer the question are correct. Thus, this interface allows students
to quickly view the set of links used to correctly answer a question. This, in turn, makes
it easier for students to pay attention to incorrect links or links that may be missing from
the causal map.

The ability to track how students shift between resource pages, the causal map, and
quizzes has additional advantages. It has allowed us to develop a new and more
powerful approach to analyzing students’ problem solving processes. This approach,
called coherence analysis (CA; Segedy et al. 2015), analyzes learner behaviors by
combining information gleaned from sequences of student actions to produce measures
of action coherence. Using these measures, we can characterize students’ problem-

Fig. 3 New Betty’s Brain showing the quiz interface
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solving approaches in ways that help us better understand students’ capabilities, and,
therefore, make more informed scaffolding decisions than in the previous versions of
our learning environment.

CA focuses on how students interpret and apply the information they encounter
while working in an OELE such as Betty’s Brain. When students take actions that put
them into contact with information that can help them improve their current solution
(e.g., by reading about a causal relation), they have generated potential that should
motivate and support future actions (e.g., teaching Betty that causal relation). The
assumption is that if students can recognize relevant information in the resources and
quiz results, then they should act on that information. If they do not, CA assumes that
they did not recognize or understand the relevance of the information. This may stem
from incomplete or incorrect domain knowledge (i.e., science) understanding, task
understanding, and/or metacognitive knowledge. In addition, when students edit their
map without encountering any information that justifies that edit, CA labels this as an
unsupported edit and assumes that they are guessing1.

In more detail, we have derived measures from students’ activity traces within our
CA framework. For illustration purposes, we list them below:

1. Edits/Annotations per Minute: The number of causal link edits and annotations
made by the student divided by number of minutes that the student was logged
onto the system.

2. Unsupported edit percentage: the percentage of causal link edits and annotations
not supported by any of the previous views (of the resources and quiz results)
occurring within a five minute window of the edit.

3. Information viewing time: the amount of time spent viewing either the science
resource pages or Betty’s quizzes. Information viewing percentage is the
percentage of the student’s time on the system classified as information
viewing time.

4. Potential generation time: the amount of information viewing time spent viewing
information that could support causal map edits that would improve the map score.
Potential generation percentage is the percentage of information viewing time
classified as potential generation time.

5. Used potential time: the amount of potential generation time associated with views
that occur within a prior five minute window and support an ensuing causal map
edit. Used potential percentage is the percentage of potential generation time
classified as used potential time.

6. Disengaged time: the sum of all periods of time, at least five minutes long,
during which the student neither: (1) viewed a source of information (i.e., the
science resources or Betty’s quiz results) for at least 30 s; nor (ii) added,
changed, deleted, or annotated concepts or links. This metric represents
periods of time during which the learner is not measurably engaged with
the system. Disengaged percentage is the percentage of the student’s time on
the system classified as disengaged time.

1 In reality, students may be applying their prior knowledge. However, the assumption is that since students
are typically novices in the domain that they are studying, they should verify their prior knowledge before
teaching it to Betty.
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Metrics one and two capture the quantity and quality of a student’s causal link edits
and annotations, where supported edits and annotations are considered to be of higher
quality. Metrics three, four, and five capture the quantity and quality of the student’s time
viewing either the resources or Betty’s graded answers. These metrics speak to the
student’s ability to identify resource pages that may help them build or refine their map
(potential generation percentage) and then utilize information from those pages in future
map editing activities (used potential percentage). In these analyses, a page view
generated potential and supported edits only if it lasted at least 10 s. Similarly, students
had to view quiz results for at least 2 s. These cut-offs helped filter out irrelevant actions
(e.g., rapidly flipping through the resource pages without reading them).

By characterizing behaviors in this manner, CA provides insight into students’ open-
ended problem-solving strategies as well as the extent to which they understand the
nuances of the learning task they are currently working on. Results of applying CA to
data from a recent classroom study with Betty’s Brain (Segedy et al. 2015) showed: (i)
CA-derived metrics predicted students’ task performance and learning gains; (ii) CA-
derived metrics correlated significantly with students’ prior skill levels, demonstrating a
link between task understanding and effective open-ended problem solving behaviors;
and (iii) clustering students based on their CA-derived metrics identified common
problem-solving approaches among students in the study.

Table 1 below includes results of clustering students according to the six measures of
action coherence listed above while using Betty’s Brain (see Segedy et al. 2015; Segedy
2014 for details of the analysis).

The clustering analysis revealed 5 distinct behavior profiles among the 98 students
in the study. Cluster 1 students (n=24) may be characterized as frequent researchers
and careful editors; these students spent large proportions of their time (42.4 %)
viewing sources of information and did not edit their maps very often. When they
did edit the map, the edit was usually supported by recent activities (unsupported edit
percentage=29.4 %). Most of the information they viewed was useful for improving
their causal maps (potential generation percentage=71.4 %), but they often did not take
advantage of this information (used potential percentage=58.9 %). Cluster 2 students
(n=39) may be characterized as strategic experimenters. These students spent a fair
proportion of their time (33.5 %) viewing sources of information, and, like Cluster 1

Table 1 Means (and standard deviations) of coherence measures, broken down by cluster

Cluster Edits +
Annotations/
min

Unsup. Edit % Info. View % Potential
Gen. %

Used Potential % Disengaged %

1. Res./Careful
Editors (n=24)

0.30 (0.11) 29.4 % (16.1 %) 42.4 % (11.0 %) 71.4 % (10.6 %) 58.9 % (15.4 %) 15.7 % (9.9 %)

2. Str. Exps.
(n=39)

0.60 (0.23) 54.4 % (14.8 %) 33.5 % (8.3 %) 58.7 % (18.9 %) 62.6 % (16.2 %) 10.9 % (7.4 %)

3. Confused
Guessers (n=5)

0.21 (0.06) 73.5 % (13.5 %) 58.9 % (7.7 %) 45.8 % (19.4 %) 23.1 % (12.6 %) 4.8 % (5.4 %)

4. Disengaged
(n=6)

0.33 (0.11) 74.7 % (17.4 %) 27.0 % (9.6 %) 54.9 % (9.3 %) 28.0 % (8.7 %) 33.6 % (8.4 %)

5. Engaged/
Efficient (n=24)

1.04 (0.32) 29.1 % (15.2 %) 35.4 % (8.6 %) 76.8 % (9.5 %) 82.0 % (9.0 %) 3.1 % (5.0 %)
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students, often did not take advantage of this information (used potential percentage=
62.6 %). Unlike Cluster 1 students, they performed several more map edits, a higher
proportion of which were unsupported, as they tried to discover the correct causal
model.

Cluster 3 students (n=5) may be characterized as confused guessers. These students
edited their maps fairly infrequently and usually without support. They spent an
average of 58.9 % of their time viewing sources of information, but most of their time
viewing information did not generate potential (potential generation percentage=
45.8 %). One possibility is that these students struggled to differentiate between more
and less helpful sources of information. Unfortunately, when they did view useful
information, they often did not take advantage of it (used potential percentage=
23.1 %), indicating that they may have struggled to understand the relevance of the
information they encountered. Students in Cluster 4 (n=6) may be characterized as
disengaged from the task. On average, these students spent more than 30 % of their
time on the system (more than 45 min of class time) in a state of disengagement. Like
confused guessers, disengaged students had a very high proportion of unsupported
edits, low potential generation percentage, and low used potential percentage. In
addition, their information viewing percentage was much lower, though their edits
per minute were slightly higher than the confused guessers.

Cluster 5 students (n=24) are characterized by high levels of editing and annotating
links (just over 1 edit per minute), and most of these students’ edits (70.9 %) were
supported. Additionally, they spent just over one third of their time viewing informa-
tion, and over three fourths of this time was spent viewing information that generated
potential. These students are distinct from students in the other four clusters in that they
used a large majority of the potential they generated (82.0 %) and were rarely in a state
of disengagement (3.1 %). In other words, these students appeared to be engaged and
efficient. Their behavior is indicative of students who knew how to succeed in Betty’s
Brain and were willing to exert the necessary effort.

In comparing the learning and performance of students in these clusters (for addi-
tional details on these comparisons, see Segedy et al. 2015; Segedy 2014), we found that
Cluster 5 students, who were characterized as engaged and efficient, had higher reading
scores on skill tests and exhibited significantly higher science gains when compared to
all other clusters. In contrast, Cluster 3 students, who were characterized as confused
guessers, had significantly lower skill scores on both the pre-test and post-test when
compared tomost other clusters. However, this disadvantage did not measurably prevent
them from learning the science content; their learning gains were not significantly
different from the learning gains achieved by students in Clusters 1, 2, and 4. Addition-
ally, strategic guessers achieved higher map scores than both the disengaged students
and confused guessers. Frequent researchers and careful editors also achieved higher
map scores than disengaged students. As with the learning results, engaged and efficient
students performed significantly better than all other groups of students.

Reflections and Future Directions

Throughout the course of our research with Betty’s Brain, the goal has always been to
help students become effective and independent science learners. To achieve this, we
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have developed a computer-based learning environment that is learner-centered and
open-ended, allowing students to direct their own learning processes. In particular, we
have focused on learning science by building and reasoning with models. As our
research with the Betty’s Brain system has progressed, we have come to understand
that using virtual agents assigned specific supportive roles (e.g., student, mentor) can
engage and motivate students. But some students still face difficulties in combining
learning, building, and checking tasks when attempting to build and reason with their
science models. By developing coherence analysis (CA), our ability to understand the
specific difficulties individual students face has increased significantly, and our focus
has shifted to detecting students who struggle to succeed as they work in Betty’s Brain
and providing them with relevant scaffolds to help them overcome their difficulties.

We now have a framework for characterizing the tasks students need to complete to
be successful in teaching Betty (Fig. 2 – the hierarchical task model) and a method for
interpreting students’ problem-solving behaviors as they work in the Betty’s Brain
environment. These greatly increase our ability to adapt to students as they use our
system. We have started experimenting with scaffolding students who exhibit poor
coherence. Thus far, we have focused on teaching students how to accomplish the tasks
in the task model through guided skill practice (Segedy et al. 2013a, b). In the future,
we will look to develop and test additional scaffolds that focus more on metacognitive
strategies for solving complex, open-ended problems.

An important result from our recent work in OELEs in general, and Betty’s Brain in
particular, has been in developing the CA framework with supporting analytic mea-
sures. We have found that CA, as separate from students’ learning and performance,
provides insight into aspects of students’ problem solving behaviors, particularly in
OELEs. Several of the behavior profiles that we identified using cluster analysis
exhibited similar levels of prior knowledge, prior skill levels, success in teaching Betty,
and learning while using the system. CA helps us understand how different behaviors
can result in the same level of performance and learning. In fact, one of the more
interesting findings that emerged from the above-referenced study is that CA-derived
metrics were able to distinguish groups of students with distinct behavior profiles
beyond what was possible when only focusing on learning gains and the correctness
of students’ causal maps. Given this, one potentially valuable application of CA in
OELEs is presenting CA-derived metrics to classroom teachers for evaluation and
formative assessment. Ideally, teachers could use these reports to quickly and easily: (i)
understand learners’ problem-solving approaches; (ii) infer potential reasons for the
levels of success achieved by students; and (iii) make predictions about students’
learning and task understanding. Moreover, teachers could use these reports to assign
performance and effort grades and implement classroom and homework activities that
target the aspects of SRL and problem solving that students are struggling with. We
plan to investigate this further in our future research.

In the future, we will extend our scaffolding approach to provide the right combi-
nation of meta-cognitive strategy and task-specific skill feedback through our virtual
agents in the Betty’s Brain system. We are currently working on using results from our
work in sequence mining of students’ activity sequences (Kinnebrew et al. 2013) to
track and interpret students’ strategy use as they work in the environment. Combining
the sequence mining results with CA will provide a powerful framework for under-
standing students’ learning behaviors in the more expansive framework of strategy use,
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task skills, and learning performance (i.e., the ability to make progress toward building
correct science models). This framework will help to better contextualize the feedback
provided to students, and help students become more self-directed and independent
learners.

In addition, we will explore how students’ CA metrics change over time to under-
stand how students adapt their approaches as they use the system. We will investigate
what leads to these changes, and, depending on the change, how to encourage or
prevent these changes. We may be able to identify Bat risk^ behavior profiles and take
action to prevent students from disengaging from the task. Additional work will
investigate how these changes relate to students’ affective states. We are currently
investigating methods for incorporating affect detectors into Betty’s Brain to investigate
how affect influences open-ended problem solving.

Last, one of our additional goals is to help students understand the importance and
role of scientific modeling in problem solving, especially when the problems connect
the science models to the real world (scenarios). For example, we have run preliminary
studies where 6th grade students, after they have successfully taught Betty a model that
captures the impact of certain human activities on climate change, work together to
identify scenarios in their school or their neighborhoods where the carbon footprint is
high, and then propose solutions that will help reduce the carbon footprint. Other
examples include designing self-sustaining eco-columns for fish, plants, and other
living organisms, based on lessons learned from constructing a causal model of
ecological processes in a pond ecosystem. This larger focus will also enable us to
extend our learning environment to support and study collaborative problem solving
(Barron 2000; Palincsar et al. 1993), and develop assessments that support preparation
for future learning (Bransford and Schwartz 1999).
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