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Abstract
The topological (resp. geodesic) complexity of a topological (resp. metric) space
is roughly the smallest number of continuous rules required to choose paths (resp.
shortest paths) between any points of the space.We prove that the geodesic complexity
of a 3-dimensional cube exceeds its topological complexity by exactly 2. The proof
involves a careful analysis of cut loci of the cube.
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1 Introduction

In [6], Farber introduced the concept of the topological complexity, TC(X), of a
topological space X , which is the minimal number k, such that there is a partition

X × X = E1 � · · · � Ek

with each Ei being locally compact and admitting a continuous function φi : Ei →
P(X), such thatφi (x0, x1) is a path from x0 to x1. Here, P(X) is the space of paths in X
with the compact-open topology, and each φi is called a motion-planning rule. If X is
the space of configurations of one ormore robots, thismodels the number of continuous
rules required to program the robots to move between any two configurations.

Recio-Mitter [8] suggested that if X is a metric space, then we require that the
paths φi (x0, x1) be minimal geodesics (shortest paths) from x0 to x1, and defined the
geodesic complexity, GC(X), to be the smallest number k, such that there is a partition

X × X = E1 � · · · � Ek
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with each Ei being locally compact and admitting a continuous function φi : Ei →
P(X), such that φi (x0, x1) is a minimal geodesic from x0 to x1.1 Each function φi is
called a geodesic motion-planning rule (GMPR).

One example discussed by Recio-Mitter [8] was when X is (the surface of) a cube.
It is well known that here TC(X) = TC(S2) = 3, and he showed that GC(X) ≥ 4. In
this paper, we prove that in this case, GC(X) = 5.

Theorem 1.1 If X is a cube, then GC(X) = 5.

For comparison, in [3], the author proved that for a regular tetrahedron T , GC(T ) =
4 or 5, but was not able to establish the precise value. Here again, TC(T ) = TC(S2) =
3.

Our work relies heavily on the work of the author and Guo [4], where they analyzed
the isomorphism classes of cut loci on the cube as labeled graphs. In Sect. 2, we review
the relevant parts of that work. In Sect. 3, we prove that GC(X) ≤ 5 by constructing
five explicit geodesic motion-planning rules. In Sect. 4, we prove GC(X) ≥ 5, using
methods similar to those used in [3, 8].

2 Background on cut loci of a cube

In this section, we present backgroundmaterial, mostly from [4], regarding cut loci for
a cube. The distance, d(P, Q), between points on the cube is the Euclidean distance
for points on the same face, while for any points, it is min(

∑n−1
i=0 d(Pi , Pi+1)), over

all sequences with P0 = P , Pn = Q, and Pi and Pi+1 in the same face.
The cut locus of a point P on a polyhedron, denoted LP , is the closure of the set of

points Q, such that there is more than one shortest path (minimal geodesic) from P to
Q. The cut locus is a labeled graph with corner points of the polyhedron labeling the
leaves ([9, Corollary of Lemma 4.4]). It is possible that a degree-2 vertex of the graph
might also be labeled by a corner point. Two labeled graphs are isomorphic if there is
a graph bijection between them preserving labels. We let L denote the isomorphism
class of a cut locus.

Figure 1, from [4], shows the partition of a face of a cube into 193 connected subsets
with constant L. Figure 2, also from [4], is a reparametrized version of the regions in
the left quadrant of Fig. 1.

In [4], we listed, in stylized form, the L for the various regions, but here, as we
are interested in continuity of motion-planning rules, we are concerned about other
aspects, such as the placement of edges of the cut locus with respect to one another.

The cut loci are found by the method of star unfolding and Voronoi diagrams, as
developed in [1, 7]. Wewill use the same numbering of the corner points of the cube as
was used in [4] and appears in Fig. 3, also taken from [4], which, for future reference,
includes an example of the cut locus of the midpoint of edge 5–8.

In [4], we explain how the diagram on the right side of Fig. 4 is obtained, depicting
in bold red the cut locus of the point P in the left side of Fig. 4. The numbers at half

1 Recio-Mitter’s definition of GC(X) = k involved partitions into sets E0, . . . , Ek , which, for technical
reasons, has become the more common definition of concepts of this sort, but we prefer here to stick with
Farber’s more intuitive formulation.
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Fig. 1 Decomposition of a face
into subsets on which L is
constant

Fig. 2 Regions in left quadrant
of Fig. 1

Fig. 3 A cube with labeled
corner points, and the cut locus
for the middle point of an edge
highlighted
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Fig. 4 Voronoi cells and cut locus of P

of the vertices of the polygon correspond to the corner points in Fig. 3, and the labels
P1, . . . , P8 at the other vertices are different positions of the point P in an unfolding
of the cube. Every point of the cube occurs exactly once inside or on the 16-gon in
Fig. 4, except that some occur on two boundary segments, and P occurs eight times.
Note that the boundary segments of the polygon in Fig. 4 are straight line segments
from P to corner points of the cube.

For example, the region in the right side of the 16-gon in Fig. 4 bounded above
and below by the segments coming in from the vertices labeled 6 and 7, on the right
by P5, and on the left by the short vertical segment I is all the points that are closer
to the P5 version of point P than to the others. This is called the Voronoi cell of P5.
The segment I is equally close to versions P1 and P5. There are two equal minimal
geodesics from P to points on I ; one crosses the segment connecting corner points 1
and 4, while the other crosses the segment connecting 6 and 7.

It is proved in [5] that the top and bottom halves of cut loci of the cube can be
considered separately. Although all the regions in Fig. 2 have distinct L, some have
isomorphic top halves. For example, as can be seen in [4, Figure 2.2], regions F, E, I,
C, and H all have isomorphic top halves. We combine these here into a single region,
which we will call F . Note the different font. Similarly, regions D, B, and I′ in Fig. 2
have the same top half of L and are combined into a single region, D. Also, D′ and E′
combine to form D′, F′ and G′ combine to F ′, and A, G, and H′ combine into A. This
simplifies Fig. 2 into our schematic Fig. 5, which only concerns top halves of L. We
will discuss bottom halves later in this section.

There are also curves DF , FA, DD′, D′F ′, and F ′A bounding these combined
regions. There is also ∗, the intersection point of five curves, and the left edge E ,
connecting corner points 8 and 5. In Fig. 6, we depict the top half of the cut loci for
these regions, with arrows indicating convergence of points in a region to points in its
boundary, in each of which an edge of the graph is collapsed.
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Fig. 5 Regions with same top
half of L

Fig. 6 Top halves of cut loci
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Fig. 7 Cut-locus bottom of reflection of region D′ of Fig. 5

A
AR

6 5

78

8 3
A

4 7

61

5 2

8 3 7
diag

4

2

65

1

4 3
AR

8 7

21

5 6

Fig. 8 Cut locus of rotation of region

The bottom half of the cut locus of a point (x, y) in a region R in Fig. 2 is obtained
from the top half of the cut locus of the vertical reflection (x,−y) of the point, which is
in reflected region R′, by inverting it and applying the permutation (1 4)(2 3)(5 8)(6 7)
to the labels. The collecting of several regions of Fig. 2 into a single region with the
same bottom half of L is essentially a vertical reflection of what was done in forming
Fig. 5 for top halves. For example, the vertical reflection of the region D′ of Fig. 5
contains regions D and E of Fig. 2, and its cut locus bottom is as in Fig. 7, which
is obtained by inverting the upper left diagram in Fig. 6 and applying the above
permutation.

Each region in the top quadrant of Fig. 1 is obtained from the corresponding region
in the left quadrant by a clockwise rotation of π/2 around the center of the square.
The cut locus of the new region is obtained from that of the old one by applying the
permutation (1 4 3 2)(5 8 7 6) to the labels and then rotating the resulting figure π/2
counter-clockwise. In Fig. 8, we show the cut locus of points in region A, in the rotated
region AR , and in the half-diagonal separating them.

In [4], we were only concerned about isomorphism type as a graph, but here we
care about the relative positions of the labeled arms.

3 Geodesic motion-planning rules

In this section, we construct five geodesic motion-planning rules for the cube. The
remainder of this section is devoted to the proof of the following result.

Theorem 3.1 If X is the cube, then X × X can be partitioned into five locally compact
subsets Ei with a GMPR φi on each.
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Fig. 9 Direction for φ2 for some cut loci

3.1 The set E1

We define E1 to be the set of pairs (P, Q), such that there is a unique minimal
geodesic from P to Q, and let φ1(P, Q) be that path. It is well known ([2, Chapter 1,
3.12 Lemma]) that such a function is continuous. Note that a corner point V at a leaf
of the cut-locus graph of a point P is not in the cut locus, so these (P, V ) are in E1.

3.2 The set E2

We define the multiplicity of (P, Q) (or of just Q if P is implicit) to be the number of
distinct minimal geodesics from P to Q. If Q is in the interior of an edge (resp. is a
vertex) of the cut-locus graph of P , then the multiplicity of (P, Q) equals 2 (resp. the
degree of the vertex).

We define E2 to be the set of all (P, Q) of multiplicity 2. The points Q will be
interiors of edges of the cut-locus graph or occasionally a degree-2 vertex, such as
vertex 2 in the cut locus of E in Fig. 6. The function φ2 is defined below using an
orientation of the cube, i.e., a continuous choice of direction of rotation around each
point.

The cut loci of points in a quadrant are a tree consisting of two parts connected by a
segment parallel to the edge of the quadrant. See, for example, the cut loci of points in
regions A and AR pictured in Fig. 8. For a three-dimensional example, see Fig. 3. See
Sections 5 and 6 of [5], which contains more detail than [4], for a proof. For points P
on the diagonals separating quadrants, the connecting “segment” in LP consists of a
single point. See the middle diagram in Fig. 8.

Think of rotating the cut locus around the center of the connecting segment in the
direction given by the orientation. If Q is not on the connecting segment, we define
φ2(P, Q) to be the geodesic from P to Q which approaches Q in the direction of the
rotation. We will deal with the connecting segments shortly.

In Figs. 9 and 10, we add to Figs. 8 and 6 red dots on the edges of several cut loci
indicating the side fromwhich Q should be approached if the orientation is clockwise.

Regarding the connecting segments, note that each edge of the cube bounds two
quadrants, and all LP for P in those two quadrants have parallel connecting segments.
For each quadrant pair, arbitrarily make a uniform choice of a side of these segments.
Let φ2(P, Q) for Q in those connecting segments be the minimal geodesic from P
to Q which approaches Q from the selected side. Because the quadrants are bounded
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Fig. 10 Direction for φ2 in some top halves

by diagonals in which the connecting points of cut loci halves are vertices of degree
4 and so are not part of E2, compatibility of the GMPRs for connecting segments in
distinct quadrant-pairs is not an issue.

We now discuss the continuity of φ2. For P within a region of constant L, the
vertices vi of its cut locus LP vary continuously with P , as they are intersections of
perpendicular bisectors of corresponding segments PαPβ , where Pα and Pβ vary lin-
early with P (see [4, (3.3)]). The edges in the cut-locus graph are segments connecting
two of these vertices vi and v j , and hence, if Qt denotes a point tvi + (1 − t)v j for
0 < t < 1, then Qt varies continuously with P . The orientation of the cube determines
the same side of the segment for all P in the region, and then, φ2(P, Qt )will be linear
paths between continuously varying points in continuously varying Voronoi cells. For
example, in Fig. 4, which corresponds to a point in region A of Fig. 2, let Qt be the
point a fraction t along the edge extending to the left from the point labeled 6, which
is corner point 6 of the cube. Then, if the orientation of the cube is clockwise around
the midpoint of segment I , φ2(P, Qt )would be the linear path from P4 to Qt , while if
it is counter-clockwise, it would be from P5 to Qt . (Recall that all the Pα are different
versions of the point P .) Since Qt varies continuously with P , φ2 is continuous on
each subset of E2 of the form

{(P, Q) : P lies in a region of constant L, Q on an open edge of LP }.

For Q in the interior of a connecting edge of LP , φ2(P, Q), defined in the preceding
paragraph, did not involve the orientation, but its continuity is clear from the ideas in
this paragraph.

Suppose points P in an open region of constant L approach a curve bounding the
region, such as points in region A in Fig. 8 approaching a point P0 in the half-diagonal
in that figure. The Voronoi diagram, such as Fig. 4, of points P will approach the
Voronoi diagram of P0. For example, the segment I in Fig. 4 collapses to a point, and
the segment to the left of point 6 approaches the horizontal segment connecting 6 and
2. The paths φ2(P, Qt ), for Qt on this limiting segment, will still be linear paths from
P4 or P5, depending on the selected orientation of the cube. Thus, the continuity of
φ2 extends from the open regions to their closures.

The cut locus of a corner point consists of the three edges and three diagonals
emanating from the opposite corner point. Although continuous variation of LP with
P is not quite true when P is a corner point, we show that our defining φ2 on E2 using
rotation around a central point is still continuous at the corner point. In Fig. 11, we
depict the cut loci of corner point V8 and of points P close to V8 along the 5–8 edge,
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Fig. 11 Cut locus of a corner point and of points near it

along the curve DE in Fig. 2, and along the diagonal, adorned with red dots indicating
the direction from which the side should be approached using φ2. As we will explain,
DE is supposed to be illustrative of all points between the edge and diagonal near V8.

The points (V8, Q) which are in E2 are those for which Q lies in the interior of the
six segments in the V8 diagram in Fig. 11. Continuity of φ2 at these points follows
similarly to that at other points as discussed earlier in this subsection. Limits of points
(P, Q) in E2 with P approaching V8 and Q on the edge of LP emanating from vertex
8 will not have (V8, Q) in E2, and hence, continuity at the limit point is not an issue.

For all points P on the 5–8 edge, excluding its endpoints, points Q on the edge
from vertex 8 to vertex 3 are part of LP . However, these points Q are not in LV8 ,
and so, (V8, Q) is in E1. A similar situation holds for P in the diagonal of face 5678,
where LP is pictured on the right side of Fig. 11, and the edge from vertex 8 to vertex
4 is not in LV8 .

As P moves from the 5–8 edge toward the diagonal, the end point of the cut-locus
edge from vertex 8 moves along the cut-locus segment emanating from vertex 3 until
it meets the end point of the cut locus segment emanating from vertex 4. In the DE
diagram, it is just shy of this meeting. Then, it moves along the cut-locus segment
emanating from vertex 4 until it reaches vertex 4 when P is on the diagonal.

As these P approach V8, the limit of this portion of LP is on a segment from V8
to a point on edge 3–4 followed by a segment down to V2. All such limiting points
(V8, Q) are in E1.

3.3 The set E3

The set E3 consists of 56 points (P, Q), such that Q is a vertex of the cut locus of P
of degree 5 or 6. Since this is a discrete set, the function φ3 can be defined arbitrarily.
Eight of these points have P a corner point of the cube and Q the opposite corner
point. The cut locus of a corner point was depicted in the left side of Fig. 11.

Another point in E3 has P equal to the point ∗, which was introduced in Fig. 5.
The top half of its cut locus is shown in Fig. 6; we show its entire cut locus in Fig. 12.

For P = ∗ and Q the indicated degree-5 vertex, we place (P, Q) in E3. The vertical
reflection ∗′ of ∗ has cut locus a reindexed vertical reflection of Fig. 12, and we place
(∗′, Q′), where Q′ is its degree-5 vertex, in E3. Each quadrant has two analogous
points in E3. There are 24 quadrants, so 48 such points altogether.
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Fig. 12 Cut locus of ∗

Fig. 13 Approach to vertices of cut loci

3.4 The sets E4 and E5

Two more sets, E4 and E5, are required for (P, Q) with Q a vertex of degree 3 or 4 of
the cut locus of P . In Fig. 13, we depict this for Q in the top half of cut loci of points
P in the left quadrant of the 5678 face. Because the degree-5 vertex in the cut locus
of ∗ has been placed in E3, we need not worry about continuity as ∗ is approached.

We place in E4 all (P, Q) in which Q can be approached from the 2–5 region,
and depict them by solid disks. For example, comparing the diagram labeled A in
Fig. 13 with Fig. 4 shows how our schematic L correspond to actual cut loci. The
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three degree-3 vertices in A in Fig. 13 correspond to three vertices in Fig. 4 which are
very close together. The segments coming from vertices 1 and 5 meet at a point just to
the left of the top of segment I . The paths φ4(P, Q) for Q any of these three vertices
are the segments from P3 in Fig. 4. The “2–5 region” means the region between the
segments of either of these diagrams emanating from vertices 2 and 5. The black dots
in Fig. 13 indicate that for these vertices Q of the cut locus, φ4(P, Q) is the path from
P3 in Fig. 4, the path passing between vertices 2 and 5. In Sect. 3.2, we showed that
the points Q vary continuously with P , implying continuity of φ4.

In E5, we place those (P, Q) not in E4 which can be approached from the 2–
6 region, and depict them by open circles. In Diagram A in Fig. 13, the rightmost
degree-3 vertex can be approached from the 2–6 region, but has already been placed
in E4. In Diagram F ′ in Fig. 13, the intersection points have changed and now, the
end of the segment from 6 can no longer be approached from P3 in the analogue of
Fig. 4, so we choose to approach it from P4, the 2–6 region.

The cases, in D, F , and DF , where certain Q cannot be approached from the 2–5
or 2–6 regions are placed in E4 or E5 as indicated by • or ◦. For example, the point
(P, Q) with Q the vertex at the end of the edge from vertex 1 in Diagram D could
not have been placed in E5, because they approach a DD′ diagram in E5 whose φ5
path is impossible for them to approach. Note that the degree-2 vertex when P is on
the edge E is in E2, which was already considered. The GMPRs φ4 and φ5 choose the
minimal geodesic from P to Q which approach Q from region 2–5, 2–6, or 1–5.

Each arrow in Fig. 13 represents points P in a region approaching points in its
boundary. A segment in a cut locus shrinks to a point. Continuity of φ4 and φ5 follows
similarly to that of φ2.

All quadrants of all faces are handled similarly, using permutations of corner-point
numbers. In particular, if P is in the analogue of the large region A in any quadrant,
and Q is a vertex of the top half of the cut locus of P , then (P, Q) is placed in E4. For
the degree-3 and degree-4 vertices Q of the cut locus of points P in the diagonals of
a face (see Fig. 8), we place (P, Q) in E5. Then, since A is the only region abutting
the diagonal, then there is no worry about continuity of φ functions at these points, as
long as we make consistent choices. The cut locus of the center of a face has four arms
emanating from a central vertex, with a degree-2 vertex on each arm. In the 5678 face,
it is obtained from the cut locus of the diagonal pictured in Fig. 8 by collapsing the
arms from 1 and 3 to a point. We make an arbitrary choice of φ5(P, Q) when Q is the
degree-4 vertex of the cut locus of the center P of a face, and then choose φ5(P, Q)

compatibly when Q is the degree-4 vertex of the cut loci of points P on the diagonals
of the face.

In the paragraph following Fig. 6, we described how bottom halves of cut loci are
determined from top halves of cut loci. We put these (P, Q)with Q a vertex of degree
3 or 4 in the bottom half of the cut locus of P in sets Ei with GMPRs φi , 4 ≤ i ≤ 5,
analogously to what was done for the top halves.

The cube is composed of 12 regions such as that in Fig. 14, each bounded by
half-diagonals of faces, and symmetrical about an edge of the cube. For cut-locus
vertices of degree 3 or 4, the GMPRs on the diagonals are in separate sets (E5) from
those (E4) on the A-regions abutting them, and so the 12 regions can be considered
separately. Once we have defined the GMPRs for P in the region containing the 5–8
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Fig. 14 A subset of the cube

Fig. 15 Horizontal reflection

edge, GMPRs on the other regions can be defined similarly, using permutations of
corner-point numbers.

The cut locus of a point P̃ on the left half of Fig. 14 is obtained from that of its
horizontal reflection by applying the permutation (1 6)(4 7) and reflecting horizontally.
In Fig. 15, we show top halves of cut loci for points in the reflection of the edge E and
of the regions abutting it, together with their GMPRs for vertices of degree ≥ 3. Note
that E = Ẽ , so they have the same cut loci, but the depictions of them from the star
unfolding are different depending on whether they are the left or right edge.

The sets Ei and functions φi , 4 ≤ i ≤ 5, for the left side of Fig. 14 are defined like
those on the primed (or unprimed) version on the right side, with 2 and 5 interchanged.
Compare D̃′ (resp. D̃) in Fig. 15 with D (resp. D′) in Fig. 13. This completes the proof
of Theorem 3.1.
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Fig. 16 Top half of cut locus of
points on curve DE

4 Lower bound

In this section, we prove the following result, which is the lower bound in Theorem 1.1.
The method is similar to that developed by Recio-Mitter [8] and applied by the author
in [3].

Theorem 4.1 If X is a cube, it is impossible to partition X ×X into sets Ei , 1 ≤ i ≤ 4,
with a GMPR φi on Ei .

The proof involves many subsequences and uses the following elementary lemma.

Lemma 4.2 If a sequence xn approaches V , and for all n, there are sequences
xn,m approaching xn, then, there exist increasing sequences nk and mk, such that
limk xnk ,mk = V , and we have lim� xnk ,m�

= xnk .

Remark 4.3 We will abuse notation and say that in the situation of this lemma, there
is a diagonal subsequence with xn,n → V . In cases of multiple subscripts, the limit is
taken over the final subscript.

We will apply this to situations where each x is a pair (P, Q).

Proof of Theorem 4.1 Assume such a decomposition exists. Note that the specific Ei

of the previous section are not relevant here. Let Vi be the corner point numbered i
in our treatment of the cube. The cut locus of V8 is as in the left side of Fig. 11. It
consists of edges of the cube from V2 to V1, V3, and V6, and diagonals of a face from
V2 to V4, V5, and V7.

Let E1 be the set containing (V8, V2), and suppose φ1(V8, V2) is the geodesic
passing between V3 and V4. Other cases can be handled in the same way, using a
permutation of corner points.

Points P on the curve DE of Fig. 2 have top half of cut loci as in Fig. 16. (This is
part of the curve DF in Fig. 5.)

Let Q be the vertex of degree 4 in LP , andα, β,γ , and δ the four regions of approach
to Q, as indicated in the figure. As P approaches V8 along DE, Fig. 16 approaches
the top half of the cut locus of V8 (Fig. 11); the segment from Q to V2 shrinks to
the point V2, and the other vertical segment collapses, too. Suppose there were a
sequence of points Pn on DE approaching V8 with Qn the degree-4 vertex in LPn , as
illustrated by the point Q in Fig. 16, and (Pn, Qn) ∈ E1. Then, φ1(Pn, Qn) would
approach φ1(V8, V2), but this is impossible, since they pass through different regions.
Therefore, there must be a sequence Pn on DE approaching V8 for which (Pn, Qn) is
in a different set, E2, and restricting further, we may assume that φ2(Pn, Qn) all pass
through the same region, α, β, γ , or δ.
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Fig. 17 Top half of cut locus of
points P in region D

Fig. 18 Top half of cut locus of
points in region E

Points in region D have top half of cut locus as in Fig. 17. See Fig. 6.
Let Qα and Qγ be the indicated vertices in Fig. 17; i.e., Qα is the point in

LP where edges from V5 and V2 intersect, and similarly for Qγ . If φ2(Pn, Qn)

passes through region α (resp. γ ) in Fig. 16, consider a sequence of points Pn,m

in region D approaching Pn , and let the associated cut-locus points Qn,m be the Qα

(resp. Qγ ) just defined. Such a sequence (Pn,m, Qn,m) cannot have a convergent
subsequence in E2, since, if it did, reindexing to include just the points in the sub-
sequence, φ2(Pn,m, Qn,m) → φ2(Pn, Qn), but paths going to Qα (resp. Qγ ) cannot
approach a path passing through region α (resp. γ ) in Fig. 16. Therefore, we may
restrict to points (Pn,m, Qn,m) not in E2, and restricting further, we may assume
that they are in the same Ei for all n and m. If i = 1, then by Lemma 4.2 and
Remark 4.3, a subsequence (Pn,n, Qn,n) would approach (V8, V2) and would have
φ1(Pn,n, Qn,n) → φ1(V8, V2), which is impossible, since these paths pass through
different regions. Thus, all (Pn,m, Qn,m) must be in either E3 or E4, and we may
assume that they are all in E3.

A similar argument works if all φ2(Pn, Qn) pass through region β or δ in Fig. 16,
using points Pn,m in region E of Fig. 2 approaching Pn , and Qn,m the intersection
points in LPn ,m illustrated by Qβ or Qδ in Fig. 18, which depicts the top half of the
cut locus of points in region E of Fig. 2. (Region E of Fig. 2 is part of region F
of Fig. 5.) Thus, we conclude that all (Pn,m, Qn,m) are in E3, regardless of whether
φ2(Pn, Qn) passed through α, β, γ , or δ.

Suppose all φ2(Pn, Qn) pass through region α in Fig. 16, and Qn,m are the inter-
section points in LPn,m corresponding to Qα in Fig. 17. An argument similar to the
one that we will provide works if α is replaced by β, γ , or δ. All that matters is that
the vertex Qα (or its analogue) has degree 3. In Fig. 19, we isolate the relevant portion
of Fig. 17, with Qn,m at the indicated vertex.
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Fig. 19 A portion of Fig. 17, the
cut locus of Pn,m

We may assume, after restricting, that all φ3(Pn,m, Qn,m) pass through the same
one of the three regions in Fig. 19, which we call region R. For a sequence Qn,m,�

approaching Qn,m on the edge not bounding R, (Pn,m, Qn,m,�) cannot have a conver-
gent subsequence in E3, since φi (Pn,m, Qn,m,�) cannot pass through R. Restricting
more, we may assume that all (Pn,m, Qn,m,�) are in the same Ei , with i 
= 3. If i = 2,
then, using Lemma 4.2 and Remark 4.3, a subsequence φ2(Pn,m, Qn,m,m) approaches
φ2(Pn, Qn). Recall that as Pn,m approaches Pn , the cut locus of Pn,m depicted in
Fig. 17 approaches that of Pn illustrated in Fig. 16. The limit of a sequence of lin-
ear paths approaching vertex Qα (= Qn,m) in Fig. 17 cannot pass through region α

in Fig. 16, as the former lie above the cut-locus edge emanating from V6, while the
latter lie below it. Therefore, i 
= 2. Also, i cannot equal 1, because if so, applying
Lemma 4.2 and Remark 4.3 twice, φ1(Pn,n, Qn,n,n) → φ1(V8, V2), but φ1(V8, V2)
passes between V3 and V4 in the lower half of the cut locus. Therefore, i = 4.

Wemay assume, after restricting, that all the φ4(Pn,m, Qn,m,�) come from the same
side of the edgegoingout fromQn,m in LPn,m which contains the pointsQn,m,�. Choose
points Qn,m,�,k in the complement of the cut locus of Pn,m on the opposite side of
the edge converging to Qn,m,�. Restricting, we may assume that all (Pn,m, Qn,m,�,k)

are in the same Ei . Note that φi (Pn,m, Qn,m,�,k) is the unique geodesic between
these points. This i cannot equal 4, since φi (Pn,m, Qn,m,�,k) and φ4(Pn,m, Qn,m,�)

approach the edge from opposite sides. It cannot equal 3, since φi (Pn,m, Qn,m,�,�) and
φ3(Pn,m, Qn,m) approach the vertex in Fig. 19 from different regions. It cannot equal
2, since, applying Lemma 4.2 twice, subsequences (Pn,m, Qn,m,m,m) → (Pn, Qn),
but φi (Pn,m, Qn,m,m,m) and φ2(Pn, Qn) approach the vertex in Fig. 16 from different
regions. And, it cannot equal 1, since φi (Pn,n, Qn,n,n,n) and φ1(V8, V2) approach V2
from different regions. Therefore, a fifth Ei is required. ��
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