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Abstract
In the present paper, we study the existence of infinitely many solutions for p(x, ·)-
fractional Kirchhoff-type elliptic equation involving logarithmic-type nonlinearities.
Our approach is based on the computation of the critical groups in the nonlinear
fractional elliptic problem of type p(x, ·)-Kirchhoff, the Morse relation combined
with variational methods.
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1 Introduction

Let U ⊂ R
N be an open-bounded set (N ≥ 2). Our objective in this work is to discuss

the existence of infinitely many solutions for p(x, ·)-fractional Kirchhoff-type elliptic
equation involving logarithmic-type nonlinearities. The approach is based on Morse’s
theory. More precisely, we combine Morse’s relation with the computation of critical
groups to study the following equation:

{
M
(
Js,p(x,·) (u)

)
�s

p(x,·)u(x) = λ|u(x)|r(x)−2u(x) log |u(x)| + λ f (x, u(x)) in U,

u = 0 in R
N\U,

(1)
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where λ is a positive parameter, r ∈ C (U , (1,∞)) , p : U × U → (1,∞) is a
continuous function that verifies the following conditions:

p(y − m, z − m) = p(y, z), for all (y, z,m) ∈ R
N × ×R

N , (2)

p(z, a) = p(a, z), for all (z, a) ∈ R
N × R

N , (3)

1 < p− = min
(y,z)∈RN×RN

p(y, z) ≤ p(y, z) < p+ = sup
(y,z)∈RN×RN

p(y, z),

(4)

f : U × R → R is Carathéodory function with f (x, 0) = 0 and satisfies below
conditions:

(B1) There exist α > 0 and a continuous function q : R
N → (1,+∞), such that

1 < q(x) < p�
s (x) = Np(x,x)

N − sp(x,x)
,

and

f (x,y) ≤ α
(
1 + |y|q(x)−1

)
, a.e. x ∈ R

N , y ∈ R.

(B2) There exists R > 0, such that f (x,t)
|t |p(x,y)−2t

is increasing for t ≥ R and is decreasing
for t ≤ −R for all x ∈ U .

(B3) limt→∞ F(x,t)
|t |r+ = +∞, where F(x, t) = ∫ t

0 f (x, s)ds is the primitive of func-

tion f , and r+ = supx∈RN r(x) ≤ q− < p�
s (x).

(B4) There are small constants and R with 0 < r < R, such that

C2|t |α(x) ≤ β(x)F(x, t) ≤ C3|t |β(x) for all r ≤ t ≤ R, a.e x ∈ U ,

where C2, C3 are positive constants with 0 < C2 < C3 < 1, and α, β ∈ C(Ū)

with 1 < α(x) < β(x) < p�
s (x).

(B5) There exist β > p+ and some I > 0, such that, for each |α| > I , we have

0 <

∫
U
F(y,x)dy ≤

∫
U

f (y,x)
α

β
dy,

�s
p(x,·) is the fractional p(x, .)-Laplace operator which (up to normalization factors)

may be defined as

�s
p(x,·)u(x) = 2 lim

ε→0+

∫
RN \Bε(x)

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))

|x − y|N+sp(x,y)
dx, (5)

for all y ∈ R
N , where Bε(x) denotes the Ball of center x, and radius ε, M : R

+ →
R

+ is a continuous function called Kirchhoff’s function that satisfies the following
conditions:
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(B6) There exists m > 0, such that

m ≤ M(t), for all t ∈ R.

(B7) There exists θ ∈ (0, 1), such that

θ tM(t) ≤ M̂(t) for all t ∈ R,

where M̂(t) = ∫ t
0 M(s)ds is the primitive of function M, and

Js,p(x,·)(u) =
∫
U×U

1

p(x,y)

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy,

for all u ∈ Ws,q(x),p(x,y)(U).

The operator defined in (5) is used in many branches of mathematics, including cal-
culus of variations and partial differential equations. It has also been applied in a wide
range of physical and engineering contexts, including fluid filtration in porous media,
image processing, optimal control, constrained heating, elastoplasticity, image pro-
cessing, financial mathematics, and elsewhere; for more details, see [7, 12, 31] and
the references therein.

TheKirchhoff-type problemwas primarily introduced in [23] to generalize the clas-
sical D’Alembert wave equation for free vibrations of elastic strings. Some interesting
research by variational methods can be found in [13, 14, 24, 25, 28] for Kirchhoff-type
problems. More precisely, Kirchhoff introduced a famous equation defined as

ρ
∂2u

∂t2
−
(
P0
h

+ E

2L

∫ L

0

∣∣∣∣∂u∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (6)

that it is related to the problem (1). In (6), L is the length of the string, h is the area of
the cross-section, E is the Young modulus of the material, ρ is the mass density, and
P0 is the initial tension. See the paper [23] for more details.

Recently, results on fractional Sobolev spaces and fractional p(x, ·)-Kirchhoff-type
problem and their applications have received a lot of attention.

Kaufmann, Rossi, and Vidal [22] first introduced the new class Ws,q(x),p(x,y)(U)

defined by

Ws,q(x),p(x,y)(U) =
{
u ∈ Lq(x)(U) :

∫
U×U

|u(x) − u(y)|p(x,y)

K(x,y)
dxdy < +∞

}
,

where q ∈ C(U , (1,∞)) and K(x,y) = |x − y|N+sp(x,y) and proved the existence
of a compact embedding

Ws,q(x),p(x,y)(U) ↪→↪→ Lr(x)(U), for all r ∈ C(U),
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such that 1 < r(x) < p�
s (x), for all x ∈ U .

For more results on the functional framework, we refer to Bahrouni and Rădulescu
[4, 5] who proved the solvability of the following problems:

{(−�p(x)

)s u(x) + |u(x)|q(x)−2u(x) = h(x, u(·)) + λ|u(x)|r(x)−2u(x) in U ,

u = 0 in R
N\U ,

using Ekeland’s variational method, and the sub-supersolution method.
For more results concerning the framework, we refer the readers to [1, 2, 4, 5,

21, 22]. The approaches for ensuring the existence of weak solutions for a class of
nonlocal fractional problems with variable exponents were addressed in greater depth
in [1–5, 8, 9, 11, 12, 21, 22, 25, 30, 32] and the references therein.

In recent years, wide research has been done on fractional p(x, ·)-Kirchhoff-type
problem with variable growth. In the case of the p-Laplacian operator, Li et al. used
the concentration compactness principle and Ekelend’s variational principle to study
the existence of multiple solutions for the below equation

{
M (‖u‖p)�pu(x) = λu p∗ + ρ(x)u−γ in �,

u = 0 in ∂�,

where M(t) = a + btk and 0 < γ < 1 < p. Recently, in the case p = 2, Cabanillas
Lapa in [10] proved an existence result with exponential decay. In addition, the authors
[18] studied the following problem:

⎧⎨
⎩

M

(∫
�

A(x,∇u)dx

)
div(a(x,∇u)) = λh(x) ∂F

∂u (x, u) in �,

u = 0 in ∂�.

In [16], the authors used the Nehari manifold method to prove the below singular
Kirchhoff problem

⎧⎪⎨
⎪⎩

M
(∫∫

R2N
|u(x)−u(y)|2
|x−y|N+2s dxdy

)
(−�)su = λ f (x)u−γ + g(x)u2∗ − 1 in �,

u > 0 in �,

u = 0 in R
N\�.

For more recent works, we refer to [17, 19] and references therein.
Motivated by the above research,we prove the existence of infinitelymany solutions

of the generalized fractional p(x, .)-Kirchhoff-type problem (1) on the framework of
fractional Sobolev spaces with variable exponent. Our approach uses the variational
tools based on the critical point theory together with Morse theory (critical groups and
local linking argument), in which we consider the energy functional ζ (9) satisfies the
Cerami condition “(C) condition” (2), which leads to a deformation theorem, then we
compute the critical groups at infinity and critical points 0 associated to ζ. Our first
major result is the following theorem:
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Theorem 1 Under assumption (B1)−(B7). Then, the problem (1) has a weak solution
in Ws,q(x),p(x,y)(U).

Theorem 2 Under assumption (B1)−(B7). Then, the problem (1) has an infinitely
many weak solutions in Ws,q(x),p(x,y)(U).

The paper is organized as follows: In Sect. 2, we collect the main definitions and
properties of generalizedLebesgue spaces and generalized Sobolev spaces and provide
crucial background on Morse’s theory. In Sect. 3, we give the proofs of Theorem 1
by computing the critical groups at infinity and critical points 0 associated with the
functional energy. Moreover, we use Morse’s relation to establish the problem (1) has
an infinitely many weak solutions.

2 Preliminaries

2.1 Fractional Sobolev space

This section contains results that will be used throughout the document concerning
the Sobolev and generalized Lebesgue spaces. We consider the set

C+(Ū) = {
m : Ū → R

+ : m is a continuous function and 1 < m− < m(y) < m+ < +∞}
,

where q− = minx∈Ū q(x), q+ = max
x∈Ū

q(x).

Definition 1 (see [15]) Let q ∈ C+(Ū). We define the generalized Lebesgue space
Lq(x)(U) as usual

Lq(x)(U) =
{
u : U → R is a measurable function : ∃λ > 0 :

∫
U

|u(x)

λ
|q(x)dx < ∞

}
.

We equip this space with the so-called Luxemburg norm defined as follows:

|u|Lq(x)(U) = inf

{
ξ > 0 :

∫
U

|u(x)

ξ
|q(x)dx ≤ 1

}
.

Lemma 1 (Hölder’s inequality, see [15]) For every q ∈ C+(RN ), the following
inequality holds:

|
∫
RN

v(x)w(x)dx| ≤
(

1

q− + 1

q ′−

)
|v|Lq(x)(RN )|w|

Lq
′
(x)(RN )

,

for all (v,w) ∈ Lq(x)(RN ) × Lq
′
(x)(RN ), where 1

q(x)
+ 1

q ′
(x)

= 1.

Lemma 2 (see [15]) Let U ⊂ R
N be a Lipschitz-bounded domain, and q ∈ C+(RN ).

Then, we have the following statements:
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(i) the space
(
Lq(x)

(
R

N
)
, |.|Lq(x)(RN )

)
is a separable, reflexive, and Banach space,

(ii) the space C∞(U) is dense in the space
(
Lq(x)(U), |.|Lq(x)(U)

)
.

We start by fixing the fractional exponent s ∈ (0, 1). Let U be an open-bounded set of
R

N , q ∈ C+(U), and p : Ū×Ū → (1,∞) is a continuous function satisfies the condi-
tions (2)–(4). We introduce the generalized fractional Sobolev spaceWs,q(x),p(x,y)(U)

as follows:

Ws,q(x),p(x,y(U) =
{
w ∈ Lq(x)(U) : w(x) − w(y)

β|x − y|s+ N
p(x,y)

∈ L p(x,y)(U × U) for some β > 0

}
.

Let [w]s,p(x,y) = inf
{
β > 0 : ∫U×U

|w(x)−w(y)|p(x,y)
β p(x,y)|x−y|N+sp(x,y) dxdy < 1

}
be the correspond-

ing variable exponent Gagliardo semi-norm.We equip the spaceWs,q(x),p(x,y(U)with
the norm

‖w‖Ws,q(x),p(x,y(U) = [w]s,p(x,y) + |w|q(x),

where (Lq(x)(U), |.|q(x) is the generalized Lebesgue space.

Lemma 3 (see [5]) Let U ⊂ R
N be a Lipschitz-bounded domain, p : U × U →

(1,+∞) be a continuous function that satisfies conditions (2)–(4), and q ∈ C+(Ū).
Then, Ws,q(x),p(x,y(U) is a separable and reflexive Banach space.

Theorem 3 (see [5]) Let U ⊂ R
N be a Lipschitz-bounded domain, p : U × U →

(1,+∞) be a continuous function satisfies conditions (2)–(4), q ∈ C+(U), and

sp(x, y) < N , p(x, x) < q(x), for all (x, y) ∈ U2,

and � : U → (1,+∞) is a continuous variable exponent, such that

p∗
s (x) = Np(x, x)

N − sp(x, x)
> �(x) ≥ �− = min

x∈U
�(x) > 1.

Then, the space Ws,q(x),p(x,y(U) is continuously embedded in L�(y)(U) and there
exists a positive constant C = C(N , s, p, q,U), such that

|w|Ll(x)(U) ≤ C‖w‖Ws,q(x),p(x,y(U), for all w ∈ Ws,q(x),p(x,y(U).

Moreover, this embedding is compact.

Definition 2 [26] Let X be a Banach space and J ∈ C1(X , R). Given c ∈ R, we say
that � satisfies the Cerami c condition (we denote condition (Cc) ), if

(C1): any bounded sequence {un} ⊂ X such that �(un) → c and �′ (un) → 0
has a convergent subsequence,

(C2): there exist constants δ, R, β > 0, such that

∥∥�′(u)
∥∥ ‖u‖ ≥ β ∀u ∈ �−1([c − δ, c + δ]) with ‖u‖ ≥ R.
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2.2 Critical groups

In this paragraph, we briefly give the basic properties and notions of Morse theory.
Let W be a real Banach space, ψ ∈ C1(W , R), satisfies the Palais–Smale condition,
and c ∈ R. We consider the following sets:

ψc = {w ∈ W : ψ(w) ≤ c}

and

Kψ =
{
w ∈ W : ψ

′
(w) = 0

}
.

The critical groups of ψ at w are defined by

Ck (ψ,w) = Hk
(
ψc ∩U , ψc ∩U\{w}) ,

where k ∈ N, U is a neighborhood of w, such that Kψ ∩ U = {w} , and Hk is the
singular relative homology with coefficient in an Abelian group G; see [26] for more
details.

Definition 3 (see [6]) If φ satisfies the condition (C) and the critical values of φ are
bounded from below by some a < inf φ(K ), then the critical groups of φ at infinity
as

Ck(φ,∞) := Hk(W , φa), for all k ∈ N.

Theorem 4 (see [27]) Given W is a real Banach space, φ ∈ C1(W , R) satisfies the
Palais–Smale condition and is bounded from below. If at least one of its critical groups
is nontrivial, then φ has at least three critical points.

Definition 4 (see [27]) Given Y is a Banach space, ψ ∈ C(Y , R), and 0 is an isolated
critical point of ψ such that ψ(0) = 0. We say that ψ has a local linking at 0 with
respect to Y = V

⊕
W , k = dim V < ∞, if there exists ρ > 0 small, such that

{
ψ(u) ≤ 0, u ∈ V ; ‖|u|‖ ≤ ρ;
ψ(u) > 0, u ∈ W ; 0 < ‖|u|‖ ≤ ρ.

Theorem 5 (see [27]) Given Y is a Banach space, ψ ∈ C(Y , R). If ψ has a local
linking at 0 with respect to Y . Then, we get Ck(ψ, 0) �= 0.

Lemma 4 (Morse’s relation) (see [26]) If Y is a Banach space, ψ ∈ C1(Y , R), a, b ∈
R\ψ ({

Kψ

)
, a < b , ψ−1((a, b)) contains a finite number of critical points {wi }ni=1

and ψ satisfies the Palais–Smale condition, then

(1) for all k ∈ N0, we have
∑n

i=1 rankCk (ψ, ui ) ≥ rank Hk
(
ψb, ψa

)
;
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(2) if the Morse-type numbers
∑n

i=1 rankCk (ψ, ui ) are finite for all k ∈ N0 and
vanish for all large k ∈ N0, then so do the Betti numbers rank Hk

(
ψb, ψa

)
and

we have

∑
k≥0

n∑
i=1

rankCk (ψ, ui ) t
k =

∑
k≥0

rank Hk

(
ψb, ψa

)
tk + (1 + t)Q(t) for all t ∈ R,

where Q(t) is a polynomial in t ∈ R with non-negative integer coefficients.

3 Main results

Lemma 5 For every a > 0. Then, we have

(1) ta | log(t)| ≤ 1
a exp(1) , for all t ∈ (0, 1];

(2) log(t) ≤ ta
a exp(1) , for all t > 1.

Proof For (1). We consider the function by g : (0, 1] → R as g(t) = ta | log(t)|. The
function is continuous on (0, 1], and limt→0 ta | log(t)| = 0. Using a direct compu-
tation, we show that the function g achieves the maximum at t0 = exp(−1

a ). Finally,
we have ta | log(t)| ≤ 1

a exp(1) , for all t ∈ (0, 1]. Now, we prove (2). We construct the
following function:

f (t) = log(t) − 1

a exp(1)
ta, for all t ∈ [1,∞).

Obvious, we prove that the function f achieves the maximum at t∗ = exp( 1a ), for all
t ∈ [1,∞). Therefore, we get f (t) ≤ f (t∗). ��
Lemma 6 Let r : U → (1,∞) be a continuous function, such that 1 < r− ≤ r(x) ≤
r+ < p∗

s (x), for each x ∈ U . Then, we have the following estimate:

∫
U

1

r(x)
|u(x)|r(x) log |u(x)|dx ≤ C max

{
|u|r−

, |u|r+}+ log |u|
∫
U

1

r(x)
|u|r(x)dx,

for all u ∈ Ws,q(x),p(x,y)(U)\{0}, where C = C
(|U |, r , p∗

s (x)
)
is a suitable constant.

Proof Let U1 = {x ∈ U : |u(x)| ≤ ‖u‖} , and U2 = {x ∈ U : |u(x)| ≥ ‖u‖}. From
Lemma 5 (1) with a = r−, we obtain that

∫
U1

1

r(x)
|u|r(x) log

|u|
‖u‖dx ≤ 1

r− max
{
‖u‖r−

, ‖u‖r+} ∫
U1

( |u|
‖u‖

)r(x) ∣∣∣∣log |u|
‖u‖

∣∣∣∣ dx
≤ |U |(

r−)2 exp(1) max
{
‖u‖r−

, ‖u‖r+}
.

(7)
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Estimating the second integral expression. Combining Lemma 3 (2) with Lemma 5,
such that a = (

p∗
s

)− − ε − r+, for some sufficiently small ε > 0, we have that

∫
U2

1

r(x)
|u|r(x) log

|u|
‖u‖dx ≤ 1

r−

∫
U2

|u|r(x) log
|u|
‖u‖dx

≤ 1

r− exp
((

p∗
s

)− − ε − r+
)
∫
U2

|u|r(x)

( |u|
‖u‖

)(p∗
s )

−−ε−r+

dx

≤ 1

exp
((

p∗
s

)− − ε − r+
)
r−

∫
U2

|u|r(x)
( |u|

‖u‖
)(p∗

s )
−−ε−r(x)

dx

≤ 1

min
(
‖u‖(p∗

s )
−−ε−r−

, ‖u‖(p∗
s )

−−ε−r+)
exp

((
p∗
s

)− − ε − r+
)
r−

∫
U2

|u|(p∗
s )

−−εdx

≤ Cp∗−
s −ε

min
(
‖u‖(p∗

s )
−−ε−r−

, ‖u‖(p∗
s )

−−ε−r+)
exp

((
p∗
s

)− − ε − r+
)
r−

‖u‖(p∗
s )

−−ε

= Cp∗−
s −ε

exp
((

p∗
s

)− − ε − r+
)
r−

min
(
‖u‖r−

, ‖u‖r+)

≤ Cp∗−
s −ε

exp
((

p∗
s

)− − ε − r+
)
r−

max
(
‖u‖r−

, ‖u‖r+)
,

(8)

where Cp∗−
s −ε > 0 is constant. From (7), and (8, we deduce that

∫
U

1

r(x)
|u(x)|r(x) log |u(x)|dx ≤ C max

{
‖u‖r−

, ‖u‖r+}+ log ‖u‖
∫
U

1

r(x)
|u|r(x)dx.

��

Definition 5 Ameasurable function u ∈ Ws,q(x),p(x,y)(U) is said to be a weak solution
of (1) if

M
(
Js,p(x,·)(u)

) ∫
U×U

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(v(x) − v(y)

|x − y|N+sp(x,y)
dxdy

= λ

∫
U

|u(x)|r(x)−2 log |u(x)|u(x)v(x)dx + λ

∫
U

f (x, u(x))v(x)dx,

for all v ∈ Ws,q(x),p(x,y)(U).
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We consider the functional ζ : Ws,q(x),p(x,y)(U) → R defined by

ζ(u) := M̂
(
Js,p(x,·)(u)

)− λ

∫
U

1

r(x)

(
|u(x)|r(x) log |u(x)| − 1

r(x)
|u(x)|r(x)

)
dx

− λ

∫
U
F(x, u(x))dx

= L1(u) − L2(u) − L3(u).
(9)

Then, it follows from [5, 22] that L1 − L3 ∈ C1
(
Ws,q(x),p(x,y)(U), R

)
and:

〈
(L1 − L3)

′
(u), v

〉

= M
(
Js,p(x,·)(u)

) ∫
U×U

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp(x,x)
dxdy

− λ

∫
U

f (x, u(x))v(x)dx.

Our first result is the following Lemma.

Lemma 7 Let U ⊂ R
N be a Lipschitz-bounded domain, λ be a parameter pos-

itive, and r : U → (1,∞) be a continuous function. Then, we have L2 ∈
C1

(
Ws,q(x),p(x,y)(U), R

)
, and

〈
L

′
2(u), v

〉
= λ

∫
U

|u(x)|r(x)−2u(x) log |u(x)|v(x)dx,

for all u, v ∈ Ws,q(x),p(x,y)(U).

Proof Let v, u ∈ Ws,q(x),p(x,y)(U). For each x ∈ U , and 0 < t < 1. By the definition
of Gâteaux-differentiable, we get

〈
L

′
2(u), v

〉

= lim
t→0

L2(u + tv) − L2(u)

t

= lim
t→0

λ

∫
U

1

r(x)

(
|u + tv|r(x) log |u + tv| − |u|r(x) log |u| + 1

r(x)

(|u + tv|r(x) − |u|r(x)
))

t
dx.

We consider the function defined by K : [0, 1] → R as

K (y) = |u + ytv|r(x) log |u + ytv|
r(x)

− |u + ytv|r(x)

r2(x)
.

According to the mean value Theorem, there exists θ ∈ (0, 1), such that

K
′
(y)(θ) = K (1) − K (0).
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Combining the Lebesgue’s dominated converge theorem with a direct computation,
we have

〈
L

′
2(u), v

〉
= λ

∫
U

|u(x)|r(x)−2u(x) log |u(x)|v(x)dx.

Using the same method as appear in paper [20], we can easily prove that L2 ∈
C1

(
Ws,q(x),p(x,y)(U), R

)
. ��

Lemma 8 We assume that the conditions (B5)−(B7) are fulfilled. Then, the functional
ζ satisfies the Palais–Smale condition at level c ∈ R.

Proof Let {un}n∈N ⊂ Ws,q(x),p(x,y)(U) with ζ(un) → c as n → +∞ and ζ
′
(un) → 0

as n → +∞ in Ws,q(x),p(x,y)(U). Without loss of generality, we assume that
‖un‖Ws,q(x),p(x,y)(U) ≥ 1. By contradiction, we prove the sequence {un}n∈N is bounded
in Ws,q(x),p(x,y)(U). Therefore, there exists C > 0, such that

〈ζun, un〉 ≤ C‖un‖Ws,q(x),p(x,y)(U) and ζ(un) ≤ C .

We combine condition (B5) with condition (B7), and we have

C + C‖un‖Ws,q(x),p(x,y)(U)

≥ ζ(un) − 1

r−
〈
ζ

′
(un), un

〉

= M̂
(
Js,p(x,·)(un)

)− λ

∫
U

1

r(x)

(
|un(x)|r(x) log |un(x)| − 1

r(x)
|u(x)|r(x)

)
dx

− λ

∫
U
F(x, un(x))dx − 1

r− M
(
Js,p(x,·)(un)

) ∫
U×U

|un(x) − un(y)|p(x,y)

|x − y|N+sp(x,x)
dxdy

+ λ

r−

∫
U

|u(x)|r(x) log |un(x)|dx + λ

r−

∫
U

f (x, un(x))un(x)dx

≥ (1 − α)M
(
Js,p(x,·)(un)

)
Js,p(x,·)(un) − 1

r− M
(
Js,p(x,·)(un)

)

×
∫
U×U

|un(x) − un(y)|p(x,y)

|x − y|N+sp(x,x)
dxdy

+ λ

r−

∫
U

|u(x)|r(x) log |un(x)|dx − λ

∫
U

1

r(x)
|un(x)|r(x) log |un(x)|dx

+ λ

r−

∫
U

f (x, un(x)) un(x)dx − λ

∫
U
F(x, un(x))dx

≥ m

[∫
U×U

1

p(x, y)

|un(x) − un(y)|p(x,y)

|x − y|N+sp(x,x)
dxdy

− 1

r−

∫
U×U

|un(x) − un(y)|p(x,y)

|x − y|N+sp(x,x)
dxdy

]
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+ λ

r−

∫
U

|un(x)|r(x) log |un(x)|dx − λ

r−

∫
U

|un(x)|r(x) log |un(x)|dx

≥ m

(
1

p− − 1

r−

)
‖un‖p+

Ws,q(x),p(x,y)(U)
.

This is a contradiction as ‖un‖Ws,q(x),p(x,y)(U) → ∞. From Lemma 3, we get that there
exists u ∈ Ws,q(x),p(x,y)(U) and a subsequence of un still denoted by un that satisfies
the following inequality:

⎧⎨
⎩
un → u a.e in U ,

un⇀u weakly in Ws,q(x),p(x,y)(U),

un → u strongly in Lσ(x)(U) for 1 ≤ σ(x) < p∗
s (x).

(10)

Since Ws,q(x),p(x,y)(U) is a reflexive space, we deduce that

〈
ζ

′
(un), un − u

〉
→ 0 as n → ∞.

Thus, we get that

〈
ζ

′
(un), un − u

〉

= −λ

∫
U

|un(x)|r(x)−2 log |un(x)|un(x) (un(x) − u(x)) dx

− λ

∫
U

f (x, un(x)) (un(x) − u(x)) dx + +M
(
Js,p(x,·)(un)

)

×
∫
U×U

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))(un(x) − un(y) − (u(x) − u(y))

|x − y|N+sp(x,x)
dxdy

as n → ∞.

Now, we show that

lim
n→∞

∫
U

|un(x)|r(x)−2 un(x) (un(x) − un(x)) log |un(x)| dx

= lim
n→∞

∫
U

|u(x)|r(x)−2u(x) (un(x) − u(x)) log |u(x)|dx.

From (10), it is easy to see that

lim
n→∞ |un(x)|r(x) | log |un(x)|| = |u(x)|r(x) | log |u(x)|| a.e in U . (11)
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Let γ ∈ (0, p∗−
s − r+). From Lemma 5, and Theorem 3, we have that

∫
U

|un(x)|r(x) | log |un(x)||dx =
∫
U∩{|un(x)|≤1}

|un(x)|r(x) | log |un(x)||dx

+
∫
U∩{|un(x)|>1}

|un(x)|r(x) | log |un(x)||dx

≤ |U |
r− exp(1)

+ 1

γ exp(1)

∫
U

|un(x)|r++γ dx

≤ |U |
r− exp(1)

+ M
|U |Cr++γ

r++γ

γ exp(1)
,

(12)

where L = sup ‖un‖r++γ < ∞.Therefore, the sequence
{|un(x)|r(x) | log |un(x)||}n≥1

is equi-integral in L1(U), and uniformly bounded. Combining (12), (11) with Vitali’s
convergence theorem, we have that

lim
n→∞

∫
U

|un(x)|r(x) | log |un(x)||dx =
∫
U

|u(x)|r(x) | log |u(x)‖dx. (13)

Similarly, we prove

lim
n→∞

∫
U
u |un(x)|r(x)−2 un(x)| log |un(x)||dx =

∫
U

|u(x)|r(x) | log |u(x)||dx, (14)

and

lim
n→∞

∫
U
un(x) |un(x)|r(x)−2 | log |u(x)||u(x)dx =

∫
U

|u(x)|r(x) | log |u(x)||dx.

(15)

From (13), (14), and (15), we have that

lim
n→∞

∫
U

|un(x)|r(x)−2 un(x) (un(x) − un(x)) log |un(x)| dx

= lim
n→∞

∫
U

|u(x)|r(x)−2u(x) (un(x) − u(x)) log |u(x)|dx.

(16)

Combining (16) with the same argument in Lemma 3.1 [1], we get that un → u
strongly in Ws,q(x),p(x,y)(U). ��
Remark 1 We assume that the conditions (B1)−(B7) are fulfilled. Then, the functional
ζ satisfies the (Cc) condition.

Proof We use the same technical in Theorem 4 [29] and from Lemma 8, we deduce
that the functional ζ satisfies the (Cc) condition. ��
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Now, we compute the critical groups. From Lemma 1, it follows that Ck(ζ,∞) make
sense.

Theorem 6 We assume that the functional ζ satisfies the conditions (B1), (B7). Then,
we get Ck(ζ,∞) = 0.

Proof Let G(x, t) = f (x, t)t − p+F(x, t) and c1 = 1 + supŪ×[−R;R] G(x, t) −
inf Ū×[−R;R] G(x, t). From the condition (H5), we get that

G(x, s) ≤ G(x, t) + c1 for all x ∈ Ū and 0 ≤ s < t or t ≤ s ≤ 0. (17)

By (17), we get

G(x, t) ≥ −c1 when s = 0. (18)

Let u ∈ S1 = {
u ∈ Ws,q(x),p(x,y)(U) : ‖u‖ = 1

}
and t ≥ 1. From Fatou’s Lemma

and condition (B3), we get that

+ ∞ =
∫
U

lim
t→∞

F(x, tu)

|tu|r+ |u|r+
dx ≤ lim

t→∞

∫
U

F(x, tu)

|t |r+ dx. (19)

Using the condition (B7), it is easy to see that

M̂(t) ≤ c
′
1t . (20)

By (20) and (19), we have

ζ(tu) = M̂
(
Js,p(x,·)(tu)

)− λ

∫
U

1

r(x)
|t |r(x)|u(x)|r(x)| log |tu(x)||dx

+ λ

∫
U

1

r2(x)
|t |r(x)|u(x)|r(x)dx − λ

∫
U
F(x, tu(x))dx

≤ c
′
1
t p

+

p+

∫
U×U

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy + tr

+

(r−)2
λ

∫
U

|u(x)|r(x)dx

− λ

∫
U
F(x, tu(x))dx

≤ tr
+
(
t p

+−r+ c
′
1

p+ + λ

(r−)2

∫
U

|u(x)|r(x)dx − λ

∫
U

F(x, tu(x))

tr+ dx

)

→ −∞ as t → +∞.

Choosing a < min
{
inf‖u‖≤1 ζ(u); −λ|U |c1

p+
}

, then for u ∈ S1, there exists t0 > 1,

such that ζ(t0u) ≤ a. Therefore, if
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ζ(tu) = M̂
(
Js,p(x,·)(tu)

)− λ

∫
U

1

r(x)
|t |r(x)|u(x)|r(x)| log |tu(x)||dx

+ λ

∫
U

1

r2(x)
|t |r(x)|u(x)|r(x)dx − λ

∫
U
F(x, tu(x))dx

≤ a.

Then,

M
(
Js,p(x,·)(tu)

) ∫
U×U

|t |p(x,y) |u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy

− λ

∫
U

1

r(x)
|t |r(x)|u(x)|r(x)| log |tu(x)||dx

≤ p+

θ

[
a + λ

∫
U
F(x, tu(x))dx

]
.

Using (18), we get that

d

dt
ζ(tu) = 1

t

〈
ζ

′
(tu), tu

〉

= 1

t

(
M
(
Js,p(x,·)(tu)

) ∫
U×U

|t |p(x,y) |u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy

)

− 1

t

∫
U

|t |r(x)|u(x)|r(x)dx − 1

t
λ

∫
U

f (x, tu)tu)dx)

≤ 1

t

(
ap+ + p+λ

∫
U
F(x, tu(x))dx − λ

∫
U

f (x, tu)tu)dx

)

≤ 1

t

(
ap+ + λc1|U |) < 0,

where |U | denote the measure of the domain U . Thanks to the implicit function the-
orem, there exists a unique T ∈ C(S1, R), such that ζ(T (u)u) = a for any u ∈ S1.

We extend T to all of Ws,q(x),p(x,y)(U) by

T0(u) = 1

‖u‖T
(

u

‖u‖
)

for all u ∈ Ws,q(x),p(x,y)(U)\{0}.

Then, T0 ∈ C1(Ws,q(x),p(x,y)(U , R)\{0}, and ζ(T0(u)u) = a. Also, if ζ(u) = a, then
T0(u) = 1. We define a function T̂0 : Ws,q(x),p(x,y)(U) → R as

T̂0(u) :=
{
T0(u), if ζ(u) ≥ a,

1, if ζ(u) < a.
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Clearly, T̂0 ∈ C(Ws,q(x),p(x,y)(U), R)\0. Let h : [0, 1] × Ws,q(x),p(x,y)(U) →
Ws,q(x),p(x,y)(U) be the map defined as

h(t, u) = (1 − t)u + tuT̂0(u) for all (t, u) ∈ [0, 1] × Ws,q(x),p(x,y)(U)\0.

Evidently, we have

h(0, u) = u, and h(1, u) = T̂0(u)u ∈ ζ a . (21)

From (25), we get

h(t, .)|ζ a = id|ζ a for all t ∈ [0, 1].

It follows that:

ζ a is a strongly deformation of Ws,q(x),p(x,y)(U). (22)

We consider the radial retraction T̄ : Ws,q(x),p(x,y)(U) → R defined by

T̄ (u) = u

‖u‖ for all u ∈ Ws,q(x),p(x,y)(U)\{0}.

Thismap is continuous and T̄|S1 = id|S1 .Then,S1 is a retract ofWs,q(x),p(x,y)(U)\{0}.
Let h̄ : [0, 1] × Ws,q(x),p(x,y)(U) → Ws,q(x),p(x,y)(U) be the map defined as

h̄(t, u) = (1 − t)u + t T̄ (u).

Clearly, we have

h̄(0, u) = u, h̄(0, u) and h̄(1, .)|S1 = id|S1 . (23)

Hence, we refer that

S1 is a deformation retract of Ws,q(x),p(x,y)(U)\{0}. (24)

Combining (24) with (22), it follows that:

ζ a and S1 are homotopy equivalent .

Therefore, we have

Hk

(
Ws,q(x),p(x,y)(U), ζ a

)
= Hk

(
Ws,q(x),p(x,y)(U),S1

)
for all k ∈ N.

We already know that the space Ws,q(x),p(x,y)(U) is an infinite-dimensional Banach
space and S1 is a contractible space. See Remark 6.1.13 in [26]. Therefore, it follows
that:
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Ck (ζ,∞) = Hk

(
Ws,q(x),p(x,y)(U), ζ a

)
= Hk

(
Ws,q(x),p(x,y)(U),S1

)
= 0 for all k ∈ N. (25)

��

Theorem 7 We assume that the conditions (B1)−(B7) are fulfilled. Then, there exists
k0 ∈ N, such that Ck0(ζ, 0) �= 0

Proof Evidently, the zero function is a critical point of ζ. Since Ws,q(x),p(x,y)(U)

is a separable and reflexive Banach space, from Theorems 2, 3 in [33], there exist
{ei }∞i=1 ⊂ Ws,q(x),p(x,y)(U) and { fi }∞i=1 ⊂ Ws,q(x),p(x,y)(U)∗, such that

fn(em) = δn,m =
{
1, if n = m,

0, if n �= m,

Ws,q(x),p(x,y)(U) = span{e j : j = 1, 2, . . .}; Ws,q(x),p(x,y)(U)∗

= span{ f j : j = 1, 2, . . .}.

For convenience, we write X j = span{e j }, Yk = ⊕k
j=1 X j , and Zk = ⊕∞

j=k X j .

Thus, we have Ws,q(x),p(x,y)(U) = Yk
⊕

Zk . Let u ∈ Yk . Since Yk is a finite-
dimensional space, we get that for given R > 0, there exists 0 < ρ < 1 small,
such that

u ∈ Yk, ‖|u|‖Yk < ρ ⇒ |u(x)| < R for all x ∈ U .

Let 0 < r < R. We consider the following sets: U1 = {x ∈ U : |u(x)| < r} ,

U2 = {x ∈ U : r < |u(x)| < R} , and U3 = {x ∈ U : |u(x)| > R} . We put G(x, t) =
F(x, t) − C

p− |u|α(x). Obviously, we get that Ui ∩ U j and U = ∪3
i=1Ui . We combine

condition (B7) with condition (B4), and we obtain that

ζ(u) = M̂
(
Js,p(x,·)(u)

)−
∫
U

1

r(x)
|u(x)|r(x)dx − λ

∫
U
F(x, u(x))dx

≤ C1 Js,p(x,·)(u) − 1

r−

∫
U

|u(x)|r(x)dx − λ

∫
U
F(x, u(x))dx

≤ C1 Js,p(x,·)(u) − 1

r−

∫
U

|u(x)|r(x)dx − λ

∫
U

C2

p+ |u(x)|α(x)dx

− λ

∫
U1

G(x, u(x))dx − λ

∫
U2

G(x, u(x))dx − λ

∫
U3

G(x, u(x))dx.

From Theorem 3, there exists a positive constant, such that

|u|Lα(x) (U) ≤ C‖u‖Ws,q(x),p(x,y)(U) ≤ 2C‖|u|‖Yk ≤ 2Cρ.
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If ρ < 1
2C , then |u|Lα(x)(U) ≤ 1. Since U is compact, there exist a finite sub-covering

{Q j }mj=1, such that

U = ∪m
i=1Qi .

Notice that
∫
U1

G(x, u(x))dx → 0 as r → 0. Therefore, we get

ζ(u) ≤
m∑
j=1

[
|u|p+

Lr(x)(Q j )
− 1

r− |u|r(x)

Lr(x)(Q j )
− 1

p+ |u|α(x)

Lα(x)(Q j )

]
−
∫
U1

G(x, u(x))dx

≤ 0.

Let u ∈ Zk . Since q(x), r(x) < p∗
s (x), from Theorem 3, we deduce that there exist

constants c1 and c1, such that

|u|Lr(x)(U) ≤ c1‖u‖Ws,q(x),p(x,y)(U) and |u|Lβ(x)(U) ≤ c2‖u‖Ws,q(x),p(x,y)(U). (26)

Using (26), (B4), and (B7),, we deduce that

ζ(u) = M̂
(
Js,p(x,·)(u)

)− λ

∫
U

1

r(x)

(
|u(x)|r(x) log |u(x)| − 1

r(x)
|u(x)|r(x)

)
dx

− λ

∫
U
F(x, u(x))dx

≥ M̂
(
Js,p(x,·)(u)

)−
∫
U

1

r(x)
|u(x)|r(x)dx − λ

∫
U
F(x, u(x))dx

≥ m1 Js,p(x,·)(u) − 1

r−

∫
U

|u(x)|r(x)dx − λ
C3

β−

∫
U

|u(x)|β(x)dx

≥ m1

p+ ‖u‖p+
Ws,q(x),p(x,y)(U)

− C1

r− ‖u‖r−
Ws,q(x),p(x,y)(U)

− C3

β− ‖u‖β−
Ws,q(x),p(x,y)(U)

.

Since r−, β− < p+, we deduce that

ζ(u) > 0 for all u ∈ Zk .

Finally, from Theorem 5, there exists k0 ∈ N, such that Ck0(ζ, 0) �= 0.

Conclusion

By Theorems 6 and 7, we deduce that our problem admits at least three solutions in
Ws,q(x),p(x,y)(U). ��
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Proof of Theorem 2

Proof We suppose that our problem admits three solutions Ws,q(x),p(x,y)(U). That is,
Kζ = {0, u, v}. From the Morse’s relation, it follows that:

Cn(ζ, 0) :=
{

R, if n = m(0),

0, otherwise ,

where m(0) is a Morse index of 0. See [6] for more details. We use Morse’s relation,
and we get that

∑
k≥0

rankCk(ζ,∞)Xk + (1 + X)Q(X) =
∑
k≥0

rankCk(ζ, 0)Xk +
∑
k≥0

rankCk(ζ, u)Xk

+
∑
k≥0

rankCk(ζ, v)Xk

=Xm(0) + 2
∑
k≥0

βk X
k .

From (25), it follows that:

(1 + X)Q(X) = Xm(0) + 2
∑
k≥0

βk X
k,

where βk non-negative integer and Q is a polynomial with non-negative integer coef-
ficient. In particular, for X = 1, we have 2a = 1+2

∑
k≥0 βk . Since βk ∈ N,we have

that
∑

k≥0 βk = +∞ leads to a contradiction. Thus, there exist infinitely solutions to
problems (1). ��
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