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Abstract
Let H be a digraph possibly with loops, D be a digraph, and k be an integer, k ≥ 3.
An H -coloring ζ is a map ζ : A(D) → V (H). An (H , k)-walk W in D is a walk
W = (x0, . . . , xn) with length at most k such that (ζ(x0, x1), . . . , ζ(xn−1, xn)) is a
walk in H . An (H , k)-path in D is an (H , k)-walk which is a path in D. In this work,
we introduce the reachability by (H , k)-paths as follows, for u, v ∈ V (D), we say that
u reaches v by (H , k)-paths if there exists an (H , k)-path from u to v in D. Naturally,
this new reachability concept can be used to model several connectivity problems.
We focus on one of the many aspects of the reachability by (H , k)-paths, the (H , k)-
kernels. A subset N of V (D) is an (H , k)-kernel if N is an (H , k)-independent (a
subset S of V (D) such that no vertex in S can reach another (different) vertex in S
by (H , k − 1)-paths) and (H , k − 1)-absorbent (a subset S of V (D) such that every
vertex in V (D) − S reaches some vertex in S by (H , k − 1)-paths). A digraph D is
(H , k)-path-quasi-transitive, if for every three vertices x , y andw of D such that there
are an (H , k)-path from x to y and an (H , k)-path from y to w in D, then there is
an (H , k)-path from x to w or an (H , k)-path from w to x in D. We give sufficient
conditions for a (H , k − 1)-path-quasi-transitive digraph that has an (H , k)-kernel.
As a main result, we give sufficient conditions for a partition ξ of V (H) such that the
arc set colored with the colors for every part of ξ induces an (H , k − 1)-path-quasi-
transitive digraph in D, to imply the existence of an (H , k)-kernel in D. This result
generalizes the results of Casas-Bautista et al. (2015), and Hernández-Lorenzana and
Sánchez-López (2022). Finally, we show two applications of (H , k)-kernels.
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1 Introduction

Undoubtedly, connectivity is a central topic both theoretically and in graph theory
applications. In this paper, we present a new concept of reachability, which allows
modeling a wide variety of connectivity problems in a natural way.

In this work, we will consider digraphs without multiple arcs and loops. For gen-
eral concepts, we refer the reader to [2, 3]. For a nonempty subset F of A(D), the
subdigraph of D induced by F , denoted by D[F], is the digraph where V (D[F])
is the set of vertices in V (D) which are incident with at least one arc from F , and
A(D[F]) = F .

A k-path (k-cycle) is a path (cycle) of length k. The path (cycle) with n vertices
will be denoted by

−→
P n (

−→
C n). If W = (v0, v1, . . . , vn) is a walk, then (vi ,W , v j )

will denote the walk (vi , vi+1, . . . , v j ) contained in W . Let W1 be a walk from u to v

and W2 be a walk from v to w, the union or the concatenation of W1 with W2 will be
denoted by W1 ∪ W2. A sink of a digraph D is a vertex with out-degree zero.

A subset I of V (D) is independent if A(D[I ]) = ∅. A kernel N of D is an
independent set of vertices which is absorbent, that is, for each x ∈ V (D)−N there is
y ∈ N such that (x, y) ∈ A(D). The concept of kernel has its origins in game theory
[21]. The problem of verifying whether a given digraph has a kernel is NP-complete
[7]. Furthermore, the kernel problem remainsNP-completewhen the underlying graph
is 3-colorable [16]. A subset S of V (D) is a semikernel of D if S is independent, and
for every vertex y in V (D) − S, if there is x ∈ S such that (x, y) ∈ A(D), then
there exists a vertex w ∈ S such that (y, w) ∈ A(D). In [12], Galeana-Sánchez and
Neumann-Lara, using the notion of semikernel, gave suficient conditions for a digraph
to be a kernel-perfect1 digraph.

A digraph is called quasi-transitive if whenever (u, v) ∈ A(D) and (v,w) ∈ A(D),
then (u, w) ∈ A(D) or (w, u) ∈ A(D). The properties of quasi-transitive digraphs
have been studied by several authors. In [11], there is an excellent compendium ded-
icated to quasi-transitive digraphs and their extensions. On the other hand, in [9],
Meyniel observed that if D is a digraph such that every 3-cycle has at least two
symmetrical arcs, then each complete subdigraph of D has a kernel. Hence, in [13]
Galeana-Sánchez and Rojas-Monroy concluded the following result.

Theorem 1 [13] If D is a quasi-transitive digraph such that every 3-cycle of D has at
least two symmetrical arcs, then D is a kernel-perfect digraph.

In [19], Kwaśnik and Borowiecki introduced the concept of (k, l)-kernel. This
concept generalizes the independence distance at least 1, and absorption distance at
most 1 of a kernel, in the following way. Let D be a digraph. A subset S of V (D) is

1 A digraph D is kernel-perfect if every induced subdigraph of D has a kernel
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k-independent if there is no path of length strictly less than k from u to v for every pair
of distinct vertices u, v ∈ S, andwe call S an l-absorbent set if for every x ∈ V (D)−S,
there is y ∈ S such that there exists a path of length less than or equal to l from x to y in
D. A (k, l)-kernel of D is a subset N of V (D) that is k-independent and l-absorbent.
A k-kernel is a (k, k − 1)-kernel, and thus a 2-kernel is a kernel. In [17], Galeana-
Sánchez and Hernández-Cruz introduced the family of k-path-transitive digraphs, as
the digraphs such that whenever there are paths of length less than or equal to k from
u to v and from v to w, then there exists a path of length less than or equal to k from
u to w. With the help of this family, they proved that if D is a k-transitive digraph,
then D has an n-kernel for every n ≥ k ≥ 2, where D is a k-transitive if whenever
(x0, x1, . . . , xk) is a path of length k in D, then (x0, xk) ∈ A(D).

Somegeneralizations of transitive digraphs are thequasi-transitive, right-pretransitive
and left-pretransitive digraphs2. Galeana-Sánchez and Hernández-Cruz proved that if
D is a right-pretransitive digraph such that every directed triangle of D is symmetri-
cal, then D has a k-kernel for every integer k ≥ 3, the result is also valid for strong
digraphs in the left-pretransitive case [10]. Also, an alternative proof of the fact that
every quasi-transitive digraph has a (k, l)-kernel for every integers k > l ≥ 3 or k = 3
and l = 2 is showed. In [15], a generalization of the classical result that states that
if every directed cycle in a digraph D has at least one symmetrical arc, then D has a
kernel, due to Duchet [8], is conjetured for k-kernels and it is proved to be true for
k = 3 and k = 4.

Let H be a digraph, possibly with loops, and D be an irreflexive digraph. An H -
arc-coloring, or just an H -coloring, ζ , is a map ζ : A(D) → V (H). These types of
colorings were proposed by Linek and Sands with the idea that the arcs of H could
be used to codify permitted color changes in the walks of D to define a reachability
[20]. A walk W = (x0, . . . , xn) in D is an H-walk if (ζ(x0, x1), . . . , ζ(xn−1, xn))
is a walk in H . An H -path in D is an H -walk which is a path in D. Notice that an
H -path in D is a path whose sequence of colors induces a walk in H , not a path.
For u, v ∈ V (D), we say that u reaches v by H -paths if there exists an H -path from
u to v in D. Naturally, with this notion of reachability we define independence by
H -paths and absorbance by H -paths, as follows. A subset S of V (D) is independent
by H -paths, or H -independent, if no vertex in S can reach by H -paths another vertex
in S, and it is absorbent by H -paths, or H -absorbent, if every vertex in V (D) − S can
reach by H -paths some vertex in S. A kernel by H -paths, or H -kernel, is a subset N
of V (D) that is both H -independent and H -absorbent.

Observe that an H -walk does not necessarily contain an H -path; hence, the notions
of independence by H -walks and absorbence by H -walks can be analogously defined.
A deeper study of the differences and similarities of these types of reachability can be
found in [4].

Notice that if the only arcs of H are loops, then the only possible H -paths are
the paths in which all of the arcs are colored alike. This is known as the monochro-
matic case, which has been widely studied. In particular, Sands, Sauer and Woodrow

2 A digraph D is called right-pretransitive (resp. left-pretransitive) if (u, v) ∈ A(D) and (v, w) ∈ A(D)

implies (u, w) ∈ A(D) or (w, v) ∈ A(D) (resp. when (u, v), (v, w) ∈ A(D) implies (u, w) ∈ A(D) or
(v, u) ∈ A(D)).
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proved that every digraph whose arc set is colored with two colors has a kernel by
monochromatic paths [22].

Let D be an arc-colored digraph. The color-class digraph of D, denoted by CC (D),
has as a vertex set the set of colors represented in the arcs of D, and (i, j) is an arc
of CC (D) if and only if there are two arcs (u, v) and (v,w) in D such that (u, v) is
colored with i and (v,w) is colored with j .

Consider a partition of V (H). In [6, 14] and in [5, 18], sufficient conditions for the
arc set colored with colors for every part, to guarantee the existence of a kernel by
monochromatic paths and an H -kernel, respectively, are given. We will show that the
main result of this work has as a consequence the results in [6] and [18].

The reachability by (H , k)-paths concept arises from combining the concepts of
reachability by H -paths and reachability by k-paths, which are of great interest by
themselves, both theoretically and for their applications. Therefore, the new reacha-
bility concept naturally opens the doors to new theoretical possibilities as well as to
model problems, in particular connectivity problems.

The rest of the paper is organized as follows. In Sect. 2, we introduce the concept
of reachability by (H , k)-paths, and with it the concept of (H , k)-kernel and present
some of their properties. In Sect. 3 we give some definitions and prove some technical
results that are helpful for the main result proof. In Sect. 4 the main result is proved,
and in Sect. 5 we prove some of its consequences. Finally, in Sect. 6 we propose some
applications of this new concept of reachability.

2 (H, k)-kernels

In this section, we present a new concept of reachability, which incorporates the idea
of reachability by k-paths in H -arc-colored digraphs.

Let H be a digraph possibly with loops, D be a loopless H -arc-colored digraph and
k ≥ 2. For u, v ∈ V (D), we say that u reaches v by (H , k)-paths if there exists an H -
path, with length at most k, from u to v in D. A subset S ⊆ V (D) is (H , l)-absorbent
by paths, or (H , l)-absorbent, of D if every vertex in VD − S reaches some vertex
in S by (H , l)-paths, and it is (H , k)-independent by paths, or (H , k)-independent, if
there is no H -path of length strictly less than k from u to v for every pair of distinct
vertices u, v ∈ S, that is, no vertex in S can reach another (different) vertex in S by
(H , k − 1)-paths. An (H , k, l)-kernel by paths, or just (H , k, l)-kernel, is a subset
of V (D) which is (H , k)-independent by paths and (H , l)-absorbent by paths. An
(H , k)-kernel by paths, or (H , k)-kernel, is an (H , k, k − 1)-kernel by paths.

It is important to note that, if k = 2, then, for any H , an (H , k)-kernel is a kernel,
which has been extensively studied. Therefore, we will focus on the case k ≥ 3. From
now on, H is a digraph possibly with loops, D is a loopless H -arc-colored digraph
and k ≥ 3.

Note that, by definition, if k ≥ k′, then every (H , k′)-path is an (H , k)-path. Hence,
we have the following proposition.

Proposition 2 Let H be a digraph, possibly with loops, D an H-arc-colored digraph,
and k ≥ k′. The following properties hold.
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Fig. 1 D4 has no
↔
P 3-kernel and {z, x00, x10, x20} is a (

↔
P 3, 4)-kernel of D4

1. If S is (H , k)-independent in D, then S is (H , k′)-independent in D.
2. If S is (H , k′)-absorbent in D, then S is (H , k)-absorbent in D.

Clearly, if a vertex u reaches v by (H , k)-paths, then u reaches v by H -paths, but
not necessarily if a vertex u reaches v by H -paths, then u reaches v by (H , k)-paths.
Furthermore, to show that this new reachability concept is different from reachability
by H -paths, for every k ≥ 3, we provide an example of a digraph H , and an H -arc-
colored digraph Dk such that Dk has an (H , k)-kernel, but Dk has no H -kernel, see
Fig. 1, and we provide a digraph H , and an H -arc-colored digraph D′

k such that D′
k

has an H -kernel, but D′
k has no (H , k)-kernel, see Fig. 2.

Proposition 3 Let k ≥ 3and
←→
P 3 be the reflexive, symmetrical pathwith three vertices.

There is a
←→
P 3-arc-colored digraph Dk such that Dk has a (

←→
P 3, k)-kernel, but Dk

has no
←→
P 3-kernel.

Proof Consider
←→
P 3 such that V (

←→
P 3) = {g, r , b} and A(

←→
P 3) = (V (

←→
P 3) ×

V (
←→
P 3)) − {(b, g), (g, b)}. Let

V (Dk) = {xi j : i ∈ Z3, j ∈ Zk} ∪ {z},
G = {(xi0, xi1) : i ∈ Z3},
B1 = {(xi(k−1), x(i+1)0) : i ∈ Z3},
B2 = {(xi1, z) : i ∈ Z3},
R1 = {(xi j , xi( j+1)) : i ∈ Z3 and j ∈ {1, . . . , k − 2}},
R2 = {(xi j , xi( j−1)) : i ∈ Z3 and j ∈ {2, . . . , k − 1}}, and

A(Dk) = G ∪ B1 ∪ B2 ∪ R1 ∪ R2.

Color the arcs of Dk as follows: the arcs in G with color g, the arcs in B1 ∪ B2 with
color b and the arcs of R1 ∪ R2 with color r .
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Fig. 2 D′
3 has no (

→
C 3, 3)-kernel

and {x0} is a
→
C 3-kernel of D

′
3 →
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Claim 1 Dk has a (
←→
P 3, k)-kernel.

Consider N = {z, x00, x10, x20}. We will prove that N is a (
←→
P 3, k)-kernel of Dk .

Since z is a sink of Dk, there is no (
←→
P 3, k)-path from z to any other vertex of N .

By definition, for each i ∈ Z3, the only path from xi0 to z with length less than
k is (xi0, xi1, z), but (g, b) is not an arc of

←→
P 3. Thus, there is no (

←→
P 3, k − 1)-

path from xi0 to z. Consider xi0 and x j0, with i, j ∈ Z3. Note that j = i + 1 or
j = i − 1, and suppose without loss of generality that j = i + 1. By definition of
Dk , the only path from xi0 to x(i+1)0 is (xi0, xi1, . . . , xi(k−1), x(i+1)0) and its length

is k. Hence, there is no (
←→
P 3, k − 1)-path from xi0 to x(i+1)0 in Dk . Therefore, N

is (
←→
P 3, k)-independent in Dk . On the other hand, for every xi j ∈ V (Dk) − N ,

(xi j , xi( j+1), . . . , xi(k−1), x(i+1)0) is a (
←→
P 3, k − 1)-path from xi j to x(i+1)0. Thus, N

is (
←→
P 3, k − 1)-absorbent and therefore, N is a (

←→
P 3, k)-kernel.

Claim 2 Dk has no
←→
P 3-kernel.

Note that z must belong to any
←→
P 3-kernel of Dk . Moreover, for every i ∈ Z3 and

j ∈ {1, . . . , k − 1}, (xi j , xi( j−1), . . . , xi1, z) is a
←→
P 3-path of Dk , it follows that xi j is

not in any
←→
P 3-kernel of Dk . On the other hand, since (g, b) and (b, g) are not arcs of←→

P 3, then there is no
←→
P 3-path from xi0 to z, with i ∈ Z3. From above, a

←→
P 3-kernel

cannot be completed. Therefore, there is no
←→
P 3-kernel in Dk . ��

Proposition 4 Let k ≥ 3 and
−→
C k be the reflexive, asymmetrical cycle with k vertices.

There is a
−→
C k-arc-colored digraph D′

k such that D
′
k has a

−→
C k-kernel, but D′

k has no

(
−→
C k, k)-kernel.

Proof Consider V (
−→
C k) = {0, 1, . . . , k−1} and A(

−→
C k) = {(i, i) : i ∈ Zk}∪{(i, i +

1) : i ∈ Zk}. Let V (D′
k) = {xi : i ∈ Zk+1}, and A(D′

k) = {(xi , xi+1) : i ∈ Zk+1}.
Color the arcs of D′

k as follows: for each i ∈ {0, 1, . . . , k} color the arc (xi , xi+1)with
color i , and color the arc (xk, x0) with color 0.

Claim 1 D′
k has a

−→
C k-kernel.

Consider N = {x0}. We will prove that N is a
−→
C k-kernel of D′

k . Clearly, N is−→
C k-independent. Moreover, (x1, x2, . . . , xk−1, xk, x0) is a spanning

−→
C k-path which

ends in x0; thus, N is
−→
C k-absorbent, and therefore N is an

−→
C k-kernel of D′

k .
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Claim 2 D′
k has no (

−→
C k, k)-kernel.

Observe that D′
k is an (k + 1)-cycle; even more, every path of D′

k is a−→
C k-path. It follows that every (

−→
C k, k)-independent set of D′

k has only one

vertex; this implies that every (
−→
C k, k)-kernel has only one vertex. Note that

(xi+1, xi+2, . . . , xk, x0, x1, . . . , xi ) is the only path from xi+1 to xi in D′
k, but it is not

a (
−→
C k, k − 1)-path because its length is k. Therefore, D′

k has no (
−→
C k, k)-kernel. ��

By Propositions 3 and 4, we can conclude that the concept of (H , k)-kernel by paths
is indeed different from that of H -kernel and, in particular, their associated decision
problems are also different.

Nonetheless, the similarities between these concepts allowus to obtain the following
result.

Proposition 5 Let H be a digraph, possibly with loops, and D an H-arc-colored
digraph. If k − 1 ≥ diam(D), then N is an H-kernel of D if and only if N is an
(H , k)-kernel on D.

Proof Let k such that k − 1 ≥ diam(D). Observe that every (H , k − 1)-path is an
H -path. Even more, since diam(D) ≤ k − 1, it follows that every H -path is an
(H , k − 1)-path in D. We can conclude the desired result. ��

The next definition generalizes (in the context of H -arc-colored digraphs) the def-
inition of k-path-transitive digraphs. We say that D is (H , k)-path-quasi-transitive
digraph if for every three vertices x , y and w of D such that there are (H , k)-paths
from x to y and from y to w in D, then there is an (H , k)-path from x to w or an
(H , k)-path from w to x in D.

In the literature, different types of digraphs associated with the digraph to be
studied have been used, to obtain different types of information. Naturally, for an
H -arc-colored digraph D, it is common to use the reachability digraph of D, as in
[1]. We define the (H , k − 1)-closure of D, as the digraph R(H ,k−1)(D) such that
V (R(H ,k−1)(D)) = V (D) and A(R(H ,k−1)(D)) = {(x, y) : there is an (H , k −
1)-path from x to y}. Thus, an H -arc-colored digraph D has an (H , k)-kernel if and
only if R(H ,k−1)(D) has a kernel.

Lemma 6 If D is an (H , k − 1)-path-quasi-transitive digraph, then R(H ,k−1)(D) is a
quasi-transitive digraph.

With the previous result, we proved the following theorem,which is a generalization
of Theorem 1, in the context of H -arc-colored digraphs.

Theorem 7 Let D be an (H , k − 1)-path-quasi-transitive digraph such that for every
three vertices x, y and w of D, whenever there are (H , k − 1)-paths from x to y, from
y to w and from w to x in D, two of the following three assertions hold:

1. There is an (H , k − 1)-path from y to x in D.
2. There is an (H , k − 1)-path from w to y in D.
3. There is an (H , k − 1)-path from x to w in D.

Then, D has an (H , k)-kernel.
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The proof of Theorem 7 follows from the definitions of the (H , k − 1)-path-quasi-
transitive digraph and the (H , k−1)-closure of a digraph, aswell as applyingLemma 6
and Theorem 1.

3 Auxiliary results

In this section, we present auxiliary lemmas and definitions which will be useful in
the proof of our main result.

From now on, H is a digraph possibly with loops, D is a loopless H -arc-colored
digraph, with H -coloring ζ and ξ = {C1,C2, . . . ,Ct } (t ≥ 2) is a partition of V (H)

such that {a ∈ A(D) : ζ(a) ∈ Ci } �= ∅ and Gi = D[{a ∈ A(D) : ζ(a) ∈ Ci }] is an
(H , k − 1)-path-quasi-transitive subdigraph of D, for every i ∈ {1, 2, . . . , t}. Notice
that {{a ∈ A(D) : ζ(a) ∈ Ci } : i ∈ {1, 2, . . . , t} is a partition of A(D).

Let W = (v0, v1, . . . , vn) be a walk in D, we say that vi is an H -obstruction to W
if (ζ(vi−1, vi ), ζ(vi , vi+1)) /∈ A(H) (if v0 = vn we take subscripts mod n).

Let H be a digraph possibly with loops, D be an H -arc-colored digraph and S
be a subset of V (D). We say that S is an (H , k)-semikernel of D if and only if S is
semikernel of R(H ,k−1)(D).

In [13], Galeana-Sánchez and Rojas-Monroy worked with quasi-transitive sub-
digraphs such that every 3-cycle has at least two symmetric arcs, to guarantee the
existence of a kernel. In particular, Lemmas 2.1 and 2.2 of [13] describe some
properties of quasi-transitive digraphs. With these Lemmas, the definition of the
(H , k − 1)-closure and the Lemma 6, the proof of Lemma 8 is immediate.

Lemma 8 Let H beadigraph, possiblywith loops, and D bean H-arc-colored digraph
such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs, for every
r ∈ {1, . . . , t}. The following assertions hold.

1. If (x0, x1, . . . , xn) is an asymmetrical path, n ≥ 1, in R(H ,k−1)(Gr ), then (x0, xs)
is an arc of R(H ,k−1)(Gr ) and there is no arc from xs to x0 in R(H ,k−1)(Gr ), for
each s ∈ {1, . . . , n}.

2. There is no asymmetrical cycle in R(H ,k−1)(Gr ), for every r ∈ {1, . . . , t}.
3. There is no sequence of vertices (x0, x1, . . .) such that (xi , xi+1) is an arc of

R(H ,k−1)(Gr ) and there is no arc from xi+1 to xi in R(H ,k−1)(Gr ), for every
i ∈ {0, 1, . . .}.

4. There exists x ∈ V (Gr ) such that {x} is an (H , k)-semikernel of Gr , for every
r ∈ {1, . . . , t}.
Let H be a digraph, possibly with loops, and D be an H -arc-colored digraph. We

say that D is closed by (H , k−1)-walks in ξ , if every (H , k−1)-walk of D is contained
in Gs , for some s ∈ {1, . . . , t}, and D is closed by cycles in ξ , if every cycle of D is
contained in Gr , for some r ∈ {1, . . . , t}.
Remark 1 Let H be a digraph, possiblywith loops and D be an H -arc-colored digraph.
Suppose that D is closed by (H , k − 1)-walks in ξ . If T1 and T2 are (H , k − 1)-paths
in D, from u to v and from v to w, respectively, and v is not an H -obstruction to
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T1 ∪ T2, then there is C j ∈ ξ such that T1, T2 and T1 ∪ T2 are contained in G j , for
some j ∈ {1, . . . , t}.
Remark 2 Let H be a digraph, possiblywith loops and D be an H -arc-colored digraph.
Suppose that D is closed by cycles in ξ and closed by (H , k−1)-walks in ξ . If T1 and
T2 are (H , k − 1)-paths in D, from u to v and from v to u, respectively, then there is
C j ∈ ξ such that T1, T2 and T1 ∪ T2 are contained in G j , for some j ∈ {1, . . . , t}.

The proofs of Remarks 1 and 2 are as follows, straightforward from the definition
of a digraph which is closed by (H , k − 1)-walks in ξ and closed by cycles in ξ .

Lemma 9 Let H beadigraph, possiblywith loops and D bean H-arc-colored digraph,
such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs, for every
r ∈ {1, . . . , t}, and D is closed by cycles in ξ and closed by (H , k − 1)-walks in ξ .

Then, there is no asymmetrical cycle in R(H ,k−1)(D).

Proof Let D a digraph as in the hypothesis. First, we will show that there is no
asymmetrical 3-cycle in R(H ,k−1)(D). Proceeding by contradiction, suppose that
(x0, x1, x2, x0) is an asymmetrical 3-cycle of R(H ,k−1)(D). By definition of (H , k−1)-
closure, there are T0, T1 and T2 (H , k−1)-paths from x0 to x1, from x1 to x2 and from
x2 to x0, respectively. We have the following cases.

Case 1. There is i ∈ Z3 such that xi is not an H -obstruction to Ti−1 ∪ Ti .
Suppose without loss of generality that x1 is not an H -obstruction to T0 ∪ T1. By

Remark 1, it follows that T0 and T1 are contained in Gs , for some s ∈ {1, . . . , t}.
Since Gs is (H , k − 1)-path-quasi-transitive and by Lemma 8.1, then there is an
(H , k−1)-path from x0 to x2 inGs , contradicting that (x0, x1, x2, x0) is asymmetrical
in R(H ,k−1)(D).

Case 2. For every i ∈ Z3, xi is an H -obstruction to Ti−1 ∪ Ti .
If (V (Ti ) − {xi+1}) ∩ V (Ti+1) = ∅, for every i ∈ Z3, then T0 ∪ T1 ∪ T2 is a

cycle in D. Since D is closed by cycles in ξ , then there is r ∈ {1, . . . , t} such that
T0 ∪ T1 ∪ T2 is contained in Gr . It follows that (x0, x1, x2, x0) is an asymmetrical
3-cycle in R(H ,k−1)(Gs), which is impossible. Assume, for the sake of a contradiction
that (V (T0) − {x1}) ∩ V (T1) �= ∅. Let u be the first vertex of T1 in T0. Note that
u �= x0 because there is no (H , k − 1)-path from x1 to x0 in D. Consider γ =
(u, T0, x1) ∪ (x1, T1, u) is a cycle of D with arcs of T0 and T1. Since D is closed by
cycles in ξ , then T0 and T1 are contained in Gs for some s ∈ {1, . . . , t}. Moreover,
as Gs is an (H , k − 1)-path-quasi-transitive digraph and by Lemma 8.1, there is an
(H , k − 1)-path from x0 to x2, contradicting the hypothesis.

Therefore, there is no asymmetrical 3-cycle in R(H ,k−1)(D).
Now, we will prove that there is no asymmetrical n-cycle in R(H ,k−1)(D). Proceed-

ing by contradiction, suppose that (x0, x1, . . . , xn−1, xn) is an asymmetrical n-cycle
in R(H ,k−1)(D)with minimum length. Observe that n ≥ 4.Wewill analyze two cases.

Case 1. There is i ∈ {0, . . . , n−1} such that xi is not an H -obstruction to Ti−1∪Ti .
By Remark 1, Ti−1 ∪ Ti is contained in Gs , for some s ∈ {1, . . . , t}. Since Gs

is an (H , k − 1)-path-quasi-transitive digraph, and by Lemma 8.1, (xi−1, xi+1) is an
arc of R(H ,k−1)(Gs) and there is no arc from xi+1 to xi−1 in R(H ,k−1)(Gs). Even
more, by Remark 2, every (H , k − 1)-path from xi+1 to xi−1 in D is contained in
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Gs . Thus, there is no (H , k − 1)-path from xi+1 to xi−1 in D. From the above,
(x0, . . . xi−1, xi+1, . . . , xn−1, x0) is an asymmetrical (n − 1)-cycle in R(H ,k−1)(D),
which is a contradiction.

Case 2. For every i ∈ {0, . . . , n− 1}, xi is an H -obstruction to Ti−1 ∪ Ti . Consider
the following two subcases.

Case 2.1. For some i ∈ {0, 1, . . . , n − 1}, (V (Ti ) − {xi+1}) ∩ V (Ti+1) �= ∅.
Notice that Ti ∪ Ti+1 contains a cycle γ . By hypothesis, γ is contained in Gl

for some l ∈ {1, . . . , t}; moreover, γ has arcs from Ti and Ti+1, it follows that
Gl = Gi ′ = G(i+1)′ . Since Gl is (H , k − 1)-path-quasi-transitive, by Lemma 8.1,
then there is an (H , k−1)-path T from xi to xi+2 inGl and there is no (H , k−1)-path
from xi+2 to xi in Gl . Even more, by Remark 2, every (H , k − 1)-path from xi+1 to
xi−1 in D is contained in Gl . Thus, there is no (H , k − 1)-path from xi+1 to xi−1 in
D. From above, (x0, x1 . . . xi , xi+2, . . . , xn−1, x0) is an asymmetrical (n − 1)-cycle
in R(H ,k−1)(D), which is a contradiction.

Case 2.2. For every i ∈ {0, 1, . . . , n − 1}, (V (Ti ) − {xi+1}) ∩ V (Ti+1) = ∅.
If V (Ti )∩V (Tj ) = ∅, for every i, j ∈ {0, 1, . . . , n−1} such that |i − j | ≥ 2, then

n−1⋃

j=0

Tj is a cycle of D. By hypothesis,
n−1⋃

j=0

Tj is contained inGl , for some l ∈ {1, . . . , t}.
It follows that (x0, x1, . . . , xn−1, x0) is an asymmetrical cycle in R(H ,k−1)(Gl), but
by Lemma 8.2, this is impossible.

Assume that V (Ti ) ∩ V (Tj ) �= ∅, for some i, j ∈ {1, . . . , t} such that |i − j | ≥ 2
and it is minimum. Suppose that i < j and let u be the first vertex of V (Tj ) which is
in V (Ti ).

If u = xi , then γ = Ti ∪· · ·∪Tj−1∪(x j , Tj , u = xi ) is cycle of D. Hence, Ti ∪· · ·∪
Tj is contained inGl , for some l ∈ {1, . . . , t}. Thus, (xi+1, . . . , x j ) is an asymmetrical
path in R(H ,k−1)(Gl). By Lemma 8.1, (xi+1, xr ) is an arc of R(H ,k−1)(Gl) and there
is no arc from xr to xi+1 in R(H ,k−1)(Gl), for each r ∈ {i + 1, . . . , j}. It follows
that C = (xi , xi+1, x j , xi ) is a 3-cycle in R(H ,k−1)(Gl), then C has at least two
symmetrical arcs, which is a contradiction.

If u = xi+1, then this subcase is analogous to the previous subcase, exchanging i
for i + 1.

If u = x j , then γ = (x j , Ti , xi+1) ∪ Ti+1 ∪ · · · ∪ Tj−1 is a cycle of D. Hence,
Ti ∪ · · · ∪ Tj−1 is contained in Gl , for some l ∈ {1, . . . , t}. Thus, (xi+1, . . . , x j−1)

is an asymmetrical path in R(H ,k−1)(Gl). By Lemma 8.1, (xi+1, xr ) is an arc of
R(H ,k−1)(Gl) and there is no arc from xr to xi+1 in R(H ,k−1)(Gl), for each r ∈ {i +
2, . . . , j −1}. It follows thatC = (x j−1, x j , xi+1, x j−1) is a 3-cycle in R(H ,k−1)(Gl),
then C has at least two symmetrical arcs, which is a contradiction.

If u = x j+1, then this subcase is analogous to the previous subcase, exchanging j
for j + 1.

Finally, if u /∈ {xi , xi+1, x j , x j+1}, then γ = (u, Ti , xi+1) ∪ Ti+1 ∪ · · · ∪
Tj−1 ∪ (x j , Tj , u) is cycle of D. Hence, Ti ∪ · · · ∪ Tj is contained in Gl , for
some l ∈ {1, . . . , t}. Thus, (xi+1, . . . , x j−1, x j , x j+1) is an asymmetrical path in
R(H ,k−1)(Gl). By Lemma 8.1, (xi+1, xr ) is an arc of R(H ,k−1)(Gl) and there is no
arc from xr to xi+1 in R(H ,k−1)(Gl), for each r ∈ {i + 2, . . . , j, j + 1}. Note that
(xi , xi+1, x j+1) is an asymmetrical path in R(H ,k−1)(Gl), by Lemma 8.1, (xi , x j+1)
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is an arc of R(H ,k−1)(Gl) and there is no arc from x j+1 to xi in R(H ,k−1)(Gl).
Moreover, by Remark 2, every (H , k − 1)-path from x j+1 to xi in D is con-
tained in Gl . Thus there is no (H , k − 1)-path from x j+1 to xi in D. It follows that
(x0, x1, . . . , xi , x j+1, . . . , xn−1, x0) is an asymmetrical cycle in R(H ,k−1)(D) with
less vertices than n, which is a contradiction.

Therefore, R(H ,k−1)(D) has no asymmetrical cycles. ��
Lemma 10 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs,
for every r ∈ {1, . . . , t}. If D is closed by cycles in ξ and closed by (H , k − 1)-walks
in ξ , then the following assertions hold.

1. There is no sequence of vertices (x0, x1, x2, . . .) such that for every i ∈
{0, 1, 2, . . .}, (xi , xi+1) is an arc of R(H ,k−1)(D) and there is no arc from xi+1 to
xi in R(H ,k−1)(D).

2. There is x in V (D) such that {x} is a (H , k)-semikernel of D.

Proof The proof of the first assertion follows immediately from the finiteness of D
and Lemma 9.

For the second assertion, proceeding by contradiction, a vertex sequence can be
constructed that contradicts the first assertion. ��

Let H be a digraph possible with loops and D be an H -arc-colored digraph. From
now, {ξ1, ξ2} is a partition of ξ and Di denotes the spanning subdigraph of D such
that A(Di ) = {a ∈ A(D) : ζ(a) ∈ Cr with Cr ∈ ξi }, for every i ∈ {1, 2}. Notice that
every Gr is a subdigraph of either D1 or D2, with r ∈ {1, . . . , t}.

Let H be a digraph possible with loops and D be an H -arc-colored digraph. We
will say that a subset S of V (D) is an (H , k)-semikernel modulo D2 of D if and only
if S is an independent set in R(H ,k−1)(D) such that if (x, y) is an arc of R(H ,k−1)(D1),
with x ∈ S and y ∈ V (D) − S, then (y, w) is an arc of R(H ,k−1)(D), with w ∈ S.
(Notice that w and x can be the same vertex.)

Lemma 11 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}.

If Di is closed by cycles in ξi and closed by (H , k − 1)-walks in ξi , then there is x0
in V (D) such that {x0} is an (H , k)-semikernel modulo D2 of D.

Proof If {ξ1} = Cr for some r ∈ {1, . . . , t}, then A(D1) = A(Gr ). By Lemma 8.4
there is x ∈ V (Gr ), which is an (H , k)-semikernel of Gr . Thus, from the definition,
{x} of (H , k)-semikernel modulo D2 of D. Now, assume that |ξ1| ≥ 2. Let H ′ be the
subdigraph of H induced by

⋃

r∈ξ1

Cr . By definition, D1 is an H ′-arc-colored digraph

and ξ1 is a partition of V (H ′), where Gi = D1[{a ∈ A(D) : ζ(a) ∈ Ci }]. Moreover,
Gi is (H ′, k − 1)-path-quasi-transitive. Hence, the hypotheses of Lemma 10 hold.
Thus there is a vertex x of V (D1) = V (D) such that {x} is a (H ′, k)-semikernel of
D1. Therefore, from the definition of (H , k)-semikernel modulo D2, {x} is an (H , k)-
semikernel modulo D2 of D. ��
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Let S be the set {S ⊆ V (D) : S is a nonempty (H , k)-semikernel modulo D2
of D}. When S �= ∅, we can define the digraph DS as follows: V (DS) = S and
(S1, S2) ∈ A(DS) if and only if for every s1 ∈ S1 there is s2 ∈ S2, such that either
s1 = s2, or (s1, s2) is an arc of R(H ,k−1)(D2) and there is no arc from s2 to s1 in
R(H ,k−1)(D).

Lemma 12 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}.

If Di is closed by cycles in ξi and closed by (H , k − 1)-walks in ξi , then DS can
be defined and it is an acyclic digraph.

Proof By Lemma 11, D has a nonempty (H , k)-semikernel modulo D2, hence S �= ∅.
We can consider DS . Proceeding by contradiction, suppose that DS contains a cycle
γ = (S0, S1, . . . , Sn−1, S0), with n ≥ 2.

Claim 1 There is z in Si0 such that z /∈ Si0+1 for some i0 ∈ {0, 1, . . . , n − 1} (the
subscripts are taken modulo n).

If the Claim 1 is not true, then, by definition of DS , Si ⊆ Si+1, it follows that
Si = S j with i, j ∈ {0, 1, . . . , n − 1}, i �= j , contradicting that the length of γ is at
least two. This ends the proof of Claim 1.

Claim 2 Let l0 ∈ {0, 1, . . . , n − 1}. If there are z ∈ Sl0 and w ∈ Sl0+1 such that (z, w)

is an arc of R(H ,k−1)(D), then there exists j0 ∈ {0, 1, . . . , n − 1}, j0 �= l0 such that
w ∈ S j0 and w /∈ S j0+1 (the subscripts are taken modulo n).

Let z andw be two vertices as in the hypothesis of Claim 2. Suppose without loss of
generality that l0 = 0, this implies thatw ∈ S1.On the other hand, since S0 is an (H , k)-
semikernelmodulo D2 of D, thenw /∈ S0. Let j0 = max{i ∈ {1, . . . , n−1} : w ∈ Si }.
By choice of j0, we have that w ∈ S j0 and w /∈ S j0+1 (subscripts modulo n). This
ends the proof of Claim 2.

By Claim 1, there exists x0 ∈ Si0 with x0 /∈ Si0+1 for some i0 ∈ {0, 1, . . . , n − 1}.
Since (Si0 , Si0+1) ∈ A(DS), and by definition of DS , there is x1 ∈ Si0+1 such that
(x0, x1) is an arc of R(H ,k−1)(D2) and there is no arc from x1 to x0 in R(H ,k−1)(D).
Now, by Claim 2, there is i1 ∈ {0, 1, . . . , n − 1} such that x1 ∈ Si1 and x1 /∈ Si1+1.
Since (Si1 , Si1+1) is an arc of DS , there is x2 ∈ Si1+1 such that (x1, x2) is an arc of
R(H ,k−1)(D2) and there is no arc from x2 to x1 in R(H ,k−1)(D).

Recursively,we can construct a sequenceof vertices (x0, x1, . . .) such that (xi , xi+1)

is an arc of R(H ,k−1)(D2) and there is no arc from xi+1 to xi in R(H ,k−1)(D) (and
in consequence in R(H ,k−1)(D2)). If |ξ2| ≥ 2, then we have a contradiction to
Lemma 10. When |ξ2| = 1, suppose that ξ2 = {Cr }. It follows that A(D2) = A(Gr )

and (x0, x1, x2, . . .) is a sequence of vertices of Gr such that (xi , xi+1) is an arc
of R(H ,k−1)(Gr ) and there is no arc from xi+1 to xi in R(H ,k−1)(Gr ), contradicting
Lemma 8.3.

Therefore, DS is an acyclic digraph. ��
Lemma 13 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}.
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If Di is closed by (H , k − 1)-walks in ξi , and every ξ1ξ2-arc and every ξ2ξ1-arc in
A(CC (D)) is not an arc of H, then every (H , k − 1)-walk of D is contained either
D1 or in D2. Moreover, every (H , k − 1)-walk of D is contained in Gl for some
l ∈ {1, . . . , t}.
Proof Let W = (x0, x1, . . . , xn) be an (H , k − 1)-walk in D. Proceeding by contra-
diction, suppose that W is not contained in neither D1 nor D2. It follows that there is
i ∈ {0, 1, . . . , n − 1} such that (xi , xi+1) is an arc of D1 and (xi+1, xi+2) is an arc
of D2, or (xi , xi+1) is an arc of D2 and (xi+1, xi+2) is an arc of D1, it follows that
(ζ((xi , xi+1)), ζ((xi+1, xi+2))) is a ξ1ξ2-arc or a ξ2ξ1-arc in A(CC (D)), moreover,
since W is an (H , k − 1)-walk in D, then (ζ((xi , xi+1)), ζ((xi+1, xi+2))) ∈ A(H),
which is a contradiction. In addition, from above and by hypothesis, every (H , k−1)-
walk of D is contained in Gl for some l ∈ {1, . . . , t}. ��

Let W = (u0, . . . , ul = v0, . . . , vm = w0, . . . wn = u0) be a cycle in D. We
say that W is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
C 3 if W1 = (u0,W , ul) is an

(H , k − 1)-path contained in D1, W2 = (v0,W , vm) is an (H , k − 1)-path contained
in D andW3 = (w0,W , wn) is an (H , k − 1)-path contained in D2, where v0, w0 and
u0 are H -obstructions to W1 ∪ W2, W2 ∪ W3 and W3 ∪ W1, respectively.

Let T = (u0, . . . , ul = v0, . . . , vm = w0, . . . wn) be a path in D. We say that T
is an (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
P 4 if T1 = (u0, T , ul) is an (H , k − 1)-

path contained in D1, T2 = (v0, T , vm) is an (H , k − 1)-path contained in D and
T3 = (w0, T , wn) is an (H , k − 1)-path contained in D2, where v0 and w0 are H -
obstructions to T1 ∪ T2 and T2 ∪ T3, respectively.

Let W = (u0, . . . , ul = v0, . . . , vm = w0, . . . wn = u0) and T = (u′
0, . . . , u

′
l =

v′
0, . . . , v

′
m = w′

0, . . . w
′
n) be a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
C 3 and a

(ξ1, ξ, ξ2)-(H , k − 1)-subdivision of
−→
P 4, respectively. By the previous definitions

and the definition of (H , k − 1)-closure, it follows that (u0, v0, w0, u0) is a 3-cycle of
R(H ,k−1)(D) such that (u0, v0) is also an arc of R(H ,k−1)(D1) and (w0, u0) is also an
arc of R(H ,k−1)(D2). In the sameway, (u′

0, v
′
0, w

′
0, w

′
n) is a 4-path of R(H ,k−1)(D) such

that (u′
0, v

′
0) is also an arc of R(H ,k−1)(D1) and (w′

0, w
′
n) is also an arc of R(H ,k−1)(D2).

Lemma 14 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}, Di is closed by cycles in ξi and closed by (H , k − 1)-walks
in ξi , for each i ∈ {1, 2}, every ξ1ξ2-arc and every ξ2ξ1-arc in A(CC (D)) is not an
arc of H.

Let {u, v, w, z} be a subset of V (D), such that (u, w), (v, z), (v, u) and (z, w) are
not arcs in R(H ,k−1)(D). If there are (H , k−1)-paths from u to v, from v tow and from
w to z, α1, α2 and α3, respectively, such that α1 is contained in D1 and α3 contained in
D2, where v and w are H-obstructions to α1 ∪ α2 and α2 ∪ α3, respectively (u can be
z), then either there is an path from u to z which is a (ξ1, ξ, ξ2)-(H , k−1)-subdivision
of

−→
P 4 or there is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
C 3.

Proof Consider the following assertions:
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1. u /∈ V (α2).
2. v /∈ V (α3).
3. w /∈ V (α1).
4. z /∈ V (α2).
5. If β1 is an (H , k − 1)-walk from a to b in Di and β2 is an (H , k − 1)-walk from

b to c contained in Dj , with {i, j} ⊆ {1, 2}, i �= j , then b is an H -obstruction to
β1 ∪ β2.

6. u, v and w are three different vertices and z /∈ {v,w}.
The first four assertions follow immediately from the hypotheses. Assertion 5 fol-

lows from Lemma 13, and the last assertion follows from the first four assertions and
the hypothesis.

To proceed with the proof of the Lemma 14, we consider two possible cases.
Case 1. α2 is contained in D1.
If ((V (α1) ∩ V (α2)) − {v}) �= ∅, then α1 ∪ α2 contains a cycle γ , which has

arcs of both α1 and α2. Since α1 and α2 are contained in D1, then γ is contained
in D1. By hypothesis, γ is contained in Gl , with l ∈ {1, . . . , t}. It follows that α1
and α2 are contained in Gl . Since Gl is (H , k − 1)-path-quasi-transitive, then there
is an (H , k − 1)-path from u to w or there is an (H , k − 1)-path from w to u in
Gl ; even more, by hypothesis there is no (H , k − 1)-path from u to w in D. Thus
there is an (H , k − 1)-path from w to u in Gl . By hypothesis, C = (u, v, w, u) is a
3-cycle in R(H ,k−1)(Gl), it follows that C has two symmetrical arcs, contradicting the
hypothesis. So we may assume that V (α1) ∩ V (α2) = {v}.
Observation 1 α1 ∪ α2 is not an H -walk. Otherwise, by Remark 1, α1 and α2 are
contained in Gl , for some l ∈ {1, . . . , t}. Proceeding as in the previous paragraph,
there is an (H , k − 1)-path from w to u in Gl . By hypothesis, C = (u, v, w, u) is
a 3-cycle in R(H ,k−1)(Gl), and it follows that C has two symmetrical arcs, which is
impossible.

If V (α2) ∩ V (α3) = {w}, then we have the following cases.
Case 1.1 V (α1) ∩ V (α3) = ∅.
In this case, α1 ∪ α2 ∪ α3 is a path; moreover, by Observation 1 and Assertion 5,

α1 ∪ α2 ∪ α3 is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of
−→
P 4.

Case 1.2 V (α1) ∩ V (α3) �= ∅.
Let x be the last vertex in α1 that is in α3. By Assertions 2 and 3, x /∈ {v,w}. From

Assertion 5, we have that x is an H -obstruction to (w, α3, x) ∪ (x, α1, v) and w is
an H -obstruction to α2 ∪ (w, α3, x), and, by Observation 1, v is an H -obstruction to
(x, α1, v) ∪ α2. It follows that (x, α1, v) ∪ α2 ∪ (w, α3, x) is a (ξ1, ξ, ξ2)-(H , k − 1)-
subdivision of

−→
C 3.

If (V (α2) ∩ V (α3) − {w}) �= ∅, then we have the following cases.
Case 1.3 V (α1) ∩ V (α3) = ∅.
Notice that u �= z. Let x be the first vertex in α2 that is in α3. By Assertions 2 and

4, x /∈ {v, z}. By Assertion 5, x is an H -obstruction to (v, α2, x) ∪ (x, α3, z) and, by
Observation 1, v is an H -obstruction to α1∪(v, α2, x). It follows that α1∪(v, α2, x)∪
(x, α3, z) is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
P 4.

Case 1.4 V (α1) ∩ V (α3) �= ∅.
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Let x and y be the first and the last vertex of α3, respectively, that are in α1 ∪ α2.
If x ∈ V (α1), then, by Assertions 2 and 3, x /∈ {v,w}. By Observation 1, v

is an H -obstruction to (x, α1, v) ∪ α2, and, by Assertion 5, x is an H -obstruction to
(w, α3, x)∪(x, α1, v) andw is an H -obstruction to α2∪(w, α3, x). Thus, (x, α1, v)∪
α2 ∪ (w, α3, x) is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
C 3.

If x ∈ V (α2) and y ∈ V (α1), then x �= y. Let a be the last vertex of α3 that is in α2,
a exists because x ∈ V (α2), and let b the first vertex in (a, α3, z) that is in α1, b exists
because y ∈ V (α1) and y ∈ V ((a, α3, z)). ByAssertions 1, 2 and 4, then a /∈ {u, v, z}.
Also, by Assertions 2 and 3, b /∈ {v,w}. Since V (α1) ∩ V (α2) = {v} and v /∈ {a, b},
then a �= b. By Observation 1 and Assertion 5, v, a and b are H -obstructions to
(b, α1, v) ∪ (v, α2, a), (v, α2, a) ∪ (a, α3, b) and (a, α3, b) ∪ (b, α1, v), respectively.
Thus, (b, α1, v)∪ (v, α2, a)∪ (a, α3, b) is a (ξ1, ξ, ξ2)-(H , k−1)-subdivision of

−→
C 3.

If x ∈ V (α2) and y ∈ V (α2), then, by Assertions 2 and 4, y /∈ {v, z}. It follows
that V (α1) ∩ V ((y, α3, z)) = ∅. By Observation 1, v is an H -obstruction to α1 ∪
(v, α2, y), and by Assertion 5, y is an H -obstruction to (v, α2, y) ∪ (y, α3, z). Thus
α1 ∪ (v, α2, y) ∪ (y, α3, z) is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
P 4.

Case 2. α2 is contained in D2.
If ((V (α2) ∩ V (α3)) − {v}) �= ∅, then α2 ∪ α3 contains a cycle, γ , which has

arcs from both α2 and α3. Since α2 and α3 are contained in D2, then γ is contained
in D2. By hypothesis, γ is contained in Gl , with l ∈ {1, . . . , t}. It follows that α2
and α3 are contained in Gl . Since Gl is (H , k − 1)-path-quasi-transitive, then there
is an (H , k − 1)-path from v to z in Gl or there is an (H , k − 1)-path from z to
v in Gl , even more, by hypothesis, there is no (H , k − 1)-path from v to z in D.
Thus, there is an (H , k − 1)-path from z to v. By hypothesis, C = (v,w, z, v) is a
3-cycle in R(H ,k−1)(Gl), it follows that C has two symmetrical arcs, contradicting the
hypothesis. So we may assume that V (α2) ∩ V (α3) = {w}.
Observation 2 α2 ∪ α3 is not an H -walk. Otherwise, by Remark 1 α2 and α3 are
contained in Gl , for some l ∈ {1, . . . , t}. Proceeding as in the previous paragraph,
there is an (H , k − 1)-path from z to v in Gl . By hypothesis, C = (v,w, z, v) is a 3-
cycle in R(H ,k−1)(Gl), it follows thatC has two symmetrical arcs, which is impossible.

If V (α1) ∩ V (α2) = {v}, then we have the following cases.
Case 2.1 V (α1) ∩ V (α3) = ∅.
In this case, α1 ∪ α2 ∪ α3 is a path, moreover, by Observation 2 and Assertion 5,

α1 ∪ α2 ∪ α3 is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of
−→
P 4.

Case 2.2 V (α1) ∩ V (α3) �= ∅.
Let x be the last vertex in α1 which is also in α3. By Assertions 2 and 3, x /∈

{v,w}. By Assertions 5, x is an H -obstruction to (w, α3, x) ∪ (x, α1, v) and v is an
H -obstruction to (x, α1, v) ∪ α2, and by Observation 2, w is an H -obstruction to
α2 ∪ (w, α3, x). It follows that (x, α1, v)∪α2 ∪ (w, α3, x) is a (ξ1, ξ, ξ2)-(H , k − 1)-
subdivision of

−→
C 3.

If (V (α1) ∩ V (α2) − {v}) �= ∅, then we have the following cases.
Case 2.3 V (α1) ∩ V (α3) = ∅.
Notice that u �= z. Let x be the first vertex in α1 which is also in α2. By Assertions

1 and 3, x /∈ {u, w}. By Assertions 5, x is an H -obstruction to (u, α1, x)∪ (x, α2, w),
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and, by Observation 2, w is an H -obstruction to (x, α2, w) ∪ α3. It follows that
(u, α1, x) ∪ (x, α2, w) ∪ α3 is a (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
P 4.

Case 2.4 V (α1) ∩ V (α3) �= ∅.
Let x be the first vertex in α1 which is also in α3. By Assertions 2 and 3, x /∈ {v,w}.

Let y be the first vertex in (x, α1, v) which is also in α2 (y can be v). By Assertion
3, y �= w, moreover, since V (α2) ∩ V (α3) = {w} and x �= w, we have that x �= y.
By Assertion 5, y is an H -obstruction to (x, α1, y) ∪ (y, α2, w) and x is an H -
obstruction to (w, α3, x) ∪ (x, α1, y), and, by Observation 2, w is an H -obstruction
to (y, α2, w) ∪ (w, α3, x). Thus (x, α1, y) ∪ (y, α2, w) ∪ (w, α3, x) is a (ξ1, ξ, ξ2)-
(H , k − 1)-subdivision of

−→
C 3. ��

4 Main Result

Theorem 15 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}, Di is closed by cycles in ξi and closed by (H , k − 1)-walks
in ξi , for each i ∈ {1, 2}, every ξ1ξ2-arc and every ξ2ξ1-arc in A(CC (D)) is not an arc

of H, D has no (ξ1, ξ, ξ2)-(H , k−1)-subdivision of
−→
C 3 and whenever there is a path

from u to z which is a (ξ1, ξ, ξ2)-(H , k−1)-subdivision of
−→
P 4, for some u, z ∈ V (D),

then there is an (H , k − 1)-path from u to z.
Then, D has an (H , k)-kernel.

Proof Let D as in the hypotheses. By Lema 12, DS is an acyclic digraph, it follows
that there is a sink S in DS . We will prove that S is an (H , k)-kernel of D.

By definition of DS , S is an (H , k)-semikernel modulo D2 of D. It follows that S
is an (H , k)-independent set in D. We will prove that S is (H , k − 1)-absorbent in D.

Let X = {x ∈ V (D) − S : x cannot reach any vertex in S by (H , k −
1)-paths in D}. Proceeding by contradiction, suppose that X is non-empty.

Observe that D1 is an H [ξ1]-arc-colored digraph. If |ξ1| ≥ 2, then ξ1 is a partition of
V (H [ξ1]). By hypotheses, D1 is an H [ξ1]-arc-colored digraph which the hypotheses
of Lemma 10 hold. On the other hand, if ξ1 = {Cr }, then A(D1) = A(Gr ) and the
hypotheses of Lemma 8.2 hold. It follows that, there is x0 ∈ X such that for every
y ∈ X , y �= x0, if there exists an (H , k − 1)-path from x0 to y contained in D1, then
there is an (H , k − 1)-path from y to x0 contained in D1.

Let T be the subset of S such that {z ∈ S : there is no (H , k − 1)-path from z to x0
in D2}. Observe that, by definition of T , there is an (H , k − 1)-path from y to x0 in
D2, for every y ∈ S− T . We will prove that T ∪{x0} is an (H , k)-semikernel modulo
D2 in D.

Claim 1 T ∪ {x0} is an (H , k)-independent set in D.

Since S is an (H , k)-independent set in D and T is a subset of S, then T is an
(H , k)-independent set in D. By definition of X , x0 cannot reach any vertex of T by
(H , k − 1)-paths in D. Since S is an (H , k)-semikernel modulo D2, T ⊆ S, and by
definition of X , it follows that there is no (H , k − 1)-path from any vertex of T to x0
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in D1. By definition of T , there is no (H , k − 1)-path from any vertex of T to x0 in
D2. In addition, by Lemma 13, every (H , k − 1)-walk of D is contained in either D1
or D2, we can conclude that T ∪ {x0} is an (H , k)-independent set in D.

Claim 2 For every v ∈ V (D) − (T ∪ {x0}) if there is u ∈ T ∪ {x0} such that there
exists an (H , k−1)-path from u to v contained in D1, then there is w ∈ T ∪{x0} such
that there exists an (H , k − 1)-path from v to w in D.

Let v ∈ V (D) − (T ∪ {x0}) and u ∈ T ∪ {x0} such that there is there exists an
(H , k−1)-path, α1 from u to v contained in D1. Suppose, for the sake of contradiction,
that there is no y ∈ T ∪ {x0} such that there exists an (H , k − 1)-path from v to y in
D. Consider the following two cases.

Case 1. u ∈ T .
Since S is an (H , k)-semikernel modulo D2 in D and T ⊆ S, then there is w ∈ S

such that there is α2 an (H , k − 1)-path from v to w contained in D. From above,
the definition of X and by assumption, we have that v /∈ S ∪ X and w ∈ S − T .
By definition of T , there is α3 an (H , k − 1)-path from w to x0 in D2. Since S is
(H , k)-independent, there is no (H , k − 1)-path from u to w in D, in addition, by
assumption there is no (H , k − 1)-path from v to x0 nor from v to u in D, and by
definition of X , there is no (H , k − 1)-path from x0 to w in D.

Note that α1 ∪α2 is not an H -walk, otherwise, by Lemma 13, α1 ∪α2 is contained
in Di , with i ∈ {1, 2}. Moreover, by Remark 1, α1 and α2 are contained in Gl , for
some l ∈ {1, . . . , t}. Since Gl is an (H , k−1)-path-quasi-transitive digraph and there
is no (H , k − 1)-path from u to w in D, it follows that, there is (H , k − 1)-path from
w to u in Gl . Thus, C = (u, v, w, u) is a 3-cycle in Gl , by hypothesis C has at least
two symmetrical arcs, which is impossible. Hence, v is an H -obstruction to α1 ∪ α2.
Verifying that α2 ∪ α3 is not an H-walk can be carried in an analogous way.

It follows that the hypotheses of Lemma 14 holds. Moreover, since D has no
(ξ1, ξ, ξ2)-(H , k − 1)-subdivision of

−→
C 3, we have that α1 ∪ α2 ∪ α3 is a (ξ1, ξ, ξ2)-

(H , k − 1)-subdivision of
−→
P 4. By hypothesis there is an (H , k − 1)-path from u to

x0, contradicting Claim 1.
Case 2. u = x0.
Since there is no (H , k − 1)-path from v to x0 and by choice of x0, then v /∈ X . By

assumption, v ∈ V (D) − (T ∪ {x0}) and there is no (H , k − 1)-path from v to x0 in
D. This implies that v /∈ S− T , even more, v /∈ S. By definition of X and since v /∈ S
and v /∈ X , we have the existence of w in S such that there is α2 an (H , k − 1)-path
from v to w in D. It follows that w ∈ S− T . Therefore, there is α3 an (H , k −1)-path
from w to x0 in D2. Since there is no (H , k − 1)-path from x0 to any vertex of S in
D, in particular, there is no (H , k − 1)-path from x0 to w in D. In addition, by choice
of v, there is no (H , k − 1)-path from v to x0 in D.

On the other hand, as in the previous case α1 ∪ α2 and α2 ∪ α3 are not H -walks. It
follows that, v is an H -obstruction to α1 ∪ α2 and w is an H -obstruction to α2 ∪ α3.
Moreover, sinceα3 is contained in D2 andα1 is contained in D1, and there exist no ξ1ξ2-
arc or ξ2ξ1-arc, it follows that x0 is an H -obstruction to α3 ∪α1. Thus, the hypotheses
of Lemma 14 hold. Hence, α1 ∪α2 ∪α3 is a (ξ1, ξ, ξ2)-(H , k−1)-subdivision of

−→
C 3,

which is a contradiction. This concludes the proof of Claim 2.
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Therefore, T ∪ {x0} is an (H , k)-semikernel modulo D2 in D. Thus T ∪ {x0} ∈
V (DS), even more, since T ⊆ S, x0 ∈ X and for each s ∈ S − T there is an
(H , k − 1)-path from s to x0 in D2 and there is no (H , k − 1)-path from x0 to s in D,
then (S, T ∪ {x0}) ∈ A(DS). We obtain a contradiction to the choice of S.

We conclude that S is an (H , k)-kernel of D. ��

5 Some consequences

Corollary 16 Let H be a digraph, possibly with loops and D be an H-arc-colored
digraph, such that every 3-cycle of R(H ,k−1)(Gr ) has at least two symmetrical arcs
for every r ∈ {1, . . . , t}, Di is closed by cycles in ξi and closed by (H , k−1)-walks in
ξi , for each i ∈ {1, 2}, every ξ1ξ2-arc and every ξ2ξ1-arc in A(CC (D)) is not an arc of

H, D has no (ξ1, ξ, ξ2)-(H , k − 1)-subdivision of
−→
C 3, and whenever there is a path

from u to z which is a (ξ1, ξ, ξ2)-(H , k−1)-subdivision of
−→
P 4, for some u, z ∈ V (D),

then there is an (H , k − 1)-path from u to z.
If k − 1 ≥ diam(D), then D has an H-kernel.

Proof By Theorem 15, D has an (H , k)-kernel, say N . By Proposition 5 it follows
that N is an H -kernel of D. ��

In a m-colored digraph, a path is called properly colored whenever consecutive
arcs have different color. Naturally, the reachability by properly colored paths can be
defined, and with it the kernels by properly colored paths. Let H be the complete
loopless digraph, and D be an H -colored digraph, with H -coloring ζ . Observe that
the H -paths in D are exactly the properly colored paths of D. Thus, if the hypotheses
of Theorem 15 hold, then D has a kernel by properly colored paths with length at most
k. Moreover, if k − 1 ≥ diam(D), then, by Corollary 16, D has kernel by properly
colored paths.

Let H be a digraph possibly with loops, and D be an H -colored digraph without
loops, with H coloring ζ . We say that D is transitive by H -paths if whenever there
are H -paths from u to v and from v to w in D, then there exists an H -path from u to
w in D.

Let H be a digraph possibly with loops, D be an H -arc-colored digraph without
loops, with H -coloring ζ and ξ = {C1,C2, . . . ,Ct } (t ≥ 2) is a partition of V (H)

such that {a ∈ A(D) : ζ(a) ∈ Ci } �= ∅ and Gi = D[{a ∈ A(D) : ζ(a) ∈ Ci }] is a
subdigraph of D which is transitive by H -paths, for every i ∈ {1, 2, . . . t}. Let {ξ1, ξ2}
be a partition of ξ , and Di be the spanning subdigraph of D such that A(Di ) = {a ∈
A(D) : ζ(a) ∈ C j for some C j ∈ ξi } for every i ∈ {1, 2} .

LetW = (u0, . . . , ul = v0, . . . , vm = w0, . . . wn = u0) be a cycle. We say thatW
is a (ξ1, ξ, ξ2)-H -subdivision of

−→
C 3 if W1 = (u0,W , ul) is an H -path contained in

D1, W2 = (v0,W , vm) is an H -path and W3 = (w0,W , wn) is an H -path contained
in D2, where v0, w0 and u0 are H -obstructions to W1 ∪ W2, W2 ∪ W3 and W3 ∪ W1,
respectively. Analogously, let T = (u0, . . . , ul = v0, . . . , vm = w0, . . . wn) be a
path. We say that T is an (ξ1, ξ, ξ2)-H -subdivision of

−→
P 4 if T1 = (u0, T , ul) is an

H -path contained in D1, T2 = (v0, T , vm) is an H -path and T3 = (w0, T , wn) is an
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H -path contained in D2, where v0 and w0 are H -obstructions to T1 ∪ T2 and T2 ∪ T3,
respectively.

The following is the main result in [18], and we will prove it using Theorem 15.

Theorem 17 [18] Let H be a digraph and D an H-arc-colored digraph. Suppose that

1. For every i ∈ {1, 2} and for every cycle γ contained in Di there exists Cm ∈ ξi
such that γ is contained in Gm.

2. For every i ∈ {1, 2} and for every H-walk P contained in Di there exists Cm ∈ ξi
such that P is contained in Gm.

3. If either there exists a ξ1ξ2-arc or there exists a ξ2ξ1-arc in A(CC (D)), say (a, b),
then (a, b) /∈ A(H).

4. D does not contain a (ξ1, ξ, ξ2)-H-subdivision of
−→
C 3.

5. If there exists a path from u to x which is a (ξ1, ξ, ξ2)-H-subdivision of
−→
P 4, for

some subset {u, x} of V (D), then there exists an H-path from u to x in D.

Then D has an H-kernel.

Proof Let k, such that diam(D) ≤ k − 1. By Proposition 5, every H -path of D is an
(H , k − 1)-path in D.

Since every subdigraph Gi of D is transitive by H -paths, for every i ∈ {1, . . . , t},
then every Gi is an (H , k − 1)-path-quasi-transitive digraph. Moreover, if C =
(x, y, w, x) is a 3-cycle in R(H ,k−1)(Gr ), then C is symmetrical, for every r ∈
{1, . . . , t}.

It follows that every (ξ1, ξ, ξ2)-H -subdivision of
−→
C 3 is a (ξ1, ξ, ξ2)-(H , k − 1)-

subdivision of
−→
C 3, and every (ξ1, ξ, ξ2)-H -subdivision of

−→
P 4 is a (ξ1, ξ, ξ2)-(H , k−

1)-subdivision of
−→
P 4. Note that all hypotheses of Theorem 15 hold. It follows that

D has an (H , k)-kernel, say N , and by Proposition 5, N is an H -kernel of D. ��
In the particular case in which the arcs of H are all the loops of its vertices and

k − 1 ≥ diam(D), we obtain the following Theorem, which is the main result in [6].

Theorem 18 [6] Suppose that for each i ∈ {1, 2} and each cycle Z of D contained
in Di there exists C j ∈ ξi such that ζ( f ) ∈ C j for every f ∈ A(Z). If D does

not contain 3-colored (ξ1, ξ, ξ2)-subdivision of
−→
C 3 and if (u, v, w, x) is a 3-colored

(ξ1, ξ, ξ2)-subdivision of
−→
P 4, now there is a monochromatic path between u and x in

D, then D has a kernel by monochromatic paths.

6 Conclusions

In this work, we introduce the new concept of reachability by (H , k)-paths in H -
arc-colored digraphs, which joins the reachability by H -paths and the reachability
by k-paths. Both concepts have been extensively studied and are of great interest for
many investigations and applications.

We focus on one of themany aspects of the reachability by (H , k)-paths, the (H , k)-
kernels, for which we show that it is different from the concept of H -kernel. Following



14 Page 20 of 22 G. Benítez-Bobadilla et al.

H

g

r

b

D

x0

x1

x2

x3

x4
g

g

g

g

r
rb

b

Fig. 3 D is a quasi-transitive digraph but D is no (H , 2)-path-quasi-transitive digraph

with the (H , k)-kernels, in Theorem 15, we give sufficient conditions for a partition
ξ of V (H) such that the arc set colored with the colors for every part of ξ induces an
(H , k − 1)-path-quasi-transitive digraph in D, to imply the existence of an (H , k)-
kernel in D. The proof of the main result of this work is based on the proof of Sands
Sauer and Woodrow in [22], using this new concept of reachability, in the context of
the H -arc-colored digraphs.

On the other hand, Fig. 3 shows an H -arc-colored digraph D, which is a quasi-
transitive digraph but is not an (H , 2)-path-quasi-transitive digraph. Moreover, if we
consider D′

3, the
−→
C 3-arc-colored in Fig. 2, is an (H , 2)-path-quasi-transitive digraph

which is not a quasi-transitive digraph. Observe that Theorem 15 requires a partition
of the vertices of H such that the arcs colored with the colors of each class induce
an (H , k − 1)-path-quasi-transitive digraph, while the results in [14] and [5] require
color partitions where the arcs colored with the colors of each class induce a quasi-
transitive digraph. Therefore, the results in [14] and [5] cannot be deduced directly
from Theorem 15 and vice versa.

Finally, we offer some applications to the concept of (H , k)-kernels. Let � be
an alphabet, L ⊂ �∗ be a language, D a digraph and ζ : A(D) → � be an arc-
coloring of D with the letters of �. A path (x0, x1, . . . , xn) in D is an (L, k)-path
if (ζ((x0, x1)), ζ((x1, x2)), . . . , ζ((xn−1, xn)) is a word with length at most k in L .
Hence, with this notion, an (L, k)-kernel of D is a subset of vertices of D such that,
there is independent by (L, k)-paths and absorbent by (L, k − 1)-paths. For example,
if L = {0n, 1n : n ≥ 0} and k ≥ 3, then every (L, k)-path is a sequence of 0’s or 1’s
with length at most k. Thus, an (L, k)-kernel is subset of vertices N such that there
is no sequence of 0’s or 1’s with length at least k between two vertices of N and for
every vertex not in N there is a sequence of 0s or 1s with length at most k − 1 to one
vertex in N .

On the other hand, let D be an H -arc-colored digraphwhere D is a directed network
of computers, each color of H is a way to encryptmessages and H encodes the allowed
changes to forward encrypted messages. Notice that an (H , k)-path is a sequence with
at most k + 1 computers in which a message can travel, from the first computer to the
last, respecting the allowed changes in H . Thus, an (H , k, l)-kernel N of D is a set of
computers on the network such that they cannot send messages to each other, using at
most k − 2 intermediaries but every computer not in N can send messages to one in
N with at most l − 1 intermediaries.
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To conclude, it seems relevant to note that this new reachability can be used to
model several classic connectivity problems.
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