
Bol. Soc. Mat. Mex. (2023) 29:24
https://doi.org/10.1007/s40590-023-00495-2

ORIG INAL ART ICLE

New rigidity results for complete LW submanifolds
immersed in a Riemannian space form via certain maximum
principles

Henrique F. de Lima1 · Lucas S. Rocha1 ·Marco Antonio L. Velásquez1

Received: 17 June 2022 / Accepted: 8 February 2023 / Published online: 22 February 2023
© Sociedad Matemática Mexicana 2023

Abstract
In this paper, we establish new rigidity results concerning n-dimensional linear Wein-
garten (LW) submanifolds immersed in an (n + p)-dimensional Riemannian space
form Q

n+p
c with constant sectional curvature c ∈ {−1, 0, 1}. Under the assumption

that a complete LW submanifold has polynomial volume growth, we prove that it must
be isometric to an Euclidean sphere Sn(r), with radius r > 0.When the ambient space
is the hyperbolic space Hn+p, we suppose that the norm of the total umbilicity tensor
converges to zero at infinity to show that a complete noncompact LW submanifold
of Hn+p must be isometric to a horosphere of Hn+1. Our approach is based on suit-
able maximum principles recently due to Alías, Caminha and do Nascimento (Alías
et al. in J Math Anal Appl 474:242–247, 2019; Alías et al. in Ann Mat Pura Appl
200:1637–1650, 2021)[1, 2] related to complete noncompact Riemannian manifolds.
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1 Introduction

Aclassical but still profuse thematic inDifferentialGeometry and, in particular, into the
theory of isometric immersions, is the study of the rigidity of n-dimensional subman-
ifolds immersed in a Riemannian space form Q

n+p
c with constant sectional curvature

c ∈ {−1, 0, 1}. An analytical tool that has become fruitful for this research branch is
a self-adjoint differential operator acting on smooth functions defined on a Rieman-
nian manifold, known as square operator, which was introduced by Cheng and Yau
in their remarkable paper [15]. In this work, they used the square operator to classify
n-dimensional compact (without boundary) hypersurfaces with constant normalized
scalar curvature R satisfying R ≥ c and nonnegative sectional curvature immersed
in Qn+1

c . Posteriorly, Li [20] extended the results of Cheng and Yau in terms of the
squared norm of the second fundamental form of the hypersurface. Next, Li [21]
studied the rigidity of compact hypersurfaces with nonnegative sectional curvature
immersed in a unit Euclidean sphere Sn+1 under the assumption that the scalar and
mean curvatures are proportional.

Proceeding with the picture described above, relevant results have appeared during
the last decades. In 2009, for instance, Li, Suh andWei [22] extended the results of [15]
and [21] by considering linear Weingarten (LW) hypersurfaces immersed in Sn+1

whose normalized scalar curvature R and mean curvature H satisfy a linear relation
of the type R = aH+b, for some constants a, b ∈ R. In this context, they obtained that
if Mn is a compact LW-hypersurface with nonnegative sectional curvature immersed
in Sn+1, thenMn must be isometric to either a totally umbilical Euclidean sphere Sn(r)
with radius 0 < r ≤ 1 or to aClifford torusSk(r)×Sn−k(

√
1 − r2)with 1 ≤ k ≤ n−1

and 0 < r < 1. Afterward, Shu [26] demonstrated some rigidity theorems concerning
LW-hypersurfaces with two distinct principal curvatures immersed in Qn+1

c . Also
working in this context and resorting to a suitable Cheng–Yau’s modified operator, the
first and third authors jointly with Aquino [5, 6] used suitable maximum principles to
extend the results of [22] for complete LW-hypersurfaces immersed in Qn+1

c .
Regarding immersed submanifolds with (possibly) high codimension p ≥ 1 and

whose normalized mean curvature vector is parallel as a section of the normal bundle,
we also have in the current literature several works addressing characterization results.
In this setting, we can highlight the papers of Cheng [14] and Guo and Li [19]. In the
first one, the author applied the generalizedmaximumprinciple of Omori–Yau [24, 27]
to show that the totally umbilical sphere Sn(r), the totally geodesic Euclidean space
Rn and the generalized cylinder R × Sn−1(r) are the only n-dimensional complete
submanifolds with constant scalar curvature and parallel normalized mean curvature
vector in the Euclidean space Rn+p satisfying a suitable constraint on the norm of the
second fundamental form. In the second one, the authors investigated the problem of
generalize the previous results of [20]. So, they proved that the only n-dimensional
compact (without boundary) submanifolds immersed in Sn+p with constant scalar
curvature, parallel normalized mean curvature vector and such that the second fun-
damental form satisfies an appropriate boundedness are the totally umbilical spheres
Sn(r) and the Clifford torus S1(

√
1 − r2) × Sn−1(r), where r > 0 stands for the

positive radius.
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Later on, the first and third author jointly with Araújo and dos Santos [11] obtained
an Omori-type maximum principle for the Cheng–Yau’s operator and applied it to
establish an extension of the results of [14, 19] for n-dimensional complete sub-
manifolds immersed with parallel normalized mean curvature vector in Q

n+p
c , with

constant normalized scalar curvature. Next, these same authors [18] used the Hopf’s
strong maximum principle and a maximum principle at infinity due to Caminha [13]
to obtain versions of the results of [11, 14, 19] for the context of n-dimensional com-
plete LW submanifolds immersed with parallel normalized mean curvature vector in
Q

n+p
c . In [9], the third author jointly with Araújo established a version of the classi-

cal Liebmann’s rigidity theorem showing that a compact LW-surface immersed with
flat normal bundle and parallel normalized mean curvature vector with nonnegative
Gaussian curvature in Q

2+p
c must be isometric to a totally umbilical round sphere.

They also obtained in [10] another version of this Liebmann’s result assuming that the
ambient is the hyperbolic space (for other characterizations concerning complete LW
submanifolds in the hyperbolic space we refer the reader to [4, 7, 8, 17]).

Motivated by these works above mentioned, our aim in this paper is to obtain
new rigidity results concerning n-dimensional LW submanifolds immersed in Q

n+p
c .

First, under the assumption that a complete LW submanifold has polynomial volume
growth, we establish sufficient conditions to guarantee that it must be isometric to an
Euclidean sphere Sn(r), with radius r > 0 (see Theorems 1, 2 and 3, and Corollaries 1
and 2). Afterward, when the ambient space is the hyperbolic space Hn+p, supposing
that the norm of the total umbilicity tensor converges to zero at infinity, we are able
to show that a complete noncompact LW submanifold of Hn+p must be isometric to
a horosphere ofHn+1 (see Theorems 4, 5, 6 and 7). Our approach is based on suitable
maximum principles recently due to Alías, Caminha and do Nascimento [1, 2] related
to complete noncompact Riemannian manifolds (see Lemmas 1 and 2).

2 Preliminaries

Let us denote by Q
n+p
c the standard model of an (n + p)-dimensional Riemannian

space form with constant sectional curvature c ∈ {0, 1,−1}. Actually, Qn+p
c denotes

the Euclidean (n + p)-space Rn+p when c = 0, the (n + p)-dimensional Euclidean
sphere Sn+p when c = 1 and the (n + p)-dimensional hyperbolic space Hn+p when
c = −1. We also denote by 〈, 〉 the corresponding Riemannian metric induced on
Q

n+p
c ↪→ Rn+p+1.
LetMn be an n-dimensional connected submanifold immersed inQn+p

c .We choose
a local orthonormal frame

{
e1, . . . , en+p

}
inQn+p

c with dual coframe
{
ω1, . . . , ωn+p

}

such that, at each point of Mn , e1, . . . , en are tangent to Mn and en, . . . , en+p are
normal to Mn . Moreover, let {ωBC } denote the connection 1-forms on Qn+p

c . In what
follows, we will use the following convention for the indices:

1 ≤ A, B,C, . . .≤n + p, 1 ≤ i, j, k, . . .≤n and n + 1 ≤ α, β, γ, . . .≤n + p.
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The second fundamental form A, the curvature tensor R and the normal curvature
tensor R⊥ of Mn are given by

ωiα =
∑

j

hα
i jω j , A =

∑

i, j,α

hα
i jωi ⊗ ω j eα,

dωi j =
∑

k

ωik ∧ ωk j − 1

2

∑

k,l

Ri jklωk ∧ ωl ,

dωαβ =
∑

γ

ωαγ ∧ ωγα − 1

2

∑

k,l

R⊥
αβklωk ∧ ωl .

It is not difficult to see that the components hα
i jkωk of the covariant derivate ∇A

satisfy ∑

k

hα
i jkωk = dhα

i j +
∑

k

hα
kiωk j +

∑

k

hα
k jωki +

∑

β

hβ
k jωki . (2.1)

Moreover, the Gauss equation is given by

Ri jkl = c(δikδ jl − δilδ jk) +
∑

α

(hα
ikh

α
jl − hα

il h
α
jk).

In particular, the components of the Ricci tensor Rik and the normalized scalar
curvature R are given, respectively, by

Rik = (n − 1)δik + n
∑

α

Hαhα
ik −

∑

α, j

hα
i j h

α
jk (2.2)

and

R = 1

n − 1

∑

i

Rii . (2.3)

From (2.2) and (2.3), we get the following relation

n(n − 1)R = n(n − 1)c + n2H2 − |A|2, (2.4)

where |A|2 = ∑
α,i, j (h

α
i j )

2 is the squared norm of the second fundamental form A
and H = |H| is the mean curvature function related to the mean curvature vector field
H = ∑

α Hαeα = 1
n

∑
α(

∑
k h

α
kk)eα of Mn .

Furthermore, Codazzi equation is given by

hα
i jk = hα

ik j = hα
j ik . (2.5)

We will also consider the symmetric tensor

� =
∑

α,i, j

�α
i jωi ⊗ ω j eα, (2.6)
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where �α
i j = hα

i j − Hαδi j . Consequently, we have that

�n+1
i j = hn+1

i j − Hδi j and �α
i j = hα

i j ,

for n + 2 ≤ α ≤ n + p.
Let |�|2 = ∑

α,i, j (�
α
i j )

2 be the squared norm of �. It is not difficult to check that
� is traceless with

|�|2 = |A|2 − nH2. (2.7)

In addition, from (2.4) we obtain

n(n − 1)R = n(n − 1)(c + H2) − |�|2. (2.8)

3 Key lemmas

Let (Mn, 〈, 〉) be a connected, oriented, complete Riemannian manifold. We denote
by B(p, t) the geodesic ball centered at p with radius t . Given a polynomial function
σ : (0,+∞) → (0,+∞), we say that Mn has polynomial volume growth like σ(t) if
there exists p ∈ Mn such that

vol(B(p, t)) = O(σ (t)),

as t → +∞, where vol denotes the standard Riemannian volume. As it was already
observed in the beginning of Section 2 of [2], if p, q ∈ Mn are at distance d from
each other, we can verify that

vol(B(p, t))

σ (t)
≥ vol(B(q, t − d))

σ (t − d)
· σ(t − d)

σ (t)
.

Consequently, the choice of p in the notion of volume growth is immaterial. For this
reason, we will just say that Mn has polynomial volume growth.

Keeping in mind this previous digression and denoting by divX the divergence of
a smooth vector field X ∈ X(M) in the metric 〈, 〉, we quote the following key lemma
which corresponds to a particular case of a new maximum principle due to Alías,
Caminha and do Nascimento (see [2, Theorem 2.1]).

Lemma 1 Let (Mn, 〈, 〉) be a connected, oriented, complete noncompact Riemannian
manifold and let X ∈ X(M) be a bounded smooth vector field on Mn. Assume that
f ∈ C∞(M) is a smooth function on Mn such that 〈∇ f , X〉 ≥ 0 and divX ≥ α f , for
some positive constant α. If Mn has polynomial volume growth, then f ≤ 0 on Mn.

Now, let us recall a notion of convergence to zero at infinity established in [1,
Section 2]: If Mn is a connected, complete noncompact Riemannian manifold, we let
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d(·, o) : M → [0,+∞) stand for the Riemannian distance of Mn , measured from a
fixed point o ∈ Mn . Thus, if f ∈ C0(Mn) satisfies

lim
d(x,o)→+∞ f (x) = 0,

we say that f converges to zero at infinity. So,we quote amaximumprinciple presented
in [1, Theorem 2.2(a)].

Lemma 2 Let (Mn, 〈, 〉) be a connected, oriented, complete noncompact Riemannian
manifold and let X ∈ X(Mn) be a smooth vector field on Mn. Assume that there exists
a nonnegative, non-identically vanishing function f ∈ C∞(M) which converges to
zero at infinity and such that 〈∇ f , X〉 ≥ 0. If divX ≥ 0 on Mn, then 〈∇ f , X〉 ≡ 0 on
Mn.

Wewill also need the next key lemma, which is due to Barros et al. (see [12, Lemma
1]).

Lemma 3 Let Mn be a Riemannian manifold isometrically immersed into a Rieman-
nian manifold Nn+p. Consider 
 = ∑

α,i, j

α
i jωi ⊗ ω j ⊗ eα a traceless symmetric

tensor satisfying Codazzi equation. Then the following inequality holds

|∇|
|2|2 ≤ 4n

n + 2
|
|2|∇
|2,

where |
|2 = ∑
α,i, j (


α
i j )

2 and |∇
|2 = ∑
α,i, j,k(


α
i jk)

2. In particular, the
conclusion holds for the tensor � defined in (2.6).

4 Main results

We recall once more that a submanifold is said to be linear Weingarten (LW) when
its first mean and normalized scalar curvatures are linearly related, that is, when they
satisfy the following relation

R = aH + b, (4.1)

for constants a, b ∈ R. We observe that when a = 0, (4.1) reduces to R constant.
In this setting, Eq. (2.7) becomes

|�|2 = |A|2 − nH2 = n(n − 1)H2 − n(n − 1)aH − n(n − 1)(b − c). (4.2)

For a LW submanifold Mn satisfying (4.1), we introduce the second-order linear
differential operator L : C∞(M) → C∞(M) defined by

L = L − n − 1

2
a�, (4.3)
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where � is the Laplacian operator on Mn and L : C∞(M) → C∞(M) denotes the
Cheng–Yau’s operator, which is given by

Lu = tr(P ◦ Hess (u)), (4.4)

for every u ∈ C∞(M), where Hess is the self-adjoint linear tensor metrically equiv-
alent to the Hessian of u and P : X(M) → X(M) denotes the first Newton
transformation of Mn which is given by P = nH I − A. So, from (4.3) and (4.4), we
have that

Lu = tr(P ◦ Hess (u)),

with

P =
(
nH − n − 1

2
a

)
I − A (4.5)

and it is not difficult to verify that L can be rewritten in the following divergence form
(see, for instance, [25, Section 4])

Lu = div(P(∇u)). (4.6)

In the next subsections, we will use the modified Cheng–Yau’s operator L jointly
with the lemmas quoted in the previous section to establish our rigidity results
concerning LW submanifolds in a Riemannian space form.

4.1 Rigidity results for complete LW submanifolds in space forms

Before to present our results,we need to collect someproperties related to the following
one-parameter family of real functions

Qt (x) = −(n − 2)x2 − (n − 2)x
√
x2 + n(n − 1)(t − c) + n(n − 1)t, (4.7)

where t ∈ R corresponds to the real parameter, while n and c are real constants.
We note that Alías, García-Martínez and Rigoli introduced in [3] the definition of
the function QR(x) when they were studying hypersurfaces with constant normalized
scalar curvature R in an (n + 1)-dimensional Riemannian space form of constant
sectional curvature c ∈ {−1, 0, 1}.

For each nonnegative (positive) parameter t , we have that Qt (0) = n(n − 1)t is
also nonnegative (positive). When n ≥ 3, each function Qt is (strictly) decreasing for
x ≥ 0, with Qt (x∗

t ) = 0 only at

x∗
t = t

√
n(n − 1)

(n − 2)(nt − (n − 2)c)
. (4.8)

Moreover, in the case n = 2, we have that Qt (x) = 2t .
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Now, we are in position to present our first rigidity result concerning a complete
LW-hypersurface Mn immersed in Qn+1

c .

Theorem 1 Let Mn be a complete LW-hypersurface immersed into a Riemannian
space form Qn+1

c with n ≥ 3, such that R = aH + b with b ≥ c. Suppose that(
H − a

2

) ≥ β on Mn, for some positive constant β, and that R > n−2
n for c = 1 and

R > 0 for c = 0 or c = −1. Assume in addition that |∇�| is bounded and supM |�| ≤
γ < x∗

R, for some constant γ and x∗
R defined in (4.8). If Mn has polynomial volume

growth and inf R(QR(γ )) > 0, then Mn is isometric to an Euclidean sphere Sn(r),
with radius r > 0.

Proof Taking the smooth vector field X = P(∇|�|2) and the smooth function f =
|�|2, it will fulfill the required conditions to apply Lemma 1. Indeed, by hypothesis
we have that |�| is bounded on Mn and, by Eq. (4.2), H and |A| are also bounded on
Mn . Consequently, from definition (4.5), we get

|X | = |P(∇|�|2)| ≤ |P||∇|�|2| ≤
(
n
√
n|H |

+ (n − 1)
√
n

2
|a| + |A|

)
|∇|�|2| ≤ k|∇|�|2|,

for some positive constant k. But, since we are supposing the boundedness of |�| and
|∇�|, Lemma 3 guarantees that ∇|�|2 is also bounded. Thus, we have that

|X | ≤ C < +∞,

for some positive constant C .
On the other hand, the condition

〈∇ f , X〉 = 〈∇|�|2,P(∇|�|2)〉 ≥ 0

is also verified because [18, Lemma 4.4] gives that P is positive semi-definite for
b ≥ c.

Now, we must obtain divX ≥ α f on Mn , for some positive constant α. For this,
we will find a suitable lower bound for L(|�|2). Applying L in (4.2), we get that

1

2(n − 1)
L(|�|2) = 1

2
L(nH2) − a

2
L(nH)

= HL(nH) + n〈P∇H ,∇H〉 − a

2
L(nH). (4.9)

In particular, since P is positive semi-definite, from (4.9) we obtain

1

2(n − 1)
L(|�|2) ≥

(
H − a

2

)
L(nH). (4.10)



New rigidity results for complete LW submanifolds… Page 9 of 17 24

Let us choose a (local) orthonormal frame {e1, . . . , en} onMn such that hi j = λiδi j .
Since R = aH +b, from [6, Equation (2.19)] jointly with the definition of L and with
Ri ji j = λiλ j + c, we get

L(nH) = |∇A|2 − n2|∇H |2 + nc(|A|2 − nH2) − |A|4 + nH
∑

i

λ3i . (4.11)

Moreover, we have�i, j = μiλi j and, with straightforward computation, we verify
that

∑

i

μi = 0,
∑

i

μ2
i = |�|2 and

∑

i

μ3
i =

∑

i

λ3i − 3H |�|2 − nH3. (4.12)

Thus, using Gauss equation jointly with (4.11) and (4.12), we get

L(nH) = |∇A|2 − n2|∇H |2 + nH
∑

i

μ3
i + |�|2(−|�|2 + nH2 + nc). (4.13)

We can apply [18, Lemma4.1] jointlywith the classical lemmadue toOkumura [23]
for n ≥ 3, to obtain from (4.13) that

L(nH) ≥ |�|2
(

−|�|2 − n(n − 2)√
n(n − 1)

H |�| + nH2 + nc

)
. (4.14)

Furthermore, from (2.8) we obtain

H2 = 1

n(n − 1)
|�|2 + (R − c). (4.15)

Thus, from (4.14) and (4.15), we achieve in

L(nH) ≥ 1

n − 1
|�|2QR(|�|), (4.16)

where QR is defined in (4.7). Hence, using (4.10) jointly with (4.16), from (4.6) we
conclude that

divX = div(P(∇|�|2)) = L(|�|2) ≥ 2
(
H − a

2

)
QR(|�|)|�|2. (4.17)

Since we have
(
H − a

2

) ≥ β > 0 by hypothesis and from the behavior of QR(x)
for 0 ≤ |�| ≤ supM |�| ≤ γ < x∗

R , we have that

QR(|�|) ≥ QR(γ ) > inf
R

(QR(γ )) > 0. (4.18)

Then, from (4.17) and (4.18), we obtain

divX ≥ 2
(
H − a

2

)
QR(|�|)|�|2 ≥ α|�|2, (4.19)
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and divX ≥ α f for α = 2β inf R(QR(γ )) > 0.
Consequently, supposing that Mn is noncompact and with polynomial volume

growth, we are able to apply Lemma 1 obtaining that |�|2 ≤ 0 on Mn . Then, |�| ≡ 0,
which means that Mn is a totally umbilical hypersurface. But, from the character-
izations of the totally umbilical hypersurfaces of the Riemannian space forms, we
conclude that Mn must be isometric to Rn , which corresponds to a contradiction with
the hypothesis that R > 0.

Thus, Mn must be compact. So, we can integrate both sides of (4.19) and use
Divergence Theorem to get that

∫

M
|�|2dM = 0.

Therefore, we have that |�| ≡ 0 and, hence, Mn is a compact totally umbilical
hypersurface of Qn+1

c . Hence, Mn must be isometric to an Euclidean sphere Sn(r),
with radius r > 0. ��

Revisiting the proof of Theorem 1, we observe that if n = 2, then
∑

i μ
3
i = 0.

Consequently, from (4.13) we get

L(nH) ≥ |�|2
(
−|�|2 + 2H2 + 2c

)
,

and (4.14) is still true in this case. Hence, it is not difficult to verify that we also have
the following rigidity result.

Theorem 2 Let M2 be a complete LW-surface immersed into a Riemannian space
form Q3

c , such that R = aH + b with b ≥ c. Suppose that
(
H − a

2

) ≥ β on M2,
for some positive constant β, and that infM R > 0. Assume in addition that |�| and
|∇�| are bounded. If M2 has polynomial volume growth, then M2 is isometric to an
Euclidean sphere S2(r), with radius r > 0.

Observing that, when R > 0 is constant, the hypothesis inf R(QR(γ )) > 0 is
automatically satisfied, from Theorems 1 and 2 we obtain, respectively, the following
consequences:

Corollary 1 Let Mn be a complete hypersurface immersed into a Riemannian space
form Qn+1

c with n ≥ 3, with constant normalized scalar curvature R ≥ 1 for c = 1
and R > 0 when c = −1 or c = 0. Suppose that H ≥ β on Mn, for some positive
constant β. Assume in addition that |∇�| is bounded and supM |�| < x∗

R, for x∗
R

defined in (4.8). If Mn has polynomial volume growth, then Mn is isometric to an
Euclidean sphere Sn(r), with radius r > 0.

Corollary 2 Let M2 be a complete surface immersed into a Riemannian space form
Q3

c , with constant normalized scalar curvature R ≥ 1 for c = 1 and R > 0 when
c = −1 or c = 0. Suppose that H ≥ β on M2, for some positive constant β. Assume
in addition that |�| and |∇�| are bounded. If M2 has polynomial volume growth,
then M2 is isometric to an Euclidean sphere S2(r), with radius r > 0.
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Proceeding, we will deal with LW submanifolds Mn of Qn+p
c having parallel nor-

malized mean curvature vector fieldH, which means that the mean curvature function
H is positive and that the corresponding normalized mean curvature vector field H

H
is parallel as a section of the normal bundle. In this context, we can choose a local
orthonormal frame

{
e1, . . . , en+p

}
such that en+1 = H

H . Consequently, we have

Hn+1 = 1

n
tr(hn+1) = H and Hα = 1

n
tr(hα) = 0, α ≥ n + 2. (4.20)

Considering this previous context, we can state a version of Theorem 1 for higher
codimension.

Theorem 3 Let Mn be a complete LW submanifold immersed with parallel normalized
mean curvature vector field in a Riemannian space form Q

n+p
c with n ≥ 4, such that

R = aH + b with a ≥ 0 and b ≥ c. Suppose that
(
H − a

2

) ≥ β on Mn, for some
positive constant β, and that R > n−2

n for c = 1 and R > 0 when c = −1 or c = 0.
Assume in addition that |∇�| is bounded and such that supM |�| ≤ γ < x∗

R, for
some constant γ and x∗

R defined in (4.8). If Mn has polynomial volume growth and
inf R(QR(γ )) > 0, then Mn is isometric to an Euclidean sphere Sn(r), with radius
r > 0.

Proof Reasoning as in the proof of Theorem 1, we take the smooth vector field X =
P(∇|�|2) and the smooth function f = |�|2. So, we have that

|X | ≤ C, (4.21)

for some positive constant C , and

〈∇ f , X〉 = 〈∇|�|2,P(∇|�|2)〉 ≥ 0. (4.22)

Moreover,
1

2(n − 1)
L(|�|2) ≥

(
H − a

2

)
L(nH). (4.23)

On the other hand, following the same initial steps of the proof of [18, Theorem
5.1], we can achieve in [18, Inequality (5.16)] which is given by

L(nH) ≥ 1

n − 1
|�|2QR(|�|) + (|�| − |�n+1|)

(
n − 2

n − 1
− 16

27

)
|�|.

Thus, since we are also assuming that n ≥ 4, we get

L(nH) ≥ 1

n − 1
|�|2QR(|�|). (4.24)



24 Page 12 of 17 H. F. de Lima et al.

So, using (4.23) jointly with (4.24), we conclude that

divX = div(P(∇|�|2)) = L(|�|2) ≥ 2
(
H − a

2

)
QR(|�|)|�|2. (4.25)

But, since
(
H − a

2

) ≥ β > 0, taking into account once more the behavior of
QR(x), for 0 ≤ |�| ≤ supM |�| < γ < x∗

R , we have that

QR(|�|) ≥ QR(γ ) > inf
R

(QR(γ )) > 0.

Hence, from (4.25), we obtain

divX ≥ 2
(
H − a

2

)
QR(|�|)|�|2 ≥ α f , (4.26)

where α = 2β inf R(QR(γ )) > 0.
Supposing that Mn is a noncompact submanifold, since (4.21), (4.22) and (4.26)

were verified andMn has polynomial volume growth, we are able to apply Lemma 1 to
obtain that |�|2 ≤ 0 on Mn . Then, |�| ≡ 0 and Mn is totally umbilical submanifold.
Consequently, taking into account (4.20), we get

hα = 〈H , eα〉I = Hα I = 0,

for all α > n + 1. Thus, we have that the first normal subspace

N1 =
{
eα ∈ X⊥(Mn); hα = 0

}⊥

is parallel and it has dimension 1. Therefore, we can apply [16, Proposition 4.1] to
reduce the codimension of Mn to 1. Hence, since Mn is, in fact, a totally umbilical
noncompact hypersurface with polynomial volume growth, we infer that it is isometric
to Rn , which corresponds to a contradiction with the hypothesis R > 0.

At this point, we can reason as in the last part of the proof of Theorem 1 to conclude,
reducing the codimension ofMn again, thatMn must be isometric to a totally umbilical
Euclidean sphere Sn(r), with radius r > 0. ��

4.2 Further rigidity results in the hyperbolic space

In what follows we will apply Lemma 2 to get further rigidity results concerning
n-dimensional complete noncompact LW submanifolds in the (n + p)-dimensional
hyperbolic spaceHn+p. So, we state and prove our first one related to the case p = 1.

Theorem 4 Let Mn be a complete noncompact LW-hypersurface immersed into the
hyperbolic spaceHn+1 with n ≥ 3, such that R = aH +b with b > −1. Suppose that(
H − a

2

) ≥ 0 on Mn and that R ≥ 0. Assume in addition that |�| ≤ x∗
R, for x

∗
R defined

in (4.8). If |�| converges to zero at infinity, then Mn is isometric to a horosphere of
Hn+1.
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Proof Let us consider the smooth vector field X = P(∇|�|2) and the smooth function
f = |�|2 and let us suppose that Mn is not a umbilical hypersurface. So, f is non-
identically vanishing function which converges to zero at infinity. Moreover, we have
that

〈∇ f , X〉 = 〈∇|�|2,P(∇|�|2)〉 ≥ 0.

We claim that divX ≥ 0. Indeed, we already know that

1

2(n − 1)
L(|�|2) ≥

(
H − a

2

)
L(nH) and L(nH) ≥ 1

n − 1
|�|2QR(|�|),

(4.27)
where QR is the function given by (4.7). Thus, since

(
H − a

2

) ≥ 0, from (4.27) jointly
with the behavior of QR(x) for 0 ≤ |�| ≤ x∗

R , we conclude that

divX = div(P(∇|�|2)) = L(|�|2) ≥ 2
(
H − a

2

)
QR(|�|)|�|2 ≥ 0.

Hence, we can apply Lemma 2 to get that

〈∇ f , X〉 = 〈P(∇|�|2),∇|�|2〉 ≡ 0.

Consequently, since [18, Lemma 4.4] gives that P is positive definite, we have that
∇|�|2 ≡ 0. Thus, f = |�|2 is constant. But, since f converges to zero at infinity, it
must be identically zero, leading us to a contradiction. Therefore, Mn is a complete
noncompact totally umbilical hypersurface of Hn+1 with R ≥ 0, which means that
Mn is isometric to a horosphere of Hn+1. ��

In the case n = 2, reasoning as in the proof of Theorem 4, we also obtain the
following—

Theorem 5 Let M2 be a complete noncompact LW-surface immersed into the hyper-
bolic space H3, such that R = aH + b with b > −1. Suppose that

(
H − a

2

) ≥ 0
on M2 and that R ≥ 0. If |�| converges to zero at infinity, then M2 is isometric to a
horosphere of H3.

Applying again a codimension reduction process, we obtain our next rigidity result.

Theorem 6 Let Mn be a complete noncompact LW submanifold immersed with par-
allel normalized mean curvature vector field into the hyperbolic space Hn+p with
n ≥ 4, such that R = aH + b with a ≥ 0 and b > −1. Suppose that

(
H − a

2

) ≥ 0 on
Mn and that R ≥ 0. Assume in addition that |�| ≤ x∗

R, for x
∗
R defined in (4.8). If |�|

converges to zero at infinity, then Mn is isometric to a horosphere of Hn+1.

Proof It is not difficult to verify that, using inequality (4.25) and following similar
steps of the proof of Theorem 4, we can achieve in ∇|�|2 ≡ 0. So, taking into
account (4.20), we get

hα = 〈H , eα〉I = Hα I = 0
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for every α > n + 1. This implies that the first normal subspace

N1 =
{
eα ∈ X⊥(Mn); hα = 0

}⊥

is parallel and has dimension 1. Therefore, we are in position to apply once more [16,
Proposition 4.1], reducing the codimension of Mn to 1 and concluding that it is a
totally umbilical noncompact hypersurface of Hn+1 with R ≥ 0. Consequently, Mn

must be a horosphere of Hn+1. ��
In our last rigidity result, we will deal with complete noncompact LW submanifolds

having nonnegative sectional curvature, which are immersed with globally flat normal
bundle in Hn+p.

Theorem 7 Let Mn be a complete noncompact LW submanifold with nonnegative
sectional curvature immersed into the hyperbolic space Hn+p, n ≥ 2 with globally
flat normal bundle and parallel normalized mean curvature vector field, such that
R = aH + b with b > −1 and

(
H − a

2

) ≥ 0. If the total umbilicity tensor of the
immersion |�| converges to zero at infinity, then Mn is isometric to a horosphere of
Hn+1.

Proof As before, we take the smooth vector field X = P(∇|�|2) and the smooth func-
tion f = |�|2. Supposing that Mn is not a totally umbilical submanifold, reasoning
as in the proof of Theorem 4 we obtain that f is non-identically vanishing function
which converges to zero at infinity and such that 〈∇ f , X〉 ≥ 0.

Now, let us verify that divX ≥ 0. Indeed, we have

1

2
�|A|2 =

∑

i, j,α

hα
i j�hα

i j +
∑

i, j,k,α

(hα
i jk)

2. (4.28)

Using Codazzi equation (2.5) into (4.28), we get

1

2
�|A|2 = |∇A|2 +

∑

i, j,k,α

hα
i j h

α
ki jk . (4.29)

On the other hand, by exterior differentiation of (2.1) and assuming that Mn has
globally flat normal bundle (that is, R⊥ = 0), we obtain the following Ricci identity

hα
i jkl − hα

i jlk =
∑

m

hα
mj Rmikl +

∑

m

hα
im Rmjkl . (4.30)

Thus, from (4.20), (4.29) and (4.30), we reach at

1

2
�|A|2 = |∇A|2+

∑

i, j

nHn+1
i j hn+1

i j +
∑

i, j,m,k,α

hα
i j h

α
mi Rmkjk+

∑

i, j,k,m,α

hα
i j h

α
km Rmi jk .

(4.31)
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Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that hα
i j =

λα
i δi j , for every α, from (4.31), we obtain the following Simons-type formula

1

2
�|A|2 = |∇A|2 +

∑

i

λn+1
i (nH)i i + 1

2

∑

i, j,α

Ri ji j (λ
α
i − λα

j )
2. (4.32)

Moreover, using the definition (4.4), we obtain

L(nH) = nH�(nH) −
∑

i

λn+1
i (nH)i i

= n(n − 1)

2
�R + 1

2
�|A|2 − n2|∇H |2 −

∑

i

λn+1
i (nH)i i . (4.33)

Thus, inserting (4.32) into (4.33), we get

L(nH) = n(n − 1)

2
�R + |∇A|2 − n2|∇H |2 + 1

2

∑

i, j,α

Ri ji j (λ
α
i − λα

j )
2. (4.34)

Provided that R = aH + b, from (4.3) and (4.34), we have

L(nH) = |∇A|2 − n2|∇H |2 + 1

2

∑

i, j

Ri ji j (λ
α
i − λα

j )
2. (4.35)

Hence, since Mn is supposed to have nonnegative sectional curvature and using [18,
Lemma 4.1], from (4.35), we get L(nH) ≥ 0. Thus, since (H − a

2 ) ≥ 0, from (4.27),
we finally deduce that

divX = div(P(∇|�|2)) = L(|�|2) ≥ 2(n − 1)
(
H − a

2

)
L(nH) ≥ 0.

Now, applying Lemma 2, we obtain

〈∇ f , X〉 = 〈P(∇|�|2),∇|�|2〉 ≡ 0.

So, since [18, Lemma4.4] guarantees thatP is positive definite,we get that∇|�|2 ≡ 0.
Thus, as in the last part of the proof of Theorem 4, we will have that f = |�|2 is
identically zero, leading us to a contradiction. Therefore, Mn must be totally umbilical
and, reducing the codimension of Mn to 1, we conclude that Mn is isometric to a
horosphere of Hn+1. ��
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