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Abstract
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1 Introduction

Throughout this work, we are interested in studying the following optimization prob-
lem:

(P) x∗ ∈ X∗ = argmin{ f (x) | x ∈ S},

where

S = {x ∈ R
n | gi (x) ≥ 0, i = 1, . . . ,m}

is the convex feasible set of the problem (P), the function f : Rn → R is convex,
gi : R

n → R, i = 1, . . . ,m, is concave and we also assume that f and gi are
continuously differentiable.

The augmented Lagrangian algorithms solve convex problem (P), see [11] and
[12]. Recently, it was guaranteed that the hyperbolic augmented Lagrangian algorithm
(HALA) also solves problem (P), see [9]. In [9], it is guaranteed that a subsequence
generated by HALA converges toward a Karush–Kuhn–Tucker (KKT) point. The
HALA minimizes the HALF (this minimization problem is known as the subproblem
generated by the augmented Lagrangian algorithm). With the solution found in the
subproblem, the Lagrange multipliers will be updated through an update formula. The
theory of duality is a current topic and this theory is studied in more general spaces,
see [20]. In this work, we are interested in developing the duality theory for HALF in
the Euclidean space.

The main result of our work is: we guarantee the strong duality for the HALF for
the convex case. In this way, we assure a solution to the primal and dual problems.
With these results, we can also note that HALF has similar properties to Log-Sigmoid
Lagrangian function (LSLF), see [12], modified Frisch function (MFF), and modified
Carroll function (MCF), these last two functions are studied in [11].

The work is organized as follows: in Sect. 2, we present some basic results, the
hyperbolic penalty function, and some of its properties; in Sect. 3, we present the
HALF; in Sect. 4, we develop the duality theory for HALF, and in Sect. 5, we present
a set of computational illustrations to verify our theoretical results.
Notation
Throughout this work, R is the Euclidean space, R+ = {a ∈ R : a ≥ 0}, R++ =
{a ∈ R : a > 0} and ‖·‖ is the Euclidean norm.

2 Preliminaries

Henceforth, we consider the following assumption:
A. Slater constraint qualification holds, i.e., there exists x̂ ∈ S which satisfies

gi (x̂) > 0, i = 1, . . . ,m.
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The Lagrangian function associated with the problem (P) is L : Rn ×R
m+ → R

n,

defined as

L(x, λ) = f (x) −
m∑

i=1

λi gi (x),

where λi ≥ 0, i = 1, . . . ,m, are called Lagrange multipliers. The dual function
� : Rm+ → R, is defined as

�(λ) = inf
x∈Rn

L(x, λ), (2.1)

and the dual problem consists of finding (D):

λ∗ ∈ �∗ = argmax{�(λ) | λ ∈ R
m+}.

2.1 Hyperbolic penalty

The hyperbolic penalty method, introduced in [16], is meant to solve the problem (P).
The penalty method adopts the hyperbolic penalty function (HPF) as follows:

P(y, λ, τ ) = −λy +
√

(λy)2 + τ 2, (2.2)

where P : R×R+ ×R++ → R. The graphic representation of P(y, λ, τ ) is as shown
in Fig. 1. Now, in the present work, we consider τ > 0 fixed.

Remark 2.1 The HPF is originally proposed in [16] and also studied in [17]. In these
works, the following properties are important for HPF:

(a) P(y, λ, τ ) is asymptotically tangent to the straight lines r1(y) = −2λy and
r2(y) = 0 for τ > 0.

(b) P(y, λ, 0) = 0, for y ≥ 0 and P(y, λ, 0) = −2λy, for y < 0.
Due to the properties (a) and (b), the HPF perform a smoothing of the penalty
studied by Zangwill, see [19].

For more details of the HPF, see [16] and [17]. In particular, we use the following
properties of the function P:

(P0) P(y, λ, τ ) is k−times continuously differentiable for any positive integer k for
τ > 0.

(P1) P(0, λ, τ ) = τ, for τ > 0 and λ ≥ 0.
(P2) P(y, λ, τ ) is strictly a decreasing function of y, i.e.,

∇y P(y, λ, τ ) = −λ

(
1 − λy√

(λy)2 + τ 2

)
< 0, for, τ > 0, λ > 0.
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Fig. 1 Hyperbolic penalty function

Remark 2.2 For any λ ≥ 0, y ≥ 0 and τ > 0. We have

− λy −
√

(λy)2 + τ 2 < 0 < −λy +
√

(λy)2 + τ 2. (2.3)

Considering the definition of the function P in (2.3), we have P(y, λ, τ ) > 0.

3 Hyperbolic augmented Lagrangian function

We define the HALF of problem (P) by LH : Rn × R
m++ × R++ → R,

LH (x, λ, τ ) = f (x) +
m∑

i=1

P(gi (x), λi , τ ),

which can be written as

LH (x, λ, τ ) = f (x) +
m∑

i=1

(
−λi gi (x) +

√
(λi gi (x))2 + τ 2

)
, (3.1)
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where τ is the penalty parameter and a fixed value. Note that this function belongs to
class C∞ if the involved functions f (x) and gi (x), i = 1, . . . ,m, are too.

Proposition 3.1 Let us assume that if f (x) and all gi (x) ∈ C2, and that f (x) is strictly
convex, then LH (x, λ, τ ) is strictly convex in R

n for any fixed λ > 0 and τ > 0.

Proof We only need to prove that the Hessiana of LH is defined positive. Let λ =
(λ1, . . . , λm) > 0 and τ > 0 be fixed. The Hessian of LH (x, λ, τ ) is

∇2
xx LH (x, λ, τ ) = ∇2

xx f (x) −
m∑

i=1

λi∇2
xx gi (x)

+
m∑

i=1

(
(λi )

2
√

(λi gi (x))2 + τ 2
− (λi )

4g2i (x)

((λi gi (x))2 + τ 2)
3
2

)
∇x gi (x)∇T

x gi (x)

+
m∑

i=1

(λi )
2gi (x)√

(λi gi (x))2 + τ 2
∇2
xx gi (x). (3.2)

In (3.2), the ∇2
xx gi (x) is factored, so we can rewrite (3.2) as follows:

∇2
xx LH (x, λ, τ ) = ∇2

xx f (x) −
m∑

i=1

λi

(
1 − λi gi (x)√

(λi gi (x))2 + τ 2

)
∇2
xx gi (x)

+
m∑

i=1

(
(λi )

2
√

(λi gi (x))2 + τ 2
− (λi )

4g2i (x)

((λi gi (x))2 + τ 2)
3
2

)
∇x gi (x)∇T

x gi (x).

(3.3)

On the other hand, we know that we have

(
(λi gi (x))

2 + τ 2
)

λ2i > λ2i (λi gi (x))
2.

The above inequality can be written as

λ2i
(
(λi gi (x))2 + τ 2

) 1
2

− λ4i g
2
i (x)

(
(λi gi (x))2 + τ 2

) 3
2

> 0. (3.4)

Replacing (3.4) in (3.3) and since −λi

(
1 − λi gi (x)√

(λi gi (x))2+τ 2

)
< 0, in (3.3), we get

that, ∇2
xx LH (x, λ, τ ) > 0, for λ > 0 and τ > 0 fixed. 
�

Remark 3.1 Henceforth, we are going to assume that there is a solution for the sub-
problem generated by HALA. Now, considering this assumption of existence of a
solution and considering the Proposition 3.1 for any λ > 0 and τ > 0, then there
exists a unique minimizer for problem (P). This minimizer is defined as

x̌ = x̌(λ, τ ) = argmin
{
LH (x, λ, τ ) | x ∈ R

n} .
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4 Duality

In this section, we adapt the classic results already existing in the literature (Chapter
9 of [10] and Section 7 of [11]) for our HALF. The following result is also verified by
MFF and MCF, see [11].

Proposition 4.1 Consider the convex problem (P). Assume the assumption A holds.
Then, x∗ ∈ S is a solution of problem (P) for any τ > 0 if and only if:

(i) There exists a vector λ∗ ≥ 0 such that

λ∗
i gi (x

∗) = 0, i = 1, . . . ,m and LH (x, λ∗, τ ) ≥ LH (x∗, λ∗, τ ), ∀x ∈ R
n .

(4.1)

(ii) The pair (x∗, λ∗) is a saddle point of LH , that is,

LH (x, λ∗, τ ) ≥ LH (x∗, λ∗, τ ) ≥ LH (x∗, λ, τ ), ∀x ∈ R
n, ∀λ ∈ R

m+.

(4.2)

Proof (⇒) Let any τ > 0 be fixed. Assume x∗ is a solution for convex problem (P)
satisfying the assumption A. Then the system

f (x) − f (x∗) < 0,

−gi (x) < 0, i = 1, . . . ,m,

has no solution in R
n . Hence, by the Proper Separation Theorem (see, Theorem 2.26

(iv) of Dhara and Dutta [3]), there exists a vector (λ̃, λ̂) �= (0, 0) ∈ R×R
m such that

λ̃
(
f (x) − f (x∗)

) −
m∑

i=1

λ̂i gi (x) ≥ 0,

for all x ∈ R
n . We can rewrite the inequality above as

λ̃
(
f (x) − f (x∗)

) ≥
m∑

i=1

λ̂i gi (x), (4.3)

for all x ∈ R
n . Now, we follow an analysis similar to Theorem 4.2 of [3], so by A, we

have that there exists λ∗
i = λ̂i

λ̃
, i = 1, . . . ,m, with λ̃ > 0. Then, by (4.3) we have

f (x) − f (x∗) ≥
m∑

i=1

λ∗
i gi (x), (4.4)
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for all x ∈ R
n . In particular, (4.4) holds for x = x∗. So, we have

0 ≥
m∑

i=1

λ∗
i gi (x

∗). (4.5)

On the other hand, since gi (x∗) ≥ 0 and λ∗
i ≥ 0 for i = 1, . . . ,m, then by (4.5),

we obtain

λ∗
i gi (x

∗) = 0, i = 1, . . . ,m, (4.6)

which holds, thus, we have the first part of (4.1).
Now, we are interested in proving the second part of (4.1). From (4.6) and (4.4),

we have

f (x∗) −
m∑

i=1

λ∗
i gi (x

∗) = f (x∗) ≤ f (x) −
m∑

i=1

λ∗
i gi (x), (4.7)

for all x ∈ R
n . Now, since we have (4.6), we can obtain

m∑

i=1

√
(λ∗

i gi (x
∗))2 + τ 2 ≤

m∑

i=1

√
(λ∗

i gi (x))
2 + τ 2. (4.8)

Considering (4.7) and (4.8), we have

LH (x, λ∗, τ ) ≥ LH (x∗, λ∗, τ ), ∀x ∈ R
n, (4.9)

which concludes the proof of (4.1).
Now, we are interested in verifying item (i i), first we will prove that LH (x∗, λ∗, τ )

= f (x∗) +mτ. Indeed, we consider (4.6) in the definition of function LH (see (3.1)),
so we have

LH (x∗, λ∗, τ ) = f (x∗) + mτ. (4.10)

On the other hand, x∗ is feasible, i.e.,

gi (x
∗) ≥ 0, i = 1, . . . ,m. (4.11)

By applying the property P2 of the HPF in (4.11), we obtain

P(gi (x
∗), λi , τ ) ≤ P(0, λi , τ ), i = 1, . . . ,m. (4.12)
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By applying property P1 on the right side of expression (4.12) and by performing
the sum of 1 to m in the inequality, it follows

m∑

i=1

P(gi (x
∗), λi , τ ) ≤

m∑

i=1

τ = mτ.

Adding f (x∗) to both sides of the expression, we obtain

f (x∗) +
m∑

i=1

P(gi (x
∗), λi , τ ) ≤ f (x∗) + mτ. (4.13)

By definition of LH , (4.13) becomes

LH (x∗, λ, τ ) ≤ f (x∗) + mτ. (4.14)

Now, by (4.14) and (4.10), we have

LH (x∗, λ, τ ) ≤ f (x∗) + mτ = LH (x∗, λ∗, τ ). (4.15)

Finally, from (4.9) and (4.15), there exists λ∗ ≥ 0 such that the primal-dual solution
(x∗, λ∗) is a saddle point of LH , ∀x ∈ R

n and τ > 0.
(⇐) We assume that (x∗, λ∗) is a saddle point of LH , so (4.2) holds. Then, for all

x ∈ R
n, λ ∈ R

m+ and for any τ > 0 fixed, we have

f (x∗) −
m∑

i=1

λi gi (x
∗) +

m∑

i=1

√
(λi gi (x∗))2 + τ 2 = LH (x∗, λ, τ )

≤ LH (x∗, λ∗, τ ) = f (x∗) −
m∑

i=1

λ∗
i gi (x

∗) +
m∑

i=1

√(
λ∗
i gi (x

∗)
)2 + τ 2.

(4.16)

This relation (4.16) is possible only if gi (x∗) ≥ 0. If this relation is violated
(i .e., gi (x∗) < 0) for some index i, we can choose λi sufficiently large so that (4.16)
becomes false. So, x∗ is feasible for problem (P).

We will prove the complementarity condition of (4.1). So again, by (4.16), since
that λi ≥ 0, i = 1, . . . ,m, and in particular taking λi = 0, i = 1, . . . ,m, in (4.16),
we obtain

m∑

i=1

((
λ∗
i gi (x

∗)
)2 + τ 2 + 2τλ∗

i gi (x
∗)

)
≤

m∑

i=1

(
(λ∗

i gi (x
∗))2 + τ 2

)
.

Thus,
∑m

i=1 λ∗
i gi (x

∗) ≤ 0, and since λ∗
i ≥ 0 and gi (x∗) ≥ 0, i = 1, . . . ,m, it

must be true that

λ∗
i gi (x

∗) = 0, i = 1, . . . ,m. (4.17)
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By (4.17) and the definition of LH , we obtain

LH (x∗, λ∗, τ ) = f (x∗) + mτ. (4.18)

From the definition of saddle point, we know that LH (x, λ∗, τ ) ≥ LH (x∗, λ∗, τ ).

By (4.18) and by the definition of LH , we can write

f (x∗) + mτ = LH (x∗, λ∗, τ ) ≤ LH (x, λ∗, τ )

= f (x) +
m∑

i=1

P(gi (x), λ
∗
i , τ ). (4.19)

On the other hand, once again considering the property P2 of HPF, for any feasible
point x, i.e., gi (x) ≥ 0, i = 1, . . . ,m, we will carry out a similar approach as was
done on equation (4.11)-(4.13), thus, obtaining

f (x) +
m∑

i=1

P(gi (x), λ
∗
i , τ ) ≤ f (x) + mτ. (4.20)

Now,we replace (4.20) in (4.19), so it follows f (x∗) ≤ f (x)whenever x is feasible.
Therefore, x∗ is a global optimal solution of (P). 
�

Let us consider the following definitions. Let

Fτ (x) = sup
λ≥0

LH (x, λ, τ ).

Then, Fτ (x) = f (x)+mτ if gi (x) ≥ 0, i = 1, . . . ,m and Fτ (x) = ∞, otherwise.
Therefore, we can consider the following problem:

x∗ = argmin
{
Fτ (x) | x ∈ R

n} , (4.21)

that is the problem (P) reduces to solving (4.21).
Let

φτ (λ) = inf
x∈Rn

LH (x, λ, τ )

(possibly φτ (λ) = −∞ for some λ) and consider the following dual problem of
(P) that consists of finding

λ∗ = argmax {φτ (λ) | λ ≥ 0} . (4.22)

In the following result, we are going to verify the weak duality.
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Proposition 4.2 Let x be a feasible solution to problem (P) and let λ be a feasible
solution to problem (4.22). Then,

φτ (λ) ≤ Fτ (x) = f (x) + mτ, ∀x ∈ S, ∀ λ ∈ R
m+.

Proof For any feasible x and λ, we have the weak duality. Indeed, by the definition
of φτ , we have

φτ (λ) = inf
w∈Rn

LH (w, λ, τ ) = inf
w∈Rn

{
f (w) +

m∑

i=1

P(gi (w), λi , τ )

}

≤ inf
w∈S

{
f (w) +

m∑

i=1

P(gi (w), λi , τ )

}

= f (x) +
m∑

i=1

P(gi (x), λi , τ ). (4.23)

Since we know that x is feasible, we immediately have gi (x) ≥ 0, i = 1, . . . ,m.

Then, from the property P2 of the HPF, we have the following expressions

m∑

i=1

P(gi (x), λi , τ ) ≤
m∑

i=1

P(0, λi , τ ).

Now, applying property P1 on the right side of the previous inequality, and adding
f (x), to both sides of the inequality above, we have

f (x) +
m∑

i=1

P(gi (x), λi , τ ) ≤ f (x) + mτ. (4.24)

Replacing (4.24) in (4.23), we finally obtain

φτ (λ) ≤ f (x) + mτ, ∀x ∈ S, ∀λ ∈ R
m+. (4.25)


�
If x̂ and λ̂ are feasible solutions of the primal and dual problems and Fτ (x̂) = φτ (λ̂),

then x̂ = x∗ and λ̂ = λ∗. From Remark 3.1, with the smoothness of f (x) and
gi (x), i = 1, . . . ,m, we ensure the smoothness for the dual function φτ (λ).

Theorem 4.1 The problem (P) is considered. The assumption A is verified. Then, the
existence of a solution of problem (P) implies that the problem (4.22) has a solution
and

φτ (λ
∗) = f (x∗) + mτ, f or any τ > 0. (4.26)
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Proof Let x∗ be a solution of problem (P). From A, we get λ∗ ≥ 0, so that (4.1) is
verified. So, we have

φτ (λ
∗) = min

x∈Rn
LH (x, λ∗, τ ) = LH (x∗, λ∗, τ )

≥ LH (x∗, λ, τ ) ≥ min
x∈Rn

LH (x, λ, τ ) = φτ (λ), ∀λ ≥ 0.

Therefore, φτ (λ
∗) = max

{
φτ (λ) | λ ∈ R

m+
}
. In this way, λ∗ ∈ R

m+ is a solution of
the dual problem and since we have LH (x∗, λ∗, τ ) = f (x∗) + mτ, (4.26) holds. 
�
Proposition 4.3 Suppose that (4.26) holds, for the viable points x∗ and λ∗. Then, x∗
is a solution of the problem (P) and λ∗ is a solution of the dual problem (4.22).

Proof Let gi (x∗) ≥ 0, i = 1, . . . ,m, with x∗ ∈ S, λ∗
i ≥ 0, i = 1, . . . ,m and (4.26)

with τ > 0 be fixed. Then from (4.25), where x and λ are viable, we can obtain the
following

f (x) + mτ ≥ φτ (λ
∗) = f (x∗) + mτ ≥ φτ (λ),

i.e., x∗ is solution of the problem (P) and λ∗ is solution of (4.22), which corresponds
to the validity of the strong duality. 
�

5 Computational illustration

We are going to use HALA (see [9]) to guarantee the theory proposed in this work.
The program was compiled by the GNU Fortran compiler version 4:7.4.0-1ubuntu2.3.
The numerical experiments were conducted on a notebook with the operating system
Ubuntu 18.04.5, CPU i7-3632QM and 8GB RAM. The unconstrained minimization
tasks were carried out by means of a Quasi-Newton algorithm employing the BFGS
updating formula,with the functionVA13 fromHSL library [6]. The algorithm stopped
when the solution was viable (feasible) and the absolute value of the difference of the
two consecutive solutions ‖xk − xk−1‖ was less than 10−5

We are going to take advantage of this section to make some comparisons of our
algorithm HALA (see Table 18) with respect to the following algorithms:

Alg1 = [4], a truncated Newton method;
Alg2 = [5], a primal–dual interior-point method;
Alg3 = [14], an interior-point algorithm;
Alg4 = [13], a QP-free method;
Alg5 = [2], a primal–dual feasible interior-point method;
Alg6 = [18], a feasible sequential linear equation algorithm;
Alg7 = [15], an inexact first-order method
Alg8 = [7], a feasible direction interior-point technique;
Alg9 = [1], an interior-point algorithm.

For completeness reasons, we are going to present HALA:
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Algorithm 1 Hyperbolic Augmented Lagrangian Algorithm

Step 1. Let k := 0 (initialization). Take initial values λ0 = (λ01, . . . , λ
0
m ) ∈ R

m++, τ ∈ R++.

Step 2. Solve the unconstrained minimization problem (primal update):

xk+1 ∈ argminx∈Rn LH (x, λk , τ )

= argminx∈Rn

⎧
⎨

⎩ f (x) +
m∑

i=1

(
−λki gi (x) +

√(
λki gi (x)

)2 + τ2

)⎫
⎬

⎭ .

Step 3. Update the Lagrange multipliers (dual update):

λk+1
i = λki

⎛

⎝1 − λki gi (x
k+1)

√
(λki gi (x

k+1))2 + τ2

⎞

⎠ , i = 1, . . . ,m. (5.1)

Step 4. If the pair (xk+1, λk+1) satisfies the stopping criteria, stop.
Step 5. k := k + 1. Go to Step 2.

With the following examples proposed in the book [8], we are going to verify the
strong duality. In each example, the value ofm means the total number of restrictions.
Also, in all the examples starting points are considered so that assumptionA is verified.

Example 5.1 Problem 1 (HS1).

min
x∈R2

f (x) = 100(x2 − x21 )
2 + (1 − x1)

2

s.t . g1(x) = x2 + 1.5 ≥ 0.

Starting with x0 = (−2, 1) (feasible), f (x0) = 909 and m = 1. The minimum value
is f (x∗) = 0 at the optimal solution x∗ = (1, 1).

Example 5.2 Problem 30 (HS30).

min
x∈R3

f (x) = x21 + x22 + x23

s.t . g1(x) = x21 + x22 − 1 ≥ 0,

g2(x) = x1 − 1 ≥ 0,

g3(x) = 10 − x1 ≥ 0,

g4(x) = x2 + 10 ≥ 0,

g5(x) = 10 − x2 ≥ 0,

g6(x) = x3 + 10 ≥ 0,

g7(x) = 10 − x3 ≥ 0.

Starting with x0 = (1, 1, 1) (feasible), f (x0) = 3 and m = 7. The minimum value is
f (x∗) = 1 at the optimal solution x∗ = (1, 0, 0).
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Example 5.3 Problem 66 (HS66).

min
x∈R3

f (x) = 0.2x3 − 0.8x1

s.t . g1(x) = x2 − ex1 ≥ 0,

g2(x) = x3 − ex2 ≥ 0,

g3(x) = x1 ≥ 0,

g4(x) = x2 ≥ 0,

g5(x) = x3 ≥ 0,

g6(x) = 100 − x1 ≥ 0,

g7(x) = 100 − x2 ≥ 0,

g8(x) = 10 − x3 ≥ 0.

Starting with x0 = (0, 1.05, 2.9) (feasible), f (x0) = 0.58 and m = 8.
The minimum value is f (x∗) = 0.5181632741 at the optimal solution x∗ =
(0.1841264879, 1.202167873, 3.327322322).

Example 5.4 Problem 76 (HS76).

min
x∈R4

f (x) = x21 + 0.5x22 + x23 + 0.5x24 − x1x3 + x3x4 − x1 − 3x2 + x3 − x4

s.t . g1(x) = 5 − x1 − 2x2 − x3 − x4 ≥ 0,

g2(x) = 4 − 3x1 − x2 − 2x3 + x4 ≥ 0,

g3(x) = x2 + 4x3 − 1.5 ≥ 0,

g4(x) = x1 ≥ 0,

g5(x) = x2 ≥ 0,

g6(x) = x3 ≥ 0,

g7(x) = x4 ≥ 0.

Starting with x0 = (0.5, 0.5, 0.5, 0.5) (feasible), f (x0) = −1.25 and m = 7.
The minimum value is f (x∗) = −4.681818181 at the optimal solution x∗ =
(0.2727273, 2.090909,−0.26E−10, 0.5454545).

Example 5.5 Problem 100 (HS100).

min
x∈R7

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65

+7x26 + x47 − 4x6x7 − 10x6 − 8x7
s.t . g1(x) = 127 − 2x21 − 3x42 − x3 − 4x24 − 5x5 ≥ 0,

g2(x) = 282 − 7x1 − 3x2 − 10x23 − x4 + x5 ≥ 0,

g3(x) = 196 − 23x1 − x22 − 6x26 + 8x7 ≥ 0,

g4(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0.
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Table 1 Example 5.1

k x1 x2 f (x) LH (x, λ, τ ) Via

0 − 0.200000000E+01 0.100000000E+01 0.909000000E+03 0.909000000E+03 0

1 0.100000000E+01 0.100000000E+01 0.976202768E−23 0.200017780E−11 0

2 0.100000000E+01 0.100000000E+01 0.976202768E−23 0.999999800E−05 0

Table 2 Example 5.1 k g1(x)

Via λ1

0 0 0.100000000E+02

1 0 0.800470801E−12

2 0 0.800470641E−12

Starting with x0 = (1, 2, 0, 4, 0, 1, 1) (feasible), f (x0) = 714 and m = 4.
The minimum value is f (x∗) = 680.6300573 at the optimal solution x∗ =
(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227).

Example 5.6 Problem 11 (HS11).

min
x∈R2

f (x) = (x1 − 5)2 + x22 − 25

s.t . g1(x) = −x21 + x2 ≥ 0,

Starting with x0 = (4.9, 0.1) (not feasible), f (x0) = −24.98 and m = 1. The
minimum value is f (x∗) = −8.498464223.

5.1 Results

For each table, the letter N indicates the name of the problem, λ is the multiplier
Lagrange, x is the primal variable, f (x) is the value of the objective function,
gi (x) are the constraints of each problem, LH (·, ·, ·) is the value of the HALF and
via = viable = feasible where, in each iteration, the obtained point can be viable, then
its value is “0 = yes” or the point can be inviable, then the value is “1 = not” and
τ is the penalty parameter. In all the examples, we will use τ = 0.10E−04. Let us
analyze the examples.

• Example 5.1: The HALA solves this example even though function f is non-
convex, see Tables 1 and 2. The time used is 0.000250 s.

• Example 5.2: the function f is strictly convex. From Table 3, we can see that in
iteration 2, the Theorem 4.1 can be verified, i.e., we have the following:

f (x∗) + mτ = 1.00000000 + (7)(0.00001) = 1.00007
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Table 4 Example 5.2

k g1(x) g2(x) g3(x)

Via λ1 Via λ2 Via λ3

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.367214575E+00 0 0.126557312E+01 0 0.610622664E−13

2 0 0.367214283E+00 0 0.126557139E+01 0 0.610622630E−13

Table 5 Continuation of Table 4

k g4(x) g5(x) g6(x) g7(x)

via λ4 via λ5 via λ6 via λ7

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.499600361E−13 0 0.499600361E−13 0 0.499600361E−13 0 0.499600361E−13

2 0 0.499600336E−13 0 0.499600336E−13 0 0.499600336E−13 0 0.499600336E−13

and

φτ (λ
∗) = LH (x∗, λ∗, τ ) = 1.00007,

then, φτ (λ
∗) = f (x∗)+mτ. So, x∗ = (0.100000000E+01, 0.100000000E+01)

is the solution of the primal problem and from Tables 4 and 5, we can see the λ∗
is the solution of the dual problem in the iteration 2. The time used is 0.000434 s.

• Example 5.3: the function f is linear. From Table 6, we can see that in iteration 3
the Theorem 4.1 can be verified, i.e., we have the following:

f (x∗) + mτ = 0.518163274 + (8)(0.00001) = 0.518243274

and

φτ (λ
∗) = LH (x∗, λ∗, τ ) = 0.518243274,

then, φτ (λ
∗) = f (x∗) + mτ. So, x∗ is the solution of the primal problem and

from Tables 7 and 8, we can see the λ∗ is the solution of the dual problem in the
iteration 3. The time used is 0.000804 s.

• Example 5.4: the function f is strictly convex. From Table 9, we can see that in
iteration 2, the Theorem 4.1 can be verified, i.e., we have the following:

f (x∗) + mτ = −4.68181818 + (7)(0.00001) = −4.68174818

and

φτ (λ
∗) = LH (x∗, λ∗, τ ) = −4.68174818,
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Table 7 Example 5.3

k g1(x) g2(x) g3(x) g4(x)

Via λ1 Via λ2 Via λ3 Via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.665464690E+00 0 0.200000037E+00 0 0.147483137E−09 0 0.345945494E−11

2 0 0.665464311E+00 0 0.199999981E+00 0 0.147482736E−09 0 0.345945351E−11

3 0 0.665463933E+00 0 0.199999924E+00 0 0.147482336E−09 0 0.345945207E−11

Table 8 Continuation of Table 7

k g5(x) g6(x) g7(x) g8(x)

Via λ5 Via λ6 via λ7 Via λ8

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.450750548E−12 0 0.111022302E−14 0 0.000000000E+00 0 0.113242749E−12

2 0 0.450750480E−12 0 0.111022301E−14 0 0.000000000E+00 0 0.113242740E−12

3 0 0.450750413E−12 0 0.111022300E−14 0 0.000000000E+00 0 0.113242731E−12

then, φτ (λ
∗) = f (x∗) + mτ. So, x∗ is the solution of the primal problem and

from Tables 10 and 11, we can see the λ∗ is the solution of the dual problem in the
iteration 2. The time used is 0.000652 s.

• Example 5.5: the function f is convex. From Table 12, we can see that in iteration
2, the Theorem 4.1 can be verified, i.e., we have the following:

f (x∗) + mτ = 680.630057 + (4)(0.00001) = 680.630097

and

φτ (λ
∗) = LH (x∗, λ∗, τ ) = 680.630097,

then, φτ (λ
∗) = f (x∗) +mτ. The optimal value x∗ is reported in the Table 12 and

the optimal value λ∗ is reported in the Table 13. The time used is 0.002140 s.

In Table 18, we can see that HALA is more efficient in the sense that it uses fewer
iterations with respect to the other algorithms. We can observe in the computational
results that the HALA remains in the viable region in all the examples. On the other
hand, despite being the theory developed in this work on convexity hypothesis, our
algorithm shows in the Example 5.1 that it can also solve non-convex problems.
A computational experiment with update of parameter “τ”

We show a computational experiment, considering a condition to update parameter
τ. So, we present our Algorithm 2. In this algorithm we will additionally assume that
the sequence {τ k} is bounded.
• Example 5.6.
This example is solved with Algorithm 1 and Algorithm 2.



Duality in convex optimization for the hyperbolic... Page 19 of 24 40

Ta
bl
e
9

E
xa
m
pl
e
5.
4

k
x 1

x 2
x 3

x 4
f(
x)

L
H

(x
,
λ
,
τ
)

V
ia

0
0.
50

00
00

00
0E

+
00

0.
50

00
00

00
0E

+
00

0.
50

00
00

00
0E

+
00

0.
50

00
00

00
0E

+
00

−
0.
12

50
00

00
0E

+
01

−
0.
12

50
00

00
0E

+
01

0

1
0.
27

27
27

65
0E

+
00

0.
20

90
90

76
6E

+
01

0.
14

72
53

12
2E

−0
5

0.
54

54
52

35
6E

+
00

−
0.
46

81
81

41
8E

+
01

−
0.
46

81
80

95
8E

+
01

0

2
0.
27

27
27

27
3E

+
00

0.
20

90
90

90
9E

+
01

0.
41

32
20

51
7E

−1
0

0.
54

54
54

54
5E

+
00

−
0.
46

81
81

81
8E

+
01

−
0.
46

81
74

81
8E

+
01

0



40 Page 20 of 24 L. M. Ramirez et al.

Table 10 Example 5.4

k g1(x) g2(x) g3(x) g4(x)

Via λ1 Via λ2 Via λ3 Via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.454545522E+00 0 0.186739513E−11 0 0.143196566E−10 0 0.672217837E−10

2 0 0.454545455E+00 0 0.186739456E−11 0 0.143196445E−10 0 0.672216605E−10

Table 11 Continuation of Table 10

k g5(x) g6(x) g7(x)

Via λ5 Via λ6 Via λ7

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.114352972E−11 0 0.172728506E+01 0 0.168043357E−10

2 0 0.114352972E−11 0 0.172728506E+01 0 0.168043357E−10

Algorithm 2 Hyperbolic Augmented Lagrangian Algorithm

Step 1. Let k := 0 (initialization). Take initial values λ0 = (λ01, . . . , λ
0
m ) ∈ R

m++, 0 < α < 1 and

τ0 ∈ R++.

Step 2. Solve the unconstrained minimization problem (primal update):

xk+1 ∈ argminx∈Rn LH (x, λk , τ k )

= argminx∈Rn

⎧
⎨

⎩ f (x) +
m∑

i=1

(
−λki gi (x) +

√(
λki gi (x)

)2 + (τ k )2

)⎫
⎬

⎭ .

Step 3. Update the Lagrange multipliers (dual update):

λk+1
i = λki

⎛

⎝1 − λki gi (x
k+1)

√
(λki gi (x

k+1))2 + (τ k )2

⎞

⎠ , i = 1, . . . ,m. (5.2)

Step 4. Update of parameter τ. If xk+1 is feasible, define

τ k+1 = τ k .

Else, define
τ k+1 = ατ k .

Step 5. k := k + 1. Go to Step 2.

For both algorithms, we are considering the same initial values: x0 = (4.9, 0.1),
λ0 = 10, τ 0 = 0.01 and α = 0.2 (for the case of Algorithm 2). The algorithm
stopped when the solution was viable (feasible) and the absolute value of the dif-
ference of the two consecutive solutions ‖xk − xk−1‖ was less than 10−3. Thus,
we have the following observations:
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Table 13 Example 5.5

k g1(x) g2(x) g3(x) g4(x)

Via λ1 Via λ2 Via λ3 Via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02

1 0 0.113971988E+01 0 0.000000000E+00 0 0.000000000E+00 0 0.368614695E+00

2 0 0.113971989E+01 0 0.000000000E+00 0 0.000000000E+00 0 0.368614517E+00

Table 14 Example 5.6 with τ0 = 0.01

k x1 x2 f (x) LH (x, λ, τ ) via

1 0.123478414E+01 0.152463713 − 0.849863113E+01 − 0.848846557E+01 1

2 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

3 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

4 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

5 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

6 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

7 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

8 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

9 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

10 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

11 0.123477887E+01 0.152467882 − 0.849846436E+01 − 0.848846422E+01 1

12 0.123477872E+01 0.152467887 − 0.849846303E+01 − 0.848846422E+01 0

Table 15 Example 5.6 with
τ0 = 0.01

k g1(x)

Via λ1

1 1 0.304925717E+01

2 1 0.304930063E+01

3 1 0.304934410E+01

4 1 0.304938757E+01

5 1 0.304943104E+01

6 1 0.304947452E+01

7 1 0.304951799E+01

8 1 0.304956146E+01

9 1 0.304960494E+01

10 1 0.304964842E+01

11 1 0.304969189E+01

12 0 0.304932925E+01
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Table 16 Example 5.6 with τ0 = 0.01

k x1 x2 f (x) LH (x, λ, τ ) Via

1 0.123478414E+01 0.152463713E+01 − 0.849863113E+01 − 0.84884655E+01 1

2 0.123474541E+01 0.152459622E+01 − 0.849846421E+01 − 0.84964642E+01 0

Table 17 Example 5.6 with
τ0 = 0.01

k Via g1(x)

λ1 τ

1 1 0.304925717E+01 0.002

2 0 0.304925379E+01 0.002

Table 18 Iterations

N HALA Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8 Alg9

HS1 2 18 34 32 40 24 36 260 36 27

HS30 2 3 8 11 7 7 10 7 11 10

HS66 3 12 12 13 11 11 23 5 20

HS76 2 28 9 11 10 9 23 7 12

HS100 2 18 10 11 15 9 14 99 13 14

(a) Algorithm 1 (with τ fixed).
The results can be seen on the Tables 14 and 15. We can observe that this
algorithm uses 12 iterations to solve the problem.

(b) Algorithm 2 (with a rule to update τ ).
The results can be seen on the Tables 16 and 17. We can observe that this
algorithm uses 2 iterations to solve the problem.

After seeing (a) and (b), we can decide that Algorithm 2 solves Example 5.6, using
fewer iterations compared to Algorithm 1. This motivates us to investigate new
rules to update parameter τ.
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