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Abstract
The study of limit cycles of planar differential systems is one of the main and difficult
problems for understanding their dynamics. Thus the objective of this paper is to study
the limit cycles of continuous piecewise differential systems in the plane separated by
a non-regular line �. More precisely, we show that a class of continuous piecewise
differential systems formed by an arbitrary quadratic center, an arbitrary linear center
and the linear center ẋ = −y, ẏ = x have at most two crossing limit cycles and we
find examples of such systems with one crossing limit cycle. So we have solved the
extension of the 16th Hilbert problem to this class of piecewise differential systems
providing an upper bound for its maximum number of limit cycles.
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1 Introduction and statement of themain results

The study of the existence of the so-called limit cycles of a planar differential system,
i.e. existence of periodic orbits isolated in the set of all periodic orbits of that system
is one of the main difficulties for completely understanding (at least qualitatively) its
dynamics. In particular to find a limit cycle of a given class of differential systems is
very difficult and to provide an upper bound on the maximum number of them is even
harder. When such an upper bound exists, additional difficulties arise when trying to
prove that such upper bound is achieved.

In this paper we shall study the limit cycles of a class of piecewise differential
systems. These systems have been studied intensively these last decades due to their
applications, see for instance the books [1, 4, 20] and the papers [19, 21].

For planar piecewise differential systems with separation curve � = {h−1(0)}
where h : R2 → R (being bi-valuated on the separation curve for the vector fields
X and Y ) a point p = (x, y) in � is a crossing point if Xh(p) · Yh(p) > 0, where
· denotes the inner product of two vectors, for more details see Filippov [5]. If there
exist a periodic orbit of that piecewise differential system such that all the points of
the orbit on � are crossing points, then we call it a crossing periodic orbit. A crossing
limit cycle is an isolated periodic orbit in the set all crossing periodic orbits of the
differential system.

The crossing limit cycles of different classes of piecewise differential systems have
been studied by many authors during these last years, see for instance [2, 3, 6, 7, 9,
11–18].

In this paper we study the maximum number of crossing limit cycles of the class
of planar continuous piecewise differential systems separated by the non-regular line

� = {(x, y) ∈ R
2 : (y = 0) ∨ (x = 0 ∧ y ≥ 0)}.

The three components of R2 \ � are the positive or first quadrant

R1 = {(x, y) ∈ R
2 : x ≥ 0 ∧ y ≥ 0},

the second quadrant

R2 = {(x, y) ∈ R
2 : x ≤ 0 ∧ y ≥ 0},

and the half-plane

R3 = {(x, y) ∈ R
2 : y ≤ 0}.

More precisely, in the region R1 we consider an arbitrary quadratic differential system

ẋ = c0 + c1x + c2y + c3x
2 + c4xy + c5y

2,

ẏ = d0 + d1x + d2y + d3x
2 + d4xy + d5y

2, (1)
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with ci , di ∈ R for i = 0, . . . , 5. In the region R2 we consider an arbitrary linear
center

ẋ = a0 + a1x + a2y,

ẏ = b0 + b1x + b2y, (2)

with ai , bi ∈ R for i = 0, 1, 2, and in the region R3 we consider the linear center

ẋ = −y,

ẏ = x . (3)

Our main result is the following.

Theorem 1 Any continuous piecewise differential system in the plane formed by sys-
tems (1) in R1, systems (2) in R2 and systems (3) in R3 separated by the non-regular
line � has at most two crossing limit cycles. Moreover we provide an example of such
a system with one crossing limit cycle.

The proof of Theorem 1 is given in Sect. 2. Note that Theorem 1 provides a positive
answer to the extension of the 16th Hilbert problem [8] for the class of continuous
piecewise differential systems separated by a non-regular line � and formed by the
above differential systems. Note that although two is the maximum number of cross-
ing limit cycles that the above mentioned system can have, we are only able to find
examples of these piecewise differential systems with one crossing limit cycle. So it
remains open if the upper bound of two is reached or not.

2 Proof of Theorem 1

Before proving Theorem 1 we recall that a set of functions { f0, f1, . . . , fn} is an
extended complete Chebyshev system on R

+ if and only if the Wronskians

W ( f0, . . . , fk)(s) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

f0(s) f1(s) · · · fk(s)
f ′
0(s) f ′

1(s) · · · f ′
k(s)

...
...

. . .
...

f k0 (s) f k1 (s) · · · f kk (s)

∣
∣
∣
∣
∣
∣
∣
∣
∣

	= 0,

on R+ for k = 0, 1, . . . , n. Moreover for an extended complete Chebyshev system in
R

+ we have the following well-known result, for a proof see for instance [10].

Theorem 2 Assume that the functions f0, f1, . . . , fn form an extended complete
Chebyshev system in R+. Then the maximum number of zeros of the function

a0 f0(x) + a1 f1(x) + · · · + an fn(x) = 0 (4)

in R
+ is n. Furthermore, if we can choose the coefficients a0, a1, . . . , an arbitrarily

there are functions of the form in (4) having exactly n zeros in R+.
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We separate the proof of Theorem 1 in two parts: the part concerning the upper
bound and the part providing an example with one crossing limit cycle.

First note that in Theorem 1 we are assuming that the piecewise differential system
must be continuous, and so systems (1) and (2) must coincide on {x = 0, y ≥ 0},
systems (2) and (3) must coincide on {x ≤ 0, y = 0}, and systems (3) and (1) must
coincide on {x ≥ 0, y = 0}. Imposing these three conditions we obtain that

a0 = a1 = b0 = c0 = c1 = c3 = c5 = d0 = d3 = d5 = 0,

b1 = d1 = 1, a2 = c2, b2 = d2,

and the continuous piecewise differential system to study is the one formed by the
following three differential systems

ẋ = c2y + c4xy, ẏ = x + d2y + d4xy, in R1 with c
2
4 + d24 	= 0.

ẋ = c2y, ẏ = x + d2y, in R2 with c2 	= 0,

ẋ = −y, ẏ = x, in R3. (5)

Note that c24 +d24 	= 0, otherwise the first system in (5) will not be a quadratic system.
Moreover, if c2 = 0 then in the second system in (5) we have ẋ = 0, so its solutions
live on the straight lines x = constant and then the piecewise differential system cannot
have crossing periodic orbits. Hence we have that c2(c24 + d24 ) 	= 0.

The upper bound

We start imposing that the quadratic system in (1) has a center. The equilibrium points
of such a quadratic system are

E0 = (0, 0) and E1 =
(

−c2
c4

,
c2

c4d2 − c2d4

)

.

Since c2(c24 +d24 ) 	= 0 we have c24 + (c4d2 − c2d4)2 	= 0. We consider different cases:
Case 1: c4(c4d2 − c2d4) 	= 0. In this case we define

T = d4x + c4y + d2, D = −c4x + (c4d2 − c2d4)y − c2,

and

� = c24 y
2 + (2c4d2 − 4(c4d2 − c2d4))y + d24 x

2 + (4c4 + 2d2d4)x

+2c4d4xy + d22 + 4c2,

where T , D and � are, respectively, the trace, the determinant and the discriminant
associated to the linear part of the quadratic system in (5). Then at the equilibrium
point E0 we obtain

T0 = d2, D0 = −c2, �0 = 4c2 + d22 ,
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and at the equilibrium point E1 we have

T1 = c2c24 + c24d
2
2 + c22d

2
4 − 2c2c4d2d4

c4(c4d2 − c2d4)
, D1 = c2,

and

�1 =
(

−c2c24 + c22d
2
4 + c24d

2
2 − 2c2c4d2d4

c4(c4d2 − c2d4)

)2

.

Observe that E1 cannot be a center because �1 ≥ 0. On the other hand E0 is either a
weak focus or a center if and only if D0 > 0, �0 < 0 and T0 = 0. Thus, c2 < 0 (that
we can write as c2 = −c2 with c > 0), d2 = 0 and c4d4 	= 0.

Hence the quadratic system in the region R1 is

ẋ = −c2y + c4xy, ẏ = x + d4xy, (6)

and the arbitrary linear system in the region R2 is

ẋ = −c2y, ẏ = x . (7)

Note that in system (6) we can assume without loss of generality that c4 < 0 and
d4 > 0. Indeed, if originally c4 > 0 then doing the change of variables (x, y, t) →
(−x, y,−t), c4 becomes negative, and if originally d4 < 0 then doing the change of
variables (x, y, t) → (x,−y,−t), d4 becomes positive.

The first integrals for systems (6), (7) and (3) are

H1(x, y) = e−d4(d4x+c4y)(1 + d4y)
−c4

(

c2 − c4x
)− c2d24

c4 in R1,

H2(x, y) = x2 + c2y2 in R2,

H3(x, y) = x2 + y2 in R3,

as it is easy to check. The existence of the first integral H1(x, y) defined in the point
(0, 0) forces that the equilibrium (0, 0) of the quadratic system (6) is a center.

Now we study the limit cycles of these continuous piecewise differential systems
which intersect the non-regular line of discontinuity � in the points (x1, 0), (0, y1)
and (x2, 0) with x1 > 0, y1 > 0 and x2 < 0. These points must satisfy

e1 = H1(x1, 0) − H1(0, y1) = 0,

e2 = H2(x2, 0) − H2(0, y1) = 0,

e3 = H3(x2, 0) − H3(x1, 0) = 0, (8)
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or equivalently

e1 = e−d24 x1
(

1 − c4
c2

x1
)− c2d24

c4 − ec4d4y1(1 + d4y1)
−c4 = 0,

e2 = x22 − c2y21 = 0,

e3 = x22 − x21 = 0.

Solving e2 = 0 and e3 = 0 we obtain

x2 = −x1, y1 = x1
c

.

Substituting y1 into e1 = 0 we get

e−d24 x1
(

1 − c4
c2

x1
)− c2d24

c4 − e
c4d4
c x1

(
d4
c
x1 + 1

)−c4
= 0,

which can be written as

e
d4x1

(
d4
c4

− 1
c

)
(

1 − c4
c2

x1
)

c2d24
c24 − d4

c
x1 − 1 = 0. (9)

We note that this last equation in the particular case c = 1 and c4 = −d4, assumes
the form

(d4x1 + 1)(e−2d4x1 − 1) = 0.

Which does not vanish in R
+ = (0,∞) because x1 = −1/d4 < 0 with d4 > 0 and

the other is x1 = 0. So there is not limit cycle for the system (8) when c = 1 and
c4 = −d4.

We write the equation in (9) as

a0 f0(x1) + a1 f1(x1) + a2 f2(x1) = 0, (10)

where

f0(x1) = 1, f1(x1) = x1, f2(x1) = e
d4x1

(
d4
c4

− 1
c

)
(

1 − c4
c2

x1
)

c2d24
c24 ,

and

a0 = −1, a1 = −d4/c, a2 = 1.
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The functions f0, f1 and f2 form an extended Chebyshev system on R+ because the
Wronskians of these functions are

W ( f0)(x1) = 1, W ( f0, f1)(x1) = 1,

and

W ( f0, f1, f2)(x1) =
d24 (cd4 − c4)x1

(

1 − c4
c2

x1
)

c2d24
c24

(

2c2 + (cd4 − c4)x1
)

e
d4x1

(
d4
c4

− 1
c

)

c6
(

1 − c4
c2

x1
)2 ,

which does not vanish in R
+ = (0,∞) because from the three zeros of this last

Wronskian two are negative (namely c2/c4 and − 2c2
cd4−c4

) and the other is the 0. In
view of Theorem 2 the function (10) has at most two zeros and so the piecewise
differential system has at most two limit cycles in this case. The upper bound provided
by the theorem is proved in this case.

Note that fromTheorem2we cannot say that the Eq. (9) has values of the parameters
c, c4 and d4 for which it has exactly two zeros, because the coefficients a0, a1 and
a2 are not free parameters. Moreover we also do not know if the possible zeros of the
Eq. (9) are positive.
Case 2: c4 	= 0 and c4d2 − c2d4 = 0. We write this condition as c4 	= 0 and
d2 = c2d4/c4. In this case, system (5) becomes

ẋ = c2y + c4xy, ẏ = c2d4
c4

y + d4xy + x, in R1,

ẋ = c2y, ẏ = x + c2d4
c4

y, in R2,

ẋ = −y, ẏ = x, in R3. (11)

Taking into account that c2 	= 0, the quadratic system in (11) has a unique equilibrium
E0 = (0, 0). So, the trace and the determinant associated to the linear part of the
quadratic system in (11) at E0 are c2d4/c4 and −c2, respectively. In order that E0 can
be a weak focus or a center, we must have that d4 = 0 and c2 = −c2 < 0 with c > 0.
Now system (11) is written as

ẋ = −c2y + c4xy, ẏ = x, in R1,

ẋ = −c2y, ẏ = x, in R2,

ẋ = −y, ẏ = x, in R3,

with first integrals

H1(x, y) =
(

c2 − c4x
)− c2

c24 e
y2

2 − x
c4 in R1,

H2(x, y) = x2 + c2y2 in R2,
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H3(x, y) = x2 + y2 in R3. (12)

The existence of the first integral H1(x, y) defined in the point (0, 0) forces that the
equilibrium (0, 0) of the quadratic system in (11) is a center.

Assume that this continuous piecewise differential system has some crossing limit
cycle with the points intersecting � being (x1, 0), (0, y1) and (x2, 0) with x1 > 0,
y1 > 0, x2 < 0. Then the first integrals given in (12) must satisfy system (8), or
equivalently,

e1 = e
− x1

c4

(

1 − c4
c2

x1
)− c2

c24 − e
y21
2 = 0,

e2 = x22 − c2y21 = 0,

e3 = x22 − x21 = 0.

From equations e2 = 0 and e3 = 0, we get x2 = −x1 and y1 = x1
c

. Introducing x2
and y1 in e1 = 0 we obtain

e
− x1

c4

(

1 − c4
c2

x1
)− c2

c24 − e
x21
2c2 = 0.

which can be written as

e− c4
c2

(c4x1+1)x1 + c4
c2

x1 − 1 = 0. (13)

Note that Eq. (13) can be written as (10), where

f0(x1) = 1, f1(x1) = x1, f2(x1) = e− c4
c2

(c4x1+1)x1,

and

a0 = −1, a1 = c4/c
2, a2 = 1.

The functions f0, f1 and f2 form an extended Chebyshev system on R+ because the
Wronskians of these functions are

W ( f0)(x1) = 1, W ( f0, f1)(x1) = 1,

and

W ( f0, f1, f2)(x1) = c34x1
(

c4x1 + 2c2
)

e− c4
c2

(c4x1+1)x1

c8
,

which does not vanish in R
+ because its two zeros are one negative (namely − 2c2

c4
)

and the other is the 0. In view of Theorem 2 the function (13) has at most two zeros.
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So the piecewise differential system has at most two limit cycles in this case. Hence
the upper bound provided by the theorem is proved in this case.
Case 3: c4 = 0 and −c2d4 	= 0. System (5) becomes

ẋ = c2y, ẏ = x + d2y + d4xy, in R1,

ẋ = c2y, ẏ = x + d2y, in R2,

ẋ = −y, ẏ = x, in R3. (14)

The quadratic system in (14) has a unique equilibrium point E0 = (0, 0). The trace
and the determinant associated to the linear part of the quadratic system in (14) are
d2 and −c2, respectively. The point E0 is either a weak focus or a center if and only
if d2 = 0 and c2 = −c2 with c > 0. So taking d2 = 0 and c2 = −c2, system (14) is
equivalently to

ẋ = −c2y, ẏ = x + d4xy in R1,

ẋ = −c2y, ẏ = x in R2,

ẋ = −y, ẏ = x in R3, (15)

with first integrals

H1(x, y) = (d4y + 1)
− 1

d24 e
y
d4

+ x2

2c2 in R1,

H2(x, y) = x2 + c2y2 in R2,

H3(x, y) = x2 + y2 in R3.

The existence of the first integral H1(x, y) defined in the point (0, 0) forces that the
equilibrium (0, 0) of the quadratic system in (14) is a center.

Now repeating the same steps as the ones in the proof of Case 2, we get

e1 = e
d4
c x1(1− d4

2c x1) − d4
c
x1 − 1 = 0, (16)

where

f0(x1) = 1, f2(x1) = x1, f3(x1) = e
d4
c x1

(

1− d4
2c x1

)

,

and

a0 = −1, a1 = −d4/c, a2 = 1.
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The Wronskians of these functions are

W ( f0)(x1) = 1, W ( f0, f1)(x1) = 1

and

W ( f0, f1, f2)(x1) = d34 x1(d4x1 − 2c)e
d4
c (1− d4x1

2c )x1

c4
.

which does not vanish in R
+ because has two solutions, namely 2c

d4
and 0. So, by

Theorem 2 the function (16) has at most two zeros and we conclude that (15) has at
most two limit cycles which proves the upper bound in the theorem in this case.

The example

The planar continuous piecewise differential system separated by � and formed by
the quadratic center and the two linear centers

ẋ = −36y + 2xy, ẏ = x + 12

100
xy, in R1

ẋ = −36y, ẏ = x, in R2

ẋ = −y, ẏ = x, in R3 (17)

with the first integrals

H1 = e
3
25

(

2y− 3
25 x

)

(36 − 2x)162/625
( 3
25 y + 1

)2 in R1

H2 = x2 + 36y2 in R2

H3 = x2 + y2 in R3

has one crossing limit cycle. Indeed, for this differential system equation (9) is

e−9x1/625

(36 − 2x1)162/625
−

6172
15625 ex1/25
( x1
50 + 1

)2 = 0.

This equation has the approximated solution x1 = 0.0000583439.. and then system
(17) has a unique solution

(x1, y1, x2) = (0.0000583439.., 0.00000972399.., −0.0000583439..),

which provides the limit cycle of Fig. 1. This limit cycle is a crossing limit cycle which
is traveled in counterclockwise sense.
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Fig. 1 The unique crossing limit cycle of the continuous piecewise differential system (17)
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