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Abstract
Wedefine and study a simultaneousBaire functional calculus for a commutative family
of normal bounded-locally operators on a locally Hilbert space. The most significant
properties of this calculus are presented. We also provide some applications dealing
with locally Hilbert spaces, namely the existence of a particular orthonormal basis,
the polar decomposition and the existence of proper hyper-invariant subspaces.
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1 Preliminaries and introduction

Let � be a directed index set and let Hλ (λ ∈ �) be a Hilbert space with the inner
product 〈 , 〉λ. Assume that the family (Hλ)λ∈� of Hilbert spaces satisfiesHλ ⊂ Hυ

and 〈 , 〉λ = 〈 , 〉υ|Hλ
on Hλ if λ ≤ υ. Let iυλ : Hλ −→ Hυ , λ ≤ υ in �, be the

natural embedding of Hλ in Hυ . Then the family (Hλ, iυλ), λ ≤ υ in �, forms an
inductive system of Hilbert spaces. Now consider:

H = lim−→Hλ =
⋃

λ∈�

Hλ, λ ∈ �.

Endow H with the inductive limit topology, that is the finest locally convex topology
making the natural injections iλ : Hλ −→ H, λ ∈ �, continuous. The space H
endowed with this topology is called a locally Hilbert space ([5], Definition 5.2).
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Let L (Hλ) be the C∗-algebra of all bounded linear operators on the Hilbert space
Hλ, λ ∈ �. For Ti ∈ L (Hi ), i = λ, υ, one has:

Tυ |Hλ
= Tλ, λ ≤ υ, if and only if iυλ ◦ Tυ = Tλ ◦ iυλ.

Thus, under this last equality, we get a unique continuous linear map T = lim−→Tλ :
H −→ H such that:

T |Hλ
= Tλ ∈ L (Hλ) , for every λ ∈ �.

In the sequel, an element T of L (H) is called bounded-locally operator on H. Now,
we consider the algebra L (H) of all continuous linear maps T : H −→ H such that:

T = lim−→Tλ, Tλ ∈ L (Hλ) , for every λ ∈ �.

For every λ ∈ �, consider the function:

pλ(T ) = ‖Tλ‖λ , for every T ∈ L (H) , λ ∈ �,

where ‖.‖λ denotes the operatorC
∗ -norm onL (Hλ).Then, by Proposition 5.1, p. 232

of [5], the map T �−→ T ∗ given by T ∗ = lim−→T ∗
λ defines an involution on L (H) such

that
(L (H) , (pλ)λ∈�

)
is a locally C∗-algebra. Whence

L (H) = lim←−L (Hλ) , λ ∈ �.

Let us remember that a locally C∗-algebra ([4], Definition 7.5, p. 102), is isomorphic
to a closed ∗-subalgebra of L (H) ([5], Theorem 5.1, p. 232). For a detailed account
of the basic properties of the theory of locally Hilbert spaces, see [5].

Let K be a non-empty compact space and ba(K ) be the Baire σ -field on K , that
is the σ -field generated by the collection of all the compact, Gδ-subsets of K . Notice
that ba(K ) is smaller than bo(K ), the Borel σ -field on K (the σ -field generated by
the topology of K ). If K is a compact metric space, then every closed subset of K is
a Gδ-set, and so ba(K ) is exactly the Borel σ -field on K .

LetM be a subset of R
K . We say thatM is a bounded-pointwise-class of K if it is

closed under uniformly bounded pointwise-limits i.e. if ( fn)n is a uniformly bounded
sequence contained in M and if fn simply converges to f ∈ R

K , then also f ∈ M.
Let C (K ) be the algebra of continuous functions on K . Then, the set of Baire functions
on K , denoted by Ba(K ), is defined to be the bounded-pointwise-class of K generated
by C (K ). It’s clear that Ba(K ) is a sub C∗-algebra of B(K ), the algebra of bounded
functions on K . Note that every f ∈ B(K ) is Baire-measurable ([2], Proposition
2.1.7) in the sense that f : (K , ba(K )) −→ (C, bo(C)) is measurable. For basic
properties of Baire functions, we refer to [2].

In [1] and [2], the continuous functional calculus, for single normal bounded oper-
ators in a Hilbert space, is generalized to Baire functions. This makes it possible to



Baire functional calculus for bounded-locally operators Page 3 of 13 23

obtain what is called the Baire functional calculus. In [6], we define a simultaneous
continuous functional calculus for a commutative family of normal of C∗-algebras.

In this paper, we consider locally Hilbert spaces which are not necessarily Hilbert
spaces. Using roughly the approach of [2], we build the Baire functional calculus
for a commutative family of normal bounded-locally operators. The purpose of this
functional calculus is to givemeaning to f (T)wheneverT = (Ti )i∈I is a commutative
family of normal bounded-locally operators on H and f is a Baire complex-valued
function on the simultaneous spectrum Sp(T) of T. To do this, we start first with
simultaneous continuous functional calculus, that we extend to Baire functions, to
finally obtain a Baire functional for T. We treat the fundamental properties of this
functional calculus such as its continuity, its uniqueness, the spectral mapping theorem
and many other properties. Once this functional calculus is defined and studied, the
task is then to give some applications. Using Baire functional calculus, we obtain
a particular orthonormal basis on a locally Hilbert space. We show that for normal
bounded-locally operators there are proper hyper-invariant subspaces. We also give a
polar decomposition of a bounded-locally operator.

2 Simultaneous continuous functional calculus for bounded-locally
operators

Let H = lim−→Hλ, λ ∈ �, be a locally Hilbert space. Then,

L (H) = lim←−L (Hλ) , λ ∈ �.

We will build a simultaneous continuous functional calculus in L (H). Our approach
consists in using simultaneous continuous functionals of each L (Hλ), λ ∈ �.

Let H be a Hilbert space and let T = (Ti )i∈I be a commutative family of normal
operators on H, i.e., Ti Tj = Tj Ti , for every i, j ∈ I . By the analog of a result of
Fuglede, Putnam and Rosenblum ([7], Theorem 12.16, p. 315), each Ti commutes
with T ∗

j . It follows that the full subalgebra B generated by T is a unital commutative

C∗-subalgebra ofL (H). Let T̂ denote the generalized Gelfand transformation defined
by:

T̂ (χ) = (χ (Ti ))i∈I ∈ C
I , for every χ ∈ Sp (B) ,

where Sp(B) denotes the Gelfand spectrum of B, that is the set of non-zero characters
of B. Then, T̂ : Sp(B) −→ C

I is continuous and injective. The image T̂ (Sp(B)) ⊂
C

I is therefore a non-empty compact subset of C
I , which is homeomorphic to Sp(B),

and it is called the simultaneous spectrum of T and it is denoted by Sp (T). The fact
that Sp (T) is homeomorphic to Sp(B), induces an isomorphism:

θ : C [Sp (T)] −→ C [Sp(B)] : θ ( f ) = f ◦ T̂.
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Let G : B → C [Sp(B)] be the Gelfand transformation and consider:

i ◦ G−1 ◦ θ : C [Sp (T)] −→ L (H) ,

where i : B −→ L (H) is the canonical injection of B into L (H). Then, we obtain a
morphism 	T : C [Sp (T)] −→ L (H) which is defined by the equality:

	̂T ( f ) = f ◦ T̂, for every f ∈ C [Sp (T)] (1)

either again by:

χ (	T ( f )) = f (χ (T)) , for every χ ∈ Sp(B),

where χ (T) = (χ (Ti ))i . In particular, if zi denotes the function z �−→ zi on Sp (T),
we obtain 	T (zi ) = Ti and 	T (zi ) = T ∗

i . Moreover, since each morphism of
C (Sp (T)) into L (H) is continuous and 	T is known on all the polynomials P in
zi and zi , this implies the uniqueness of 	T. Moreover, 	T is an ∗-isometry. For any
polynomial P with respect to the variables zi and zi , one has 	T (P) = P

(
Ti , T ∗

i

)
,

where P = P (zi , zi ) .

The fundamental properties of this simultaneous continuous functional calculus are
contained in the following result. The proof, being straightforward, is omitted.

Theorem 2.1 (1) The mapping 	T : C [Sp (T)] −→ L (H), where H is a Hilbert
space, is a unique continuous unitary ∗-morphism from C (Sp (T)) into L (H) such
that

	T (zi ) = Ti , for every i ∈ I ,

where zi denotes the function z �−→ zi on Sp (T).
(2) 	T is isometric and its image 	T (C (Sp (T))) is the full subalgebra of

L (H) generated by (Ti )i∈I , that is the sub-C∗-algebra of L (H) generated by IH
and (Ti )i∈I and, therefore, consists entirely of normal operators.
(3) 	T satisfies the spectral mapping theorem, that is

Sp (	T ( f )) = f (Sp (T) ), for every f ∈ C (Sp (T)) .

As in the classical case, we will note repeatedly 	T ( f ) = f (T) which respects
the multiplicative symbolism: ( f g) (T) = f (T)g(T) as well as the equality: f (T) =
f (T)∗. So, for every f ∈ C (Sp (T)), we also have

‖ f (T)‖ = ‖ f ‖ and
∥∥ f (T)∗

∥∥ = ∥∥ f
∥∥ .

We now come to the quite general case of bounded-locally operators. Let H =
lim−→Hλ, λ ∈ �, be a locally Hilbert space. Let T = (Ti )i∈
 be a commutative family

of normal locally bounded operators on H. Then, for every i ∈ I , Ti = (
Tλ,i

)
λ∈�

,
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where Tλ,i ∈ L (Hλ), for every λ ∈ �. Then, the full subalgebra Bλ, generated by Tλ,
is a C∗-subalgebra of the C∗-algebra L (Hλ). Let λ,μ ∈ � such that λ ≤ μ. Then,

Sp (Tλ) = {(
χ

(
Tλ,i

))
i∈I : χ ∈ Sp (Bλ)

}
.

Let z = (zi )i∈I ∈ Sp (Tλ) with z /∈Sp (
Tμ

)
. Then,

∃ j ∈ I , ∀χ ∈ Sp(Bμ) : z j �= χ
(
Tμ,i

)
.

So,
(
z j I dμ − Tμ,i

) ∈ G
(
Bμ

)
. Therefore, there exists w j ∈ Bμ such that

w j
(
z j I dμ − Tμ,i

) = (
z j I dμ − Tμ,i

)
w j = I dμ.

Using the connecting morphism ρλμ : Bμ −→ Bλ, (λ ≤ μ), we obtain(
z j I dλ − Tλ,i

) ∈ G (Bλ), where G (Bλ) denotes the group of invertible elements
of Bλ, and so z /∈Sp (Tλ), which is a contradiction. Whence, for λ,μ ∈ � such that
λ ≤ μ, one has Sp (Tλ) ⊂ Sp

(
Tμ

)
. Now since � is saturated, it follows that every

finite union of Sp (Tλ), λ ∈ �, is contained in some Sp (Tυ), υ ∈ �.
Let C (Sp (T)) be the algebra of all continuous functions on Sp (T) endowed

with the topology of uniform convergence on the compacts Sp (Tλ), λ ∈ �. Then
C (Sp (T)) is a C∗-locally convex algebra with a defining family of C∗-seminorms
given by:

‖ f ‖λ = sup
t∈Sp(Tλ)

| f (t)| , for every f ∈ C (Sp (T)) and λ ∈ �. (∗)

If Nλ = ker (‖.‖λ), for λ ∈ �, denote by C (Sp (T))λ the Banach algebra, completion
of (C (Sp (T)) , ‖.‖λ) /Nλ, λ ∈ �. Then, the map

(C (Sp (T)) , ‖.‖λ) /Nλ −→ C (Sp (Tλ)) : f + Nλ �−→ f/Sp(Tλ)

is a well-defined ∗-morphism. Furthermore, by Urysohn’s extension theorem ([9], p.
43), this last map is surjective. Moreover, it is an isometry. It follows that:

C (Sp (T))λ = C (Sp (Tλ)) , f or every λ ∈ �,

up to a topological isomorphism. So

C (Sp (T)) ↪→ lim←−C (Sp (T))λ = lim←−C (Sp (Tλ)) .

Now, by Theorem 2.1, there exists a unique unitary ∗-morphism 	Tλ of C (Sp (Tλ))

into L (Hλ) such that:

	Tλ (zi ) = Ti , for every i ∈ I ,
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where zi denotes the function z �−→ zi on Sp (Tλ). Moreover, one has

ρλμ ◦ 	Tμ = 	Tλ ◦ iλμ,

where iλμ is the natural embedding of C (
Sp

(
Tμ

))
in C (Sp (Tλ)) . It follows that the

map:

	T = lim←−	Tλ : lim←−C (Sp (T))λ −→ B = lim←−Bλ, λ ∈ �

is a unique unitary ∗-morphism such that, for every λ ∈ �,

	T ( f ) |Hλ
= 	Tλ

(
f |

Sp(Tλ)

)
, for every f ∈ C (Sp (T)) . ( ∗ ∗).

Moreover, its restriction to the C∗-convex subalgebra C (Sp (T)) of the locally C∗-
algebra lim←−C (Sp (T))λ is uniquely determined by:

	Tλ (1) = IH and 	Tλ (zi ) = Ti , for every i ∈ I .

Applying now the Stone–Weierstass theorem, we conclude that the subalgebra of
C (Sp (T)) generated by 1, zi and zi ,for i ∈ I , is dense in C (Sp (T)). So, we get the
following:

Theorem 2.2 (Simultaneous continuous functional calculus). Let H be a locally
Hilbert space. Let T = (Ti )i∈I be a commutative family of normal locally bounded
operators onH and C (Sp (T)) the locally C∗-algebra of continuous complex-valued
functions on Sp (T). Then, there is a unique unitary ∗-morphism 	T of C (Sp (T))

into L(H) such that:

	T (zi ) = Ti , for every i ∈ I ,

where zi denotes the function z �−→ zi on Sp (T). Moreover, this ∗-morphism and its
image 	T (C (Sp (T))) is the full subalgebra of L(H) generated by (Ti )i∈I , that is
the sub-locally C∗-algebra of L(H) generated by IdH and (Ti )i∈I .

Remark 2.3 LetH be a locally Hilbert space. LetT = (Ti )i∈I be a commutative family
of normal locally bounded operators onH. Then, for every λ ∈ �, one has:

pλ(	T ( f )) = ‖ f ‖λ , for every f ∈ C (Sp (T)) .

Indeed, since 	T ( f )λ = 	T ( f ) |Hλ
and, by (∗∗),

	T ( f ) |Hλ
= 	Tλ

(
f |

Sp(Tλ)

)
,

one has

pλ(	T ( f )) = ∥∥	T ( f ) |Hλ

∥∥
λ

= ∥∥ f |Sp(Tλ)

∥∥
λ
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and

∥∥ f |Sp(Tλ)

∥∥
λ

= sup
t∈Sp(Tλ)

| f (t)| .

So the result follows from (∗).

3 Simultaneous Baire functional calculus for bounded-locally
operators

LetH = lim−→Hλ, λ ∈ �, be a locally Hilbert space, and let T = (Ti )i∈I be a commu-

tative family of normal locally bounded operators on H. Let

	T : C [Sp (T)] −→ L (H)

be the unique continuous unitary ∗-morphism which defines simultaneous con-
tinuous functional calculus for T (Theorem 2.2). For every x, y ∈ H, the map
ϕx,y : C (Sp (T)) −→ C defined by:

ϕx,y ( f ) = 〈	T ( f ) (x), y〉 , for every f ∈ C (Sp (T))

is a continuous linear form on C (Sp (T)). By Theorem 6.19, p.131 of [8], it identifies
with a complex Radon measure denoted by μx,y . Now, if f is a Baire function, then
it is Baire-measurable and bounded and so μx,y-integrable. This allows us to extend
	T to a ∗-homomorphism �T : Ba(Sp (T)) −→ L(H) called simultaneous Baire
functional calculus for T given by the following result:

Theorem 3.1 Let T = (Ti )i∈I be a commutative family of normal locally bounded
operators on a locally Hilbert space H, and let 	T : C [Sp (T)] −→ L (H) be
the simultaneous continuous functional calculus for T. Then 	T extends to a ∗-
homomorphism

�T : Ba(Sp (T)) −→ L (H)

such that �T (Ba(Sp (T))) ⊂ Bcc, where Bcc is the bi-commutant of B, where B, as
considered above. Moreover, �Tsatisfies the following properties:

(1) �T is determined by the equality:

〈�T ( f ) (x) , y〉 =
∫

Sp(T)

f dμx,y , for every f ∈ Ba (Sp (T)) , x, y ∈ H.

(2) It is unique provided that it fulfills the following additional condition: For every
sequence ( fn)n ∈ Ba(Sp (T)), such that | fn| ≤ 1 and fn −→ 0, one has
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�T ( fn) x −→ 0, for every x ∈ H, in the sense that, for every γ ∈ � such
that x ∈ Hγ and �T ( fn) ∈ Hγ , for every n ∈ N, we have

‖�T ( fn) x‖γ −→ 0.

(3) SpL(H) (�T ( f )) ⊂ f (Sp (T)), for every f ∈ Ba(Sp (T)).

As with simultaneous continuous functional calculus, we will also write f (T) as
a notation for �T ( f ) when f ∈ Ba (Sp (T)).

Proof of Theorem 3.1 Observe first that �T satisfies the condition given in 2). Indeed,
by ([2], c), p. 36), μx,x is a positive measure, for every x ∈ Hγ and

‖�T ( fn) x‖γ =
∫

Sp(Tγ )
f 2n dμx,x .

Now by Lebesgue’s dominated convergence theorem,

∫

Sp(Tγ )
f 2n dμx,x −→ 0.

So ‖�T ( fn) x‖γ −→ 0. Let us show that

�T : Ba(Sp (T)) −→ L (H) : �T( f ) = f (T)

is a ∗-homomorphism. To do this, consider M the class of functions f ∈ B(Sp (T))

such that:

( f g) (T) = f (T)g(T), for every g ∈ C(Sp (T)).

Obviously, C(Sp (T)) ⊂ M. Moreover, using the condition given in 2), it is easy to
prove thatM is a bounded-pointwise-class of Sp (T). This implies that Ba(Sp (T)) ⊂
M. Thus, for every f ∈ Ba(Sp (T)) and g ∈ C(Sp (T)), one has:

( f g) (T) = f (T) g (T) .

Now, replacing the functions g ∈ C(Sp (T)) by the functions g ∈ Ba(Sp (T)), the
previous reasoning shows that

( f g) (T) = f (T) g (T) , for every f , g ∈ Ba(Sp (T)) .

Analogously, one has

f (T)∗ = f (T), for every f ∈ Ba(Sp (T)) .

2) Let us show that �T is unique subject to satisfying the extra condition given in 2).
Let � ′

T be another extension of 	T satisfying the previous extra condition. Then, the
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class M′ of functions f ∈ B(Sp (T)) such that f (T) = � ′
T ( f ) contains C(Sp (T))

and it is obviously bounded-pointwise-class of Sp (T) . Whence �T = � ′
T.

3) Let f ∈ Ba(Sp (T)). Then,

SpL(H) ( f (T)) = SpL(H) (�T f ) ⊂ SpBa(Sp(T)) ( f ) .

On the other hand, Ba(Sp (T)) is a full subalgebra of B(Sp (T)). Thus, by ([2],
Proposition 1.1.16, p. 8), one has:

SpBa(Sp(T)) ( f ) = SpB(Sp(T)) ( f ) .

Whence

SpL(H) ( f (T)) ⊂ f (Sp (T))

since SpB(Sp(T)) ( f ) = f (Sp (T)) by ([1], Corollary 7.3, p. 287). ��
Now let f ∈ Ba(Sp (T)).Then, by 3) of Theorem 3.1, one has g◦ f ∈ Ba(Sp (T)),

for every g ∈ Ba
(
f (Sp (T))

)
. Using the extra condition given in 2) instead of the

monotone-convergence property of Theorem 7.16 of [1], p. 295, the proof of Corollary
7.18 of [1] applies, mutatis mutandis, to this setting as well and we have the following
result:

Proposition 3.2 Let T be a normal bounded-locally operator on a locally Hilbert
space H. Then, for every g ∈ Ba

(
f (Sp (T))

)
and f ∈ Ba(Sp (T)), one has:

(g ◦ f ) (T ) = g( f (T )).

4 Some applications of simultaneous Baire functional calculus

In this section, we give some applications of the simultaneous continuous functional
calculus as explored in the preceding section. Its applications concern the existence
of an orthonormal basis on a locally Hilbert space H, consisting of eigenvectors
of commuting normal locally bounded operators acting in H. The applications also
concern the polar decomposition and the existence of a proper hyper-invariant subspace
as they are given in the Hilbert case (see [1]) and this without any loss. Note that
the proof of the last two applications goes along the lines of [1] with the necessary
modification.

4.1 Existence of an orthonormal basis on a locally Hilbert space

In this section, we go along with our first application, as mentioned above:

Theorem 4.1 Let H = lim−→Hλ, λ ∈ �, be a locally Hilbert space whose associated

Hilbert spaces Hλ, λ ∈ �, have finite dimensions and T = (Ti )i∈I is a commutative
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family of normal locally bounded operators onH. For every i ∈ I , let Ti,λ ∈ L (Hλ),
λ ∈ �, such that Ti = lim−→Ti,λ. Then, there exists an orthonormal basis of H, whose

elements are eigenvectors of the operators Ti,λ.

Proof Let Tλ = (
Ti,λ

)
i∈I and Bλ be the full subalgebra of L (Hλ) generated by Tλ.

Then

Sp(Tλ) = {(
χ

(
Ti,λ

))
i∈I : χ ∈ Sp (Bλ)

}
.

SinceHλ is finite dimensional, Bλ is also of finite dimension. So Sp(Tλ) is finite, say

Sp(Tλ) =
{
α

(λ)
1 , ..., α(λ)

pλ

}
,

with α
(λ)
k =

(
α

(λ)
i,k

)

i∈I , for every 1 ≤ k ≤ pλ. As 1{
α

(λ)
k

} ∈ C (Sp (Tλ)) and since

1Sp(Tλ) =
pλ∑
k=1

1{
α

(λ)
k

}, the simultaneous continuous calculus gives

I dλ = 	Tλ

(
1Sp(Tλ)

) =
pλ∑

k=1

P(λ)
k ,

where P(λ)
k = 	Tλ

(
1{

α
(λ)
k

}
)

is a hermitian projector of Hλ, for k = 1, ..., pλ.

Moreover, one has

Ti,λ = zi (Tλ) =
∑

k

α
(λ)
i,k P

(λ)
k ,

where zi denotes the function z �−→ zi on Sp (Tλ). It follows that the restriction of
Ti,λ to H(λ)

k = P(λ)
k (Hλ) is a homothety with ratio α

(λ)
i,k . Indeed, let x ∈ H(λ)

k , there

exists y ∈ Hλ such that x = P(λ)
k (y). One has

Ti,λ(x) =
∑

k′
α

(λ)

i,k′ P
(λ)

k′ (x) =
∑

k′
α

(λ)

i,k′ P
(λ)

k′ (P(λ)
k (y))

=
∑

k′
α

(λ)

i,k′
(
P(λ)

k′ (P(λ)
k

)
(y).

But for k′ �= k, P(λ)

k′ (P(λ)
k = 0, because

P(λ)

k′ (P(λ)
k = 	Tλ

(
1{α(λ)

k′ }

)
	Tλ

(
1{α(λ)

k }
)

= 	Tλ

(
1{α(λ)

k′ }1{α(λ)
k }

)

= 	Tλ(1{α(λ)

k′ }∩{α(λ)
k }) = 	Tλ(1∅) = 	Tλ(0) = 0.
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Thus

Ti,λ(x) = α
(λ)
i,k P

(λ)
k (P(λ)

k (y) = α
(λ)
i,k P

(λ)
k (y) = α

(λ)
i,k x .

For k = 1, ..., pλ, let B
(λ)
k be an orthonormal basis of H(λ)

k . Now let x ∈ B(λ)
k and

y ∈ B(λ)
l (k �= l), one has:

〈x, y〉 =
〈
P(λ)
k (a), P(λ)

l (b)
〉

=
〈
a, P(λ)

k P(λ)
l (b)

〉
= 0 for P(λ)

k P(λ)
l = 0.

It follows that B(λ) = B(λ)
1 ∪ B(λ)

2 ∪ ... ∪ B(λ)
pλ

is an orthonormal basis of Hλ, whose
elements are eigenvectors of the operators Ti,λ. Finally, since B(λ) ⊂ B(μ) if λ ≤ μ,,
one has

B = lim−→B(λ) =
⋃

λ∈�

B(λ)

is the desired orthonormal basis of H. ��

4.2 Polar decomposition

Let a ∈ Sp(T ) and let U = Sp(T )\ {a}. Then χ{a}, the characteristic function of
{a}, is a Baire function on Sp(T ). Moreover, χU ∈ Ba (Sp(T )) since χU is the
pointwise limit of a sequence of continuous functions on Sp(T ). It follows that if
f ∈ B(Sp(T )) ∩ C(Sp(T )\ {a}), then f = f (a)χ{a} + χU f is a Baire function on
Sp(T ). Now, as in the classic case, define bounded functions r and u on Sp(T ) by:

r(λ) = |λ| , u(λ) = λ

|λ| , (λ �= 0), u(0) = 1.

Then r ∈ C(Sp(T )), u ∈ Ba(Sp(T )) and ru = z, where z denotes the function
λ �−→ λ on Sp (T ). Let

R = 	T (u) = r(T ) and U = �T (u) = u(T ).

It follows that R is a positive operator onH,U is a unitary operator onH and T = RU .

Furthermore R,U , and T are pairwise commuting. So, one has the following result:

Theorem 4.2 (Polar decomposition) Let H be a locally Hilbert space, and let T be a
normal bounded-locally operator on H. Then there exists a positive bounded-locally
operator R on H and a unitary bounded-locally operator U onH such that R,U ,

and T are pairwise commuting and T = RU .
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4.3 Invariant subspaces

Recall that a closed subspace F of a locally Hilbert space H is a hyper-invariant
subspace for T ∈ L (H) if S (F) ⊂ F , for every S ∈ L (H) with ST = T S. Using
Baire functional calculus, we show that for normal bounded operator on locallyHilbert
spaces there are proper-invariant subspaces. Note that if dimH = 1, the subspaces of
H are {0} and H. Thus, the invariant subspace problem arises if dimH ≥2 .

Theorem 4.3 LetH = lim−→Hλ, λ ∈ �, be a locally Hilbert space with dimH ≥2, and

T be a normal bounded-locally operator onH with T /∈ CIH. Then, there is a proper
hyper-invariant subspace for T .

For the proof we will need the following classical result. Notice that the case of a
Hilbert space is given in Corollary 6. 28 of [1], p. 273.

Lemma 4.4 LetH = lim−→Hλ, λ ∈ �, be a locally Hilbert and T ∈ L (H) be a normal

bounded-locally operator. Suppose that γ is an isolated point of Sp (T ). Then, γ is
eigenvalue of T .

Proof Since L (H) = lim←−L (Hλ), λ ∈ � is a locally C∗-algebra, it admits a holomor-

phic functional calculus. Using this last calculus, one has as in the classical case ([1],
Corollary 4.97), that there is a non-zero hermitian projection P ∈ L (H) such that
PT = T P and

SpL(P(H))

(
T|P(H

) = {γ } .

It follows that PT ∗ = T ∗P and T P is normal. Thus (T − γ IH) P is normal and
ρL(H) ((T − γ IH) P) = 0. Now since

ρL(H) ((T − γ IH) P) = sup
λ

(
Tλ − γ IHλ

)
Pλ),

it follows that
(
Tλ − γ IHλ

)
Pλ = 0, for every λ ∈ �. Thus T P = γ P , and so γ is an

eigenvalue of T . ��
Proof of Theorem 4.3 Suppose first that Sp(T ) has an isolated point. Then, by Lemma
4.4, T has an eigenvalue γ , and the corresponding eigenspace E(γ ) is a proper (given
that T /∈ CIH) hyper-invariant subspace for T . Suppose now that Sp(T ) has no
isolated points. Let U be an open subset of C such that U ∩ Sp(T ) and Sp(T )\U
are non-empty. Then P = �T (χU ) is a self-adjoint bounded-locally operator such
that P2 = P . Let f ∈ CR (Sp(T )) a non-zero function such that 0 ≤ f ≤ 1 on
Sp(T ) and f (x) = 0 for all x ∈ Sp(T )\U . Then 0 ≤ f ≤ χU . This implies that:
�T (χU ) ≥ 	T ( f ) > 0 since 	T is isometric and order-preserving. It follows that
P �= 0 and P �= IH. Whence F = P(H) is a closed subspace of H, with F �= {0}
and F �= H. Moreover, P ∈ Bcc. Suppose that S ∈ L (H) with ST = T S. Then, by
Fuglede, PutnamandRosenblum’s theorem ([7], Theorem12.16, p. 315), ST ∗ = T ∗S,
and so S ∈ Bcc. Thus SP = PS and so S (F) ⊂ F . This shows that F is a proper
hyper-invariant subspace for T . ��
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