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Abstract This paper presents a user study that investigates the factors affecting
student attention to user-adaptive hints during interaction with an educational com-
puter game. The study focuses on Prime Climb, an educational game designed to
provide individualized support for learning number factorization skills in the form of
textual hints based on a model of student learning. We use eye-tracking data to
capture user attention patterns on the game adaptive-hints and present results on
how user performance, hint timing, and attitude toward getting help all affect the
degree to which students attend to hints. We also show that improved attention to
hints is a worthwhile goal, at least in Prime Climb, because when they are attended to
hints can positively affect a student’s performance with the game.
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Introduction

Educational games are an increasingly popular paradigm embedding pedagogical
activities in highly engaging, game-like interactions. However, there is still limited
evidence on their pedagogical potential (e.g. de Castell and Jenson 2007; Van Eck
2007; Linehan et al. 2011). One possible reason for these results is that most edu-
games are designed based on a one-size-fits-all approach, rather than being able to
respond to the specific needs of individual students. Hence, researchers have started
investigating how to provide individualized support to learning during game play
(e.g., Conati and Klawe 2002; Conati and Manske 2009; Easterday et al. 2011; Peirce
et al. 2008; Rowe et al. 2011). It can be challenging to provide this support because it
requires a careful trade-off between fostering learning and maintaining engagement.
In this paper, we aim to provide insight into how to approach this challenge by
performing an analysis of which factors affect student attention to the adaptive
support provided by Prime Climb, an edu-game for number factorization skills. The
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form of support we focus on is textual adaptive hints, namely hints designed to
gradually help students through specific educational activities when they have diffi-
culties proceeding on their own1.

Adaptive textual hints (which we will refer to simply as “adaptive hints” from
now on) are one of the most widespread forms of adaptive interventions in
Intelligent Tutoring Systems (Woolf 2008). However, there is an increasing body
of research showing their possible limitations, from students gaming the system,
i.e., using the hints to get quick answers from the ITS (see (Baker et al. 2008) for
an overview), to help avoidance, i.e. students not using hints altogether (e.g.,
Aleven et al. 2004; Roll et al. 2006). In this paper, we are interested in investi-
gating the latter issue. More specifically, we seek to supply initial answers to the
following research questions:

1) Do students attend to adaptive hints that they have not explicitly requested?
2) If they do, which factors related to game play (e.g., move correctness, interaction

time) or student differences (e.g. student’s initial domain knowledge, attitude
toward receiving help) affect a student’s tendency to attend to the unsolicited
adaptive hints?

3) Is attention to these hints useful, i.e. does it impact game performance?

This research has three main contributions to the ITS field. First, while previous
work on help avoidance focused on capturing and responding to a student’s tendency
to avoid requesting hints (e.g., Aleven et al. 2004; Roll et al. 2006), here we
investigate how students react when the hints are provided unsolicited.

A second contribution is that we look at attention to adaptive hints during
interaction with an edu-game, whereas most previous work on student usage (or
misusage) of hints has been in the context of more structured problem solving
activities.

The third contribution of our work is that we use eye-tracking data to study
user attention patterns to adaptive-hints. Others have used eye-tracking data to
study attention to relevant components of an ITS, e.g. to Open Learner Models
(Bull et al. 2007; Mathews et al. 2012), to adaptive animations (Loboda and
Brusilovsky 2010) and, most related to our work, to ITS feedback messages
(Gluck et al. 2000). The distinguishing feature of our work is that we perform a
more detailed analysis of which factors affect user attention to adaptive inter-
ventions, as well as whether differences in attention affect performance with the
system.

This research was first presented in Muir and Conati (2012). Here, we expand on
that work by providing detailed information on the methodology we used for
collecting, validating and processing the relevant eye-tracking data. We also provide
additional results on how students interacted with the game, as well as on how well
participants’ subjective evaluations of their game experience are supported by action
and gaze data of their in-game behaviors.

In the rest of the paper, we first discuss related work. Then, we describe Prime
Climb, the educational game we use as a test bed for this research. Next, we

1 Whereas there has been work on presenting hints via audio, in this paper we focus on the widespread
textual presentation modality.
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illustrate the user study we conducted for collecting gaze data, followed by a
section describing how this data was processed. After discussing the study results,
we conclude with a discussion of possible avenues of future research.

Related Work

Educational Games and Adaptive Feedback

User-adaptive edu-games have received increased attention as a way to improve edu-
game effectiveness. Peirce et al. (2008) use both rule-based and probabilistic methods
to create an adaptive component in the Elektra game called ALIGN, which provides
adaptations in the form of feedback and hinting. A preliminary evaluation of Elektra
showed that users felt positively about the game, but didn’t provide any reliable
results on learning outcomes and flow experience. Easterday et al. (2011) compared
the effects of providing tutoring assistance as opposed to basic game-like feedback
(e.g. notifying the user of errors and penalties for errors) in Policy World, an edu-
game which teaches policy argumentation skills. Tutoring was provided in the form
of knowledge-based feedback and required students to correct errors immediately.
They found that providing assistance increased competence in pre-debate analysis
steps (e.g. issue comprehension, diagrammatic representation and synthesis), as well
as perceived interest, but did not affect performance on the actual debate tasks. There
has also been extensive research on how to model relevant student cognitive,
affective and meta-cognitive states in Crystal Island, a narrative-based adventure
game for teaching microbiology (Rowe and Lester 2010; Robison et al. 2009;
Sabourin et al. 2012).

Conati and Klawe (2002) propose using adaptive pedagogical agents to provide
individualized support to students learning from Prime Climb, the edu-game for
number factorization targeted in this paper. They argue that this adaptive support
is most effective if based on student models that can capture both student learning
(e.g. Manske and Conati 2005), as well as affective reactions (Conati and
Maclaren 2009). Conati and Manske (2009) compared a version of Prime Clime
with no adaptivity against two versions that differed in the sophistication of the
adaptive hints provided, as well as in the accuracy of the student model used to
provide them based solely on assessing learning during game playing. While no
significant difference in learning was found between the three conditions, they
observed that students paid more attention (based on estimating the time the hints
were open) to the hints provided by the less sophisticated adaptive game version.
They attribute this result to the fact that this version provided fewer and simpler
hints (and therefore fewer interruptions). In our work, we extend the work by
Conati and Manske (2009) by using a more accurate measure of attention, eye-
tracking data, to better understand if and how users attend to Prime Climb’s
adaptive interventions.

Providing customized feedback or instruction is one of the distinguishing charac-
teristics of Intelligent Tutoring Systems (ITS). One common way this feedback is
given is by using adaptive incremental textual hints, especially in the context of
problem solving, when a tutor follows a student’s individual solution steps and aims

138 Int J Artif Intell Educ (2013) 23:136–161



to provide support on the individual steps as the need arises2. Incremental hints have
been used, for instance, in most model-tracing Cognitive Tutors (Anderson et al.
1995), in the Andes tutoring system (Conati et al. 2002) and in some constrained-
based Tutors (Mitrovic 2012), but their effectiveness is in question because of
evidence that students can misuse them. There are two main categories of hint
misusage that have been investigated so far. The first is gaming the system, where
we see students repeatedly asking for help or purposely entering wrong answers to get
to bottom-out hints, which explicitly tell the student how to perform a problem-
solving step and move on. Baker et al. (2008) describe this behavior and compare 6
systems (described in more detail in Aleven et al. (2004), Baker et al. (2004), Beal
et al. (2006), Beck (2005), Johns and Woolf (2006) and Walonoski and Heffernan
(2006)) that can accurately detect in real-time when a student is exhibiting this
behaviour and intervene to reduce it. Baker et al. (2008) and Shih et al. (2010) also
found that there are two distinct categories of gaming the system (harmful and non-
harmful) based on the learning gain seen by the students, and investigated detectable
student behaviors that can differentiate these two different “gaming” outcomes.
Goldin et al. (2012) investigate the effectiveness of student-requested hints on local
problem solving performance (i.e., individual problem solving steps) as opposed to
overall learning, and how effectiveness is mediated by student proficiency and hint
type.

The second type of hint misusage uncovered in the literature is help avoidance,
where students avoid asking for help even when it is needed. Aleven et al. (2004)
presented a model that could detect both gaming the system and help avoidance. Roll
et al. (2006) embed this model in the Help tutor, an ITS that can generate hints
designed to improve students’ help seeking behaviour, in addition to hints that help
with the target problem solving activities. They showed that the Help Tutor was able
to reduce both help avoidance and help abuse. Unfortunately, this change failed to
translate to improved domain learning, possibly because the improvement in help
usage was the result of students simply following the Help Tutor’s advice rather than
learning the principles of good help seeking behavior themselves.

Little work has been done on understanding if and how students process adaptive
hints that they have not elicited from the system, however Roll et al. (2006) suggest
that students often ignore these hints. A similar hypothesis was brought forward by
Conati and Manske (2009) based on preliminary results on student attention to hints
in Prime Climb; however, attention was not measured using an eye-tracker but was
calculated based on the time the hint was open on the screen.

Eye-Tracking in ITS

There has been a rising interest in using eye-tracking in ITS research, following two
main directions.

2 An alternative approach that has been explored in the literature is to devise tutors that engage students in a
tutorial dialogue to provide the necessary feedback or instruction, by leveraging natural language process-
ing techniques. These tutors are outside the scope of this paper, because by their nature they encompass a
different set of possible issues than those raised by the type of incremental textual hints addressed here.

Int J Artif Intell Educ (2013) 23:136–161 139



One research direction investigates eye-tracking data as a direct source of
information for student modelling and personalized instruction. Eye-tracking data
has so far been used to direct the adaptive behavior of an ITS in real-time by
capturing simple gaze patterns indicating attention (or lack thereof) to relevant
interface elements, including: an available pedagogical agent and target didactic
material (Wang et al. 2006; D’Mello et al. 2012); words during a reading task
(Sibert et al. 2000); available tutor feedback (Anderson 2002). There has also
been work on leveraging gaze data in student models that capture higher level
student states such as learning (Kardan and Conati 2012, 2013), meta-cognition in
terms of self-explanation (Conati and Merten 2007), and affect in terms of
motivation (Qu and Johnson 2005). While these gaze-enhanced models of higher
level states have been validated in terms of accuracy, so far they have not been
integrated in an ITS.

The second research direction in leveraging gaze data in ITS attempts to under-
stand relevant student behaviors and processes through off-line analysis of the gaze
data, by investigating how students attend to specific elements of an ITS interface.
Gluck et al. (2000) performed off-line analysis of eye-tracking data obtained with a
simplified version of an ITS for algebra, and showed that this data could quite reliably
disambiguate domain-specific strategies even when they led to the same problem-
solving steps. They also showed that students did not attend to as many as 40 % of the
system’s error feedback messages, although they did not provide reasons for this
effect. Muldner et al. (2009) investigated whether pupil size can provide information
on a student’s meta-cognitive and affective states while working with a tutor that
supports analogical problem solving. They found that users had significantly larger
pupil size when expressing positive vs. negative affect, as well as when engaging in
self-explanation as opposed to other forms of reasoning. Bull et al. (2007) and
Mathews et al. (2012) used gaze data to understand if and how students attend to
different visualizations of their student model (or Open Learner Model, OLM). OLMs
have been investigated as a way to aid learning by scaffolding reflection and self-
assessment. The main results of this work indicate that different ways to visualize an
OLM trigger attention to different aspects of a learner’s performance, e.g. miscon-
ceptions vs. levels of knowledge. Loboda and Brusilovsky (2010) used off-line gaze
analysis to understand the effect of adaptation in cWADE, an ITS that supports
expression evaluation in the C programming language through explanatory animated
visualizations. The user-adaptive version of cWADE adapts the speed of the anima-
tions to a student’s progress through the available material (i.e., more progress results
in a faster pace of animations). An exploratory eye movement analysis showed the
adaptive version engaged students more and attracted their attention more. The work
described in this paper extends the use of off-line analysis of gaze information to
understand not only if and how users attend to an educational game’s adaptive
interventions, but also which factors may affect these behaviors.

The Prime Climb Educational Game

In Prime Climb, students practice number factorization by pairing up to climb a series
of mountains. The current version of Prime Climb is Web based, so players can login
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remotely. Each mountain is divided into numbered hexagons (see Fig. 1) and players
must move to numbers that do not share common factors with their partner’s number,
otherwise they fall. Players begin on a hexagon at the base of the mountain that is
randomly selected by the game. Since each player cannot move to a square that is
more than two hexagons away from the partner, the two players must cooperate to
reach the top of the mountain. Each player can make more than one move before
turning the control to the other player. The object of the game is to reach the top of as
many mountains as possible, out of a total of 12.

To help students, Prime Climb includes the Magnifying Glass, a tool that allows
players to view the factorization for any number on the mountain in the device at the
top-right corner of the interface (see Fig. 1). Prime Climb also provides individual-
ized textual hints, both on demand and unsolicited. Unsolicited hints are provided in
response to student moves and are designed to foster student learning during game
playing by (i) helping students when they make wrong moves due to lack of
factorization knowledge; (ii) eliciting reasoning in terms of number factorization
when students make correct moves due to lucky guesses or playing based on game
heuristics.

Prime Climb relies on a probabilistic student model to decide when incorrect
moves are due to a lack of factorization knowledge vs. distraction errors and when
good moves reflect knowledge vs. lucky guesses. The student model assesses the
student’s factorization skills for each number involved in game playing, based on the
student’s game actions (Manske and Conati 2005). Prime Climb gives hints at
incremental levels of detail, if the student model predicts that the student doesn’t
know how to factorize one of the numbers involved in the performed move. The hint
sequence includes a tool hint that encourages the student to use the magnifying glass
tool to see relevant factorizations (“You can use the magnifying glass to see the
factors of the number you clicked on”). If the student needs further help, Prime Climb

Fig. 1 The prime climb interface
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gives definition hints designed to re-teach “what is a factor” via explanations and
generic examples (e.g., see Fig. 1). There are two different factorization definitions:
“Factors are numbers that divide evenly into the number” and “Factors are numbers
that multiply to give the number”. The game alternates which definition to give first
and presents the second the next time it needs to provide a definition hint. The
examples that accompany the definitions change for every hint and are designed to
help illustrate the given definitions while still leaving it to the student to find the
factorization of the numbers relevant to the performed move. Finally, Prime Climb
provides a bottom-out hint giving the factorization of the two numbers involved in the
move (e.g., “You fell because 84 and 99 share 3 as a common factor. 84 can be
factorized as…”). The basic wording of the bottom-out and tool hints does not
change. Students can access the next available hint by clicking on a button at the
bottom of the current hint (See Fig. 1). Otherwise, hints are given in progression as
the student model calls for a new hint. After the entire sequence of hints has been
given, it starts again at the beginning with another tool hint. A hint is displayed until
the student selects to access the next hint or to resume playing (by clicking a second
button available at the bottom of the hint).

It should be noted that the Prime Climb bottom-out hints focus on making the
student understand her previous move in terms of factorization knowledge; they
never provide explicit information on how to move next. Thus, the Prime Climb
hints are less conducive to a student gaming the system than bottom-out hints giving
more explicit help (e.g. Baker et al. 2008). As a matter of fact, previous studies with
Prime Climb show that students rarely ask for hints. Most of the hints the students see
are unsolicited.

User Study on Attention to Hints

Participants and Study Design

We recruited 13 participants (six female) from grades 5 and 6 (six participants in
grade 5). Participants came to our research laboratory to participate in the study.
Recruitment was conducted through flyers distributed in a local school, at youth
outreach events held by our department, as well as at local sports camps. Each child
was compensated with a $10 gift card for a local children’s bookstore.

Prime Climb was run on a Pentium 4, 3.2 GHz machine with 2GB of RAM, with a
Tobii T120 eye-tracker acting as the primary screen. The Tobii T120 eye-tracker is a
non-invasive desktop-based eye-tracker embedded in a 17″ display. It collects bin-
ocular eye-tracking data at a rate of 120 Hz. In addition to the eye-tracking data, it
collects all keystrokes and mouse clicks made. It also collects video data of the user’s
face.

Participants started by completing a pre-test which tested their ability to identify
the factors of individual numbers (16 numbers tested overall) and identify the
common factors between two of the numbers from the first part (5 pairs of numbers
tested). After completing the pre-test, participants underwent a familiarization and
calibration phase with the Tobii eye-tracker (described in more detail below). Next
they played Prime Climb with an experimenter playing as their partner. Following the
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protocol we adopted in previous studies, the experimenter was instructed to play as
neutrally as possible, trying to avoid making mistakes (although mistakes did happen
on some of the mountains with larger numbers) and to avoid leading the climb too
much.

Students played the game until they climbed all mountains. During this period, we
also had a second investigator observing a secondary monitor to detect eye-tracking
data collection issues as they occurred. Finally, participants took a post-test analogous
to the pre-test and completed a questionnaire to obtain their subjective feedback on
their game experience.

Assessment Tools

The pre-test and post-test used for knowledge assessment in this study were the same
used by Manske and Conati (2005). They consist of two sections. The first section
includes 16 questions on the factorization of a number. Students need to select the
factors of the number from a list of options, where multiple options may be correct.
The second section consists of 5 multiple-choice questions gauging knowledge of the
concept of common factors. As with the factorization questions, students select the
common factors of two numbers from a list of possibilities. Ten of the 16 numbers
found in the factorization section also appear in the common factor questions, to
discern when errors in the latter are due to lack of understanding of the concept of
common factors as opposed to missing knowledge on how to factorize the numbers
involved. The test was marked by giving one mark for each correctly circled response
and taking one mark away for each incorrectly circled response. As a result, it is
possible for a student to receive a negative score on the test if they select more
incorrect answers than correct ones. The highest possible mark on this test was 31,
while the lowest possible mark was −105.

After the post-test, each student was given a written questionnaire also based on
questionnaires used in previous Prime Climb studies (Manske and Conati 2005). The
questionnaire included items tapping, among other things, a participant’s attitude
towards receiving help and perception of the Prime Climb agent’s adaptive interven-
tions. Items were scored on a Likert scale where 1 indicated “Strongly Disagree”
while 5 indicated “Strongly Agree”.

Arrangements to Minimize Gaze-Data Loss

The collection of eye-tracking data with non-intrusive devices like the Tobii is
susceptible to error due to excessive head movement of the subject, as well as
participants looking away from the screen, blinking, resting one’s head on one’s
hands, and other actions which can cause the eye-tracker to lose track of their eyes.
These sources of error can be especially relevant when dealing with children involved
in a game-like activity. In this section, we describe the two methods we used to
minimize loss of eye-gaze data in our study, which we believe may be useful for other
researchers who plan to embark on similar research.

The first method consisted in having a second experimenter observe and respond
to eye gaze traces in real-time using a secondary 17″ monitor (Tobii experimenter
view). When the experimenter detected loss of eye-gaze data, the subject was asked to
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shift position until the eye-tracker started collecting data properly again. We are
aware that these interventions may somehow have affected students’ overall attention
to the game, but because the experimenter never made any comments on what
students should be paying attention to on the screen, we don’t expect that the
interventions changed how students attended to the hints and why.

Secondly, each participant was exposed to an eye-tracker familiarization phase,
designed to make participants aware of how their actions affected the ability of the
eye-tracker to collect data. The familiarization phase relies on the Tobii’s pre-
calibration display (shown in Fig. 2), which allows participants to see their eyes
being captured (the two white dots in Fig. 2). The color of the bar at the bottom of the
display gives feedback on the quality of the data being collected: green indicates that
the eye-tracker is able to capture data; yellow indicates that there are difficulties with
detecting eye gaze but data is still being collected; red indicates that the eye-tracker is
unable to capture the eye. The bar on the right side of the display shows how far the
subject’s eyes are from the monitor. When the eyes get too close or too far, the eye-
tracker encounters difficulty in identifying the eyes and therefore the bottom bar will
turn yellow and then red.

We introduced a familiarization phase based on an observation made during pilot
runs of the study: a participant who spent more time looking at Tobii’s pre-calibration

Fig. 2 Pre-calibration screen which allows participants to become more aware of the capabilities of the
eye-tracker
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screen seemed to be more mindful then other pilot participants of her position in front
of the screen during the game and generated excellent gaze data. Thus, during the
familiarization phase, participants were instructed to “play” with the pre-calibration
display by moving in their seat to see how much they could move before the eye
tracker could not detect their gaze. Participants were also asked to rest their head on
their hand and observe the effect on gaze tracking accuracy. In addition to making
participants more aware of how their movements affected the eye-tracking process,
this phase also made it easier for them to understand what to do when asked to shift
their position during game play because the experimenter detected that the eye-
tracker had stopped collecting data.

Processing Eye-Tracker Data

Eye-gaze information is provided in the form of fixations (i.e., eye-gaze remains at
one point on the screen) and saccades (i.e., eye-gaze moves quickly from one fixation
point to another), which we can use to derive attention patterns. Both fixations and
saccades are made up of multiple samples from the eye-tracker. Fixations are derived
from consecutive samples that relate to the eye focusing on a single place on the
screen; saccades are derived from all consecutive samples between two fixations. For
each recorded sample, the Tobii eye-tracker stores its coordinates, quality (e.g.,
whether that sample had data for one or both eyes or none) and pupil size. In addition,
it includes the length and coordinates of the fixation with which that sample is
associated. Tobii also generates a summary of the recorded fixations i.e., the fixation
timestamp, duration and coordinates.

As the game interaction can be long (up to 65 min) and dynamic, we need to divide
the game play into portions that are easier to analyze. As we are interested in
investigating if and how students are using the hints provided to them during game
play, we chose to focus on the portions during which a hint is available to the player.
These short time periods provide a fairly static view of the game as players are unable
to make any moves during this time frame. This method simplifies data analysis
because we don’t have to account for objects moving during the interaction.

Eye-Tracking Measures

To analyze the attention behaviors of our study participants with respect to the
received adaptive hints, we define an area of interest (Hint AOI) that covers the text
of the hint message. We adopt a standard metric used in eye-tracking research to
measure overall attention (Goldberg and Kotval 1999; Goldberg and Helfman 2010),
namely total fixation time (e.g., overall time a subject’s gaze rests on the Hint AOI for
each displayed hint). It should be noted that because in Prime Climb students are
actually unable to continue playing while a hint is being displayed (they must first
manually dismiss it), the amount of time the hint is open on screen is correlated with
total fixation time (r=.711, N=484, p=.01). Total fixation time, however, gives a more
precise picture of student attention to hints. For instance, it helps distinguish the
situation depicted in Fig. 3, (where student attention while the hint is open is mostly
on the hint itself) from the situation in Fig. 4 (where student attention while the hint is
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open is mostly away from the hint). The circles in the figures represent fixation
points, and their size expresses duration.

Total fixation time is also a more powerful source of information than hint display
time for a student model to detect situations in which students try to game the system.
If included in a student model, Hint display time could determine if the student

Fig. 3 Attention on the hint

Fig. 4 Attention away from the hint
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missed reading a hint before asking for a new one only when the student asks for a
new hint too quickly. But it could not handle a situation in which a hint is open for a
while but the student is barely looking at it, like in Fig. 4, before asking for the next
hint. Eye tracking allows this behaviour to be detected. The limitations of hint display
time would become even more of a problem when students are not required to
explicitly dismiss a hint before they can continue playing, because it would make it
easier for students to ignore the hint while it is open.

One weakness of Total fixation time is that it does not provide detailed information
on how a hint is actually processed, because it cannot differentiate between a player
who stares blankly at a hint vs. one who carefully reads each word. Furthermore, it is
not ideal to compare attention to the different types of hints in Prime Climb because
they have different lengths on average (15 words for tool hints; 17 words for bottom-
out hints; 36 words for definition hints). Thus, in our analysis of attention to the Prime
Climb hints we also use the ratio of fixations per word (fixations/word from now on).
This metric is independent of hint length and gives a sense of how carefully a subject
scans a hint’s text. Fixations/word is 1 when the subject fixates once on each word of
the text and decreases when a reader starts skipping words.

Finally, in order to assess how quickly students are able to reallocate attention to
hints during gameplay, we include time to first fixation as our last measure. Time to
first fixation is the time in milliseconds it takes for a student to fixate on the Hint AOI
after the hint is first displayed on the screen. Lower values reflect a quicker shift in
attention to the hint. Using these three measures, we will evaluate general attention to
a hint, the amount of care the students are taking in reading the hint text, and the
ability of the hint to attract students’ attention.

We also considered including additional eye tracking measures (as done, for
instance, by Kardan and Conati (2012) and Bondareva et al. (2013)). The scan path
length measures the Euclidean distance between fixations in pixels and can be used to
compare scanning behavior where longer scan paths can indicate less efficient or less
careful scanning. For instance, Goldberg and Kotval (1999) found that when they
compared user’s scan path length on a good and poor interface, the poor design led to
longer scan paths. However, in our case, scan path length comparison between hints
would not be ideal because, like fixation time, it would be affected by the varying
length of our hints. The number of transitions between the Hint AOI and other salient
elements of the game interface can also be useful in looking at the specific attention
patterns involving hints, e.g. looking back and forth between the Hint AOI and the
mountain AOI while reading a hint. However, because this is an exploratory study
with a limited number of participants, we cannot include too many dependent
measures in our analysis without losing power (see below for details on the statistical
models used). We felt that the three measures described above are the best set to start
with for a first exploration of the factors that affect attention to hints.

Data Validation

Despite the measures we took to reduce participants’ movements that could interfere
with eye-tracking, data loss cannot be entirely eliminated, especially when dealing
with children, who generally cannot sit in the same position for long. This data loss is
in the form of samples marked as invalid by the eye-tracker, which may include
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samples collected while the participant is looking off-screen. Since our analysis
focuses only on participants’ attention patterns when hints are displayed on the
screen, we need to make sure that we have sufficient valid gaze information during
these segments of interest (i.e., that we have valid segments), rather than during the
overall interaction with the game.

A standard method to define a segment of tracked gaze data as valid is to ascertain
whether the proportion of valid samples in the segment is greater than a preset
threshold. To determine the threshold, we plotted the percentage of segments that
would be rejected per participant, for different threshold values.

Figure 5 shows the percentage of segments that would be excluded from analysis
for each subject given different possible threshold values (where the higher the
threshold is set, the more segments will be rejected). As the figure shows, one subject
(S6) has a severe loss of data (over 60 % of the segments having no data collected at
all), and was thus excluded from data analysis. Based on the remaining participants,
we choose to set 75 % as our threshold for excluding a segment from analysis (i.e. if a
segment contains less than 75 % of the possible eye gaze samples, it would be
considered invalid). At this threshold, we find that the majority of the participants
have a low percentage of rejected segments (less than 20 %), while the worst subject
(S5) still has 70 % valid segments. Therefore, this threshold is a good compromise
between retaining a sufficient number of hint segments for data analysis and ensuring
that the gaze data over these segments is of good quality.

Gaze data was processed using an earlier version of EMDAT, an open source
package for off-line and on-line gaze data analysis developed in our lab3.

Results

In this section, we first present summary statistics on participants’ performance with
Prime Climb, as derived from pre/post test scores and from the analysis of the
available action logs. Next, we present an analysis based on gaze data aimed at
answering the research questions we introduced in the discussion section:

1) Do students attend to adaptive hints that they have not explicitly requested?
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3 http://www.cs.ubc.ca/~skardan/EMDAT/index.html
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2) If they do, which factors related to game play (e.g., move correctness, interaction
time) or student differences (e.g. student’s initial domain knowledge, attitude
toward receiving help) affect a student’s tendency to attend to the unsolicited
adaptive hints?

3) Is attention to these hints useful, i.e. does it impact game performance?

Finally, we report results on how well some of the students’ observed action and
gaze patterns match with their subjective assessment of their game experience,
measured from their responses to the study post-questionnaire.

Descriptive Statistics on Game Play

The study game sessions lasted 33 min on average (SD=15). There was no improve-
ment from pre- to post-test performance, with participants scoring an average of 74 %
(SD=31 %) in the pre-test, an average of 72 % (SD=31 %) on the post-test and an
average percentage learning gain of −0.02 (SD=0.06). It should be noted that six of
the participants performed worse in the post-test than in the pre-test, but in general
when a student went down in score, it was usually due to missing one of the factors of
a number that they got correct on the pre-test rather than giving an incorrect answer
(i.e. circling a number that is not a factor). This suggests that player fatigue might
have contributed to the poor results, causing students to not take as much care on the
post-test as they could have.

Consistent with previous Prime Climb studies, students rarely asked for help.
One student asked for four hints, two students asked for hints twice, and two
other students requested one hint, for a total of 8 requested hints. Prime Climb,
however, generated a total of 476 unsolicited hints; an average of 51 hints per
player (SD=23), with an average frequency of 37 s (SD=44). Thus, lack of
system interventions can be ruled out as a reason for lack of learning. If
anything, it is possible that the hints happened too frequently, resulting in
reduced student attention (we will discuss this point in more detail in the next
section). It should be noted that the two participants who received the most
frequent hints (S13 and S11) were the participants with the lowest pre- and post-
test score, indicating that lack of knowledge was a factor in these participants
receiving frequent hints.

Participants made an average of 17.5 % incorrect moves (SD=4.5). Less than half
of these (M=37.7 %, SD=11.4) were made after receiving a hint. Figure 6 shows the
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number of incorrect moves and the percentage of these moves that followed a hint for
each participant. A move follows a hint if it is the next action made after a hint has
been displayed.

On average, participants used the magnifying glass 18 times (SD=20). This
large standard deviation indicates that while some players used the tool frequent-
ly, others used it very infrequently. In fact, 2 participants did not use the
magnifying glass tool at all, while 3 more only used it 5 times. Participants
followed a Tool hint (which directs them to make use of the magnifying glass
tool) 20 % of the time on average, with a high standard deviation (18). This
number ranged as high as 56 %, indicating that, at least for some participants,
the Tool hints were successful in triggering the use of the magnifying glass. The
Tool hint is the only hint for which we can provide this type of statistic, because
it is the only one that suggests an explicit action available in Prime Climb. What
we can do for all hints, however, is to use the gaze data collected during the
study to ascertain whether participants paid attention to them and under which
circumstances, as we discuss in the next section.

Attention to Hints and Factors Affecting It

As we mentioned in the previous section, Prime Climb generated unsolicited hints
frequently, raising the question of whether the frequent hints possibly interfered with
game playing and led students to ignore them.

In order to answer this question we first compared average fixation time on each
hint type with the expected reading time (calculated using the 3.4 words/second rate
from Just (1986)), which is the time it would take an average-speed reader to read the
hint. Figure 7 shows that average fixation time is much shorter than expected reading
time. On the other hand, the high standard deviation in all three measures shows that
there is a great deal of variability in reading time, depending on the hint. Students are
taking longer to read certain hints, indicating a trend of selective attention. In the rest
of this section, we investigate which factors influenced a student’s decision to attend a
hint or not.

One obvious factor is whether the hints generated were justified, i.e., wheth-
er the probabilistic student model that drives hint generation is accurate in
assessing a student’s number factorization knowledge. We can only answer this
question for the numbers in the game that were also included in the pre- and
post-tests, which are about 10 % of all the numbers covered in Prime Climb.
The model sensitivity on test numbers (i.e., the proportion of actual positives

Fig. 7 Average fixation time for prime climb hint types
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which are correctly identified as such) is 89 %, indicating that the model
generally did not underestimate when a student knew a test number and thus
it is unlikely to trigger hints when they were not needed. It should be noted,
however, that whereas for test numbers the student model is initialized with
prior probabilities derived from test data from previous studies, for all the other
numbers in Prime Climb, the model starts with generic prior probabilities of
0.5. Thus, the model’s assessment of how student factorization knowledge on
these numbers evolved during game play was likely to be less accurate than for
test numbers and may have generated unjustified hints.

Bearing this in mind, we looked at the following additional factors that may
influence student attention to hints in our dataset.

& Move Correctness indicates whether the hint was generated in response to a
correct or to an incorrect move.

& Time of Hint sets each hint to be in either the first or second half of a student’s
interaction with the game, defined by the median split over playing time.

& Hint Type reflects the three categories of Prime Climb hints: Definition, Tool and
Bottom-out.

& Attitude reflects student’s general attitude towards receiving help when unable to
proceed on a task, based on student answers to a related post-questionnaire item
(“I want help when I am stuck”), rated using a Likert-scale from 1 (strongly
disagree) to 5 (strongly agree). To compensate for the limited number of data in
each category due to our small dataset, we divided these responses into three
categories: Want help, Neutral and Wanted no help, based on whether the given
rating was greater than, equal to, or less than 3, respectively.

& Pre-test score represents the student percentage score in the pre-test as an
indication of student pre-existing factorization knowledge.

In order to utilize the eye tracking data on all hints collected during the course
of the study, we chose to use a Mixed Effects Model analysis. Unlike a standard
General Linear Model, Mixed Effects Models can handle correlated data, as in
the case when there are repeated measures from the same subjects (Wainwright
et al. 2007). Mixed Effects Models also provide advantages over the traditional
Repeated Measures ANOVA because they are more robust to missing data,
which is ideal for noisy eye tracking data (Toker et al. 2013). We ran a mixed
model analysis for each of the three dependent measures described above; total
fixation time, fixations/word and time to first fixation. Each mixed model is a 2
(Time of Hint) by 3 (Hint Type) by 2 (Move Correctness) by 3 (Attitude) model,
with pre-test score as a covariate. We report significance at the .05 level after
applying a Bonferroni correction to adjust for familywise error. In order to
calculate the R2 effect sizes of each fixed effect in the model, Snijders and
Bosker (1994) suggest using a measure based on the increase in between- and
within-subjects variance accounted for by each factor, over the null model. We
use this method, although it suffers from the shortcoming that the R2 value can
sometimes become negative, if the within-subjects variance is decreased at the
cost of increasing the between-subjects variance (Snijders and Bosker 1994). An
R2 of .01 is considered small, while .09 is considered a medium-sized effect and
.25 is considered a large effect.
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Factors That Affect Attention to Hints Measured by Total Fixation Time

In our first model, we used total fixation time as the dependent measure. We found the
following interaction effects4:

& Time of Hint and Hint Type, F(2,662.299)=8.550, p<.005, R2=.097 (see Fig. 8,
left). Fixation time drops for all hint types between the first and second half of the
game. The drop, however, is statistically significant only for definition hints,
suggesting that these hints became repetitive and were perceived as redundant,
despite the inclusion of varying examples that illustrate the definitions.

& Time of Hint and Attitude, F(2,662.300)=4.920, p=.024, R2=.067 (see Fig. 8,
middle). In the first half of the game, those with a neutral attitude (M=1.71,
SD=2.19) had a significantly lower total fixation time than those who
wanted help (M=4.42, SD=5.63), t(179)=5.417, p<.005 and those who did
not want help (M=3.18, SD=3.71), t(138)=2.616, p=.030, There is a non-
significant trend of higher attention for students who wanted help compared
to students who do want help. For both of these groups, fixation time
dropped significantly in the second half of the game (M=1.17, SD=1.33,
t(189)=5.460, p<.005 for wanting help students; M=1.64, SD=2.22, t(180)=
3.443, p<.005, for those who do not want help), but did not change
significantly for players with a neutral attitude.

& Time of Hint and Move Correctness, F(1,662.300)=10.306, p=.003, R2=.093 (see
Fig. 8, right). Initially, students attend more to hints occurring after a correct
move, although this effect disappears by the second half of the game. We find
the increased attention to hints following correct moves somewhat surprising,
because we would have expected these hints to be perceived as redundant and
thus attended to less than hints following incorrect moves. It is possible
however, that the very fact that hints after correct moves were unexpected
attracted the students’ attention and this surprise effect faded as the game
progressed.

4 We also found significant main effects for Time of Hint and Hint Type but we don’t discuss them in detail
because they are further qualified by the detected interactions.

Fig. 8 Interaction effects for total fixation time involving time of hint
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& Hint Type and Move Correctness, F(2,662.300)=5.028, p=.021, R2=.023 (see
Fig. 9, left). Players had significantly higher fixation time on definition hints
caused by correct moves than on those caused by incorrect moves5. There were no
statistically significant differences between fixation times for correct vs. incorrect
moves for the other two hint types.

& Attitude and Move Correctness. F(2,662.299)=9.877, p<.005, R2=−.004 (see
Fig. 9, right). For students who want help, fixation time is higher for hints that
occur after a correct move, mirroring the trend of increased attention to these
unexpected hints. This trend is reversed for students who do not want help; they
attend more to hints occurring after an incorrect move. This could be because the
students who want help are willing to use these hints to confirm that they are on
the right track, especially if they guessed at the correct move, but students who do
not want help only wish to use hints when they are failing to move correctly on
their own.

Factors That Affect Attention to Hints Measured by Fixations/Word

To gain a better sense of how students looked at hints when they were displayed, we
ran a second Mixed Model with the same independent measures described above
(Time of Hint, Hint Type, Move Correctness, Attitude and pre-test scores) and
fixations/word as the dependent measure. It should be noted that total fixation time
and fixations/word are correlated, r=.643, N=484, p<.001, as we would expect if the
students tend to read the content of the hints. Fixations/word is included in order to
account for the effect of hint length on the previously reported findings. We found
three main effects:

& Move Correctness, F(1,605.148)=14.103, p<.005, R2=.013 (see Fig. 10, left).
Fixations/word was higher for those hints following a correct move, consistent
with the surprise effect of hints after correct moves found in the previous section.

5 There is also a significant difference between fixation time on definition hints after correct moves and the
other two type of hints after correct moves, but this difference is likely an effect of definition hints being
longer, as we discussed in “User Study on Attention to Hints”.

Fig. 9 Interaction effects for total fixation time involving move correctness
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& Time of Hint, F(1,605.150)=22.829, p<.005, R2=.030 (see Fig. 10, middle).
Fixations/word was lower for hints occurring in the second half of the
interaction, consistent with the pattern of decreased total fixation time in the
second half of the game described in the previous section.

& Hint Type, F(2,605.148)=36.064, p<.005, R2=.079 (see Fig. 10, right). Definition
hints (Avg. 0.17, SD=0.22) had a statistically significantly lower fixations/word
than either Tool (M=0.35, SD=0.38) or Bottom-out hints (M=0.34, SD=0.32),
possibly because after a few recurrences of definition hints students tended to stop
reading them fully, since the definition portion does not change.

We also found an interaction effect involving Move Correctness and Hint Type,
F(2,605.150)=12.276, p<.005, R2=.122 (see Fig. 11). Fixations/word on Bottom-out
hints drops significantly between those given after a correct move and those given
after an incorrect move. This result confirms the positive effect thatMove Correctness
seems to have on attention to hints found in the previous section for definition hints.
Here, the effect possibly indicates that students are scanning Bottom-out hints after
correct moves carefully in order to understand why they are receiving this detailed
level of hint when they are moving well.

Factors That Affect Attention to Hints Measured by Time to First Fixation

A mixed model with time to first fixation as the dependent variable and the same
factors/co-variates as the previous models showed only one significant main effect,

Fig. 10 Main effects for fixations/word

Fig. 11 Interactions effects for fixations/word
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related to Move Correctness, F(1,466.672)=5.823, p=.048, R2=.010 (see Fig. 12).
This result indicates that it takes less time for students to fixate on hints that occur
after a correct move and is consistent with the “surprise” effect of correct hints
suggested by the results on fixation time and fixations/word.

Factors That Affect Attention: Discussion

All of the factors that we explored, except for Pre-test Scores (Time of Hint, Hint
Type, Attitude, Move Correctness) affected to some extent attention to the Prime
Climb hints, providing insight into how adaptive hints can be delivered more
effectively.

We found, for instance, that attention to hints decreases as the game proceeds and
the drop is highest for definition hints, suggesting that these hints are too repetitive
and should be varied and improved in order to remain informative and engaging as
the game proceeds. We also found that hints given after a correct move tend to elicit
attention more than those given after an incorrect move, likely because they are
perceived as surprising. This is an interesting result, because in Prime Climb hints are
always provided when there is an indication from the student model that the student
does not fully grasp the factorization knowledge underlying her last move, even if the
move is correct. When we devised this strategy, we were concerned that receiving
hints after a correct move may be awkward for a student and may result in the student
ignoring the hints. However, our results indicate that this is not necessarily the case, at
least in the first part of the game and for students with a positive attitude toward
receiving help. It is possible that hints occurring after correct moves were acting like
positive feedback for these students (Mitrovic and Martin 2000). Positive feedback
(e.g. statements like “Correct!” or “Well done”) is usually given after a correct answer
and allows a student to reduce uncertainty about an answer by confirming that it is
correct (Barrow et al. 2008). This is especially useful if the student was unsure or
guessing at the correct answer, as is likely the case when the Prime Climb student
model triggers a hint after a correct move. Thus, our results show that it is possible to

Fig. 12 Main effect on time to first fixation
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leverage both correct and incorrect moves for fostering students’ reflection when
needed, but they also show that student attitude toward receiving help should be taken
into account to increase the effectiveness of these hints. We found that students with a
positive attitude towards receiving help tended to pay more attention to hints after
correct moves, students with a negative attitude towards help showed more attention
to hints after incorrect moves, and students with a neural attitude showed limited
attention to hints overall. Thus, strategies should be investigated to increase attention
to hints that are tailored to the specific attention shortcomings generated by each type
of attitude towards receiving help.

In the next section, we show initial evidence that improving attention to hints as
discussed here is a worthwhile endeavour because it can improve student interaction
with the game.

Effect of Attention to Hints on Game Playing

In this section, we look at whether attention to hints impacts students’ actions and
performance with Prime Climb.

We start by focusing on the effect of attention to hints on correctness of the
player’s subsequent move. As our dependent variable, Move Correctness After
Hint, is categorical (e.g., the move is either correct or incorrect), we use logistic
regression to determine if Total Fixation Time, Fixations/word and Hint Type are
significant predictors of Move Correctness After Hints6.

Table 1 shows the results of running logistic regression on the data. A Hosmer-
Lemeshow test of goodness of fit was not significant, χ2(8)=7.105, p>.05, indicating
the model fit the data well. As can be seen in Table 1, Fixations/word is the only
significant predictor of Move Correctness After Hints. The odds ratio greater than 1
indicates that, as fixations/word increases, the odds of a correct move also increase.
This suggests that when the players read the hints more carefully, their next move is
more likely to be correct. The results of the logistic regression also indicate that the
type of hint students pay attention to does not impact move correctness. This finding
is consistent with the fact that, in Prime Climb, bottom-out hints do not provide direct
information on what to do next; they only explain how to evaluate the player’s
previous move in terms of number factorization and this information cannot be

6 The data points in our dataset are not independent, since they consist of sets of moves generated by the
same students. Lack of independence can increase the risk of making a type 1 error due to overdispersion
(i.e., ratio of the chi-square statistic to its degrees of freedom is greater than 1), but this is not an issue in our
data set. (χ2=6.41, df=8).

Table 1 Logistic regression results for Move Correctness After Hint

B (SE) p 95 % CI for odds ratio

Lower Odds ratio Upper

Fixations/word 0.98 (0.44) 0.03 1.12 2.68 6.39
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directly transferred to the next move. Still, it appears that students benefit from
paying attention to the hints, since when they attend to the hints they tend to make
fewer errors on subsequent moves. This finding suggests that further investigation
on how to increase student attention to hints is a worthwhile endeavor, because it
can improve student performance with the game and possibly help trigger student
learning.

Next, we look at whether attention to the Tool hints affected the subject’s decision
to follow the hint’s advice and use the magnifying glass. We again use logistic
regression to determine whether Total Fixation Time and Fixations/word are signif-
icant predictors of the categorical dependent variable Use Magnifying Glass. In this
case, neither measure was a significant predictor. A possible explanation for this
result is that the Tool hints are essentially all the same (aside for minor variations in
wording), thus reading one Tool hint may be enough to get the message and
subsequent hints simply act as reminders, that is they can be effective in triggering
magnifying glass usage even if the subject just glances quickly at the hint.

Comparing Students’ Behaviors and Their Subjective Assessments

In this section, we look at some of the answers provided by participants in the study
post-questionnaire, to see if they reflect the behaviors derived from the study action
log and gaze data. We found that students who agreed with the statement “I used the
magnifying glass” tended to use the magnifying glass more frequently, r(12)=.693,
p=.013. There was also a strong, significant correlation between fixations/word and
participants’ self-reported agreement with the statement “The agent’s hints were
useful for me”, r(12)=.655, p=.021. The correlation between fixations/word and
participants’ self-reported agreement with the statement “I read the hints given by
the agent” was still rather strong, but only marginally significant, r(12)=.514, p=.087,
possibly due to the small size of the data set. All in all, these results provide
encouraging evidence that students were answering the post questionnaire rather
truthfully, despite general concerns that exist regarding the reliability of these instru-
ments to elicit information from study participants.

Conclusions and Future Work

Many Intelligent Tutoring systems provide adaptive support to their students in
the form of adaptive textual hints that gradually help students through specific
educational activities when they have difficulties proceeding on their own.
Despite the widespread adoption of adaptive hints, there is substantial evidence
of possible limitations. Some students use the hints to get quick answers from the
ITS (i.e., they game the system), others don’t look for or want hints altogether.
This paper presented a user study to investigate student attention to user-adaptive
hints during interaction with Prime Climb, an educational computer game for
number factorization. In particular, we aimed to find initial answers to the
following questions:

1) Do students attend to adaptive hints that they have not explicitly requested?
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2) If they do, which factors related to game play (e.g., move correctness, interaction
time) or student differences (e.g. student’s initial domain knowledge, attitude
toward receiving help) affect a student’s tendency to attend to the unsolicited
adaptive hints?

3) Is attention to these hints useful, i.e. does it impact game performance?

This work contributes to existing research on student use and misuse of adaptive
hints in ITS by looking at how students react to hints when they are provided
unsolicited by the system, as opposed to being explicitly requested by the student
or obtained via gaming strategies. A second contribution is that, to the best of our
knowledge, this work is the first to focus on adaptive hints provided by an edu-game,
i.e., in a context in which it is especially challenging to provide didactic support,
because this support can interfere with game playing. An additional contribution is
that we use eye-tracking data to analyze student attention to hints, whereas most
previous research on this topic relied on time-based measures. An exception is the
work by Gluck et al. (2000), who also used eye-tracking to provide initial evidence
that students do not pay much attention to an ITS’s adaptive feedback. Our work,
however, provides a more in-depth gaze-based analysis of which factors affect
attention.

We found that attention to hints is affected by a variety of factors related to
student performance in the game, hint timing and context, as well as attitude
toward receiving help in general. We also found that attention to hints affects
game performance in Prime Climb (i.e. correctness of the players’ moves), thus
indicating that improving attention can be beneficial for students. The next step in
this research will be to leverage the findings in this paper to improve the design
and delivery of the Prime Climb hints. First, we plan to extend the Prime Climb
student model to use eye-tracking data in real-time for assessing if a student is
attending to hints. To attract student attention when it is lacking, we plan to
leverage our findings on the factors that affect attention to hints. For instance, the
finding that attention to definition hints (i.e. hints providing re-teaching of
relevant factorization concepts) decreases when they are provided during the
second half of the game can be taken into account to make these hints more
relevant and interesting if they have to be provided at that time (e.g. by varying
the presentation of the hints, or by better justifying why they are still presented).
In light of our results, we will also extend the Prime Climb student model to
incorporate information about a student’s attitude towards receiving help and
investigate strategies to increase attention to hints based on this attitude.

In this paper, we looked at three basic eye-tracking measures to gauge attention to
hints in Prime Climb: Total Fixation Time, Fixations/word and Time to First Fixation.
Another avenue of future research is to consider more sophisticated attention patterns,
e.g., transitions between hints and other relevant areas on the Prime Climb interface,
such as the mountain and the Magnifying glass. One option to identify which patterns
should be considered as indicative of productive attention is to mine them from data.
This process involves first using a form of clustering to identify groups of users that
behave similarly in terms of how they process hints visually, and then identifying
possible relationships of these patterns with learning, similarly to what Kardan and
Conati (2012) have done with interface actions. Finally, action and eye-data can be
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combined to build real-time classifiers that leverage both sources for predicting
student learning as the interaction proceeds and intervening if learning is predict-
ed to be low. Kardan and Conati (2013) discuss one such classifier for an
interactive simulation for university students. We aim to investigate if and how
this approach generalizes to more game-like environments, as exemplified by
Prime Climb.
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