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Abstract

This paper deals with non-self-adjoint second-order Differential Operators with two
constant delays t;, i = 1,2 which are less than half the length of the interval. We
consider the case when 25—“ <1;< % and potentials g; are functions from L; |74, 7],
k =1,2. We study the inverse spectral problem of recovering operators from their
spectral characteristics. Four boundary value problems are considered and we prove
that delays and potentials are uniquely determined from their spectra.
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1 Introduction

The main results in the inverse spectral problems for classical Sturm—Liouville
operators can be found in the monographs [1, 2]. Some of the main methods in the
inverse problem theory for classical Sturm—Liouville operators turned out to be
unsuitable for operators with delays. In this paper, we use the method of Fourier
coefficients. This method is based on the determination of direct relations between
Fourier coefficients of the potential or functions containing the potential, and Fourier
coefficients of some known function. Some of the results of the inverse spectral
problem for Sturm—Liouville operators with a delay can be found in [3—10]. Studying
of the spectral problems for Differential Operators with two or more constant delays
is of recent origin and some of the results can be found in [11-16]. One of the
interesting features of the case with two (and more) delays is the requirement of
specifying the spectra for two (and accordingly more) different differential equation.
Negative answer to the question whether one can find an appropriate inverse problem
statement involving only one equation can be found in [17]. The paper [18] is
devoted to the studying of direct problems for operators with N constant delays. In
what follows, we always take i = 0,1 and k = 1, 2.
We consider the boundary value problems D,

— V() + @@ — ) + (D) (v — w) = (), xe 07, (L1)
¥(0) = hy(0) =0, (1.2)
V(%) + Hyy(m) = 0, (1.3)

2
where ?n < << g, h,H, € R, H| # H,, and A is a spectral parameter. We

assume that ¢, ¢, are complex valued potential functions from L;[0, 7] such that
g1(x) =0asx € [0,71) and g2(x) = 0 as x € [0,72).

We study the inverse spectral problem of recovering operators from the spectra of
D; ;. and generalize the results from the paper [3] which deals with operators with one

) 2n w .
constant delay from the interval {5 , 2] to the operators with two constant delays

from the same interval.

Let (in,i,k);io be the eigenvalues of the boundary value problems D, ;. The inverse
problem is formulated as follows.

Inverse problem 1: Given (/1,11,-1;{)‘;10 find delays t;, parameters h,H;, and
potential functions g.

The organization of the paper is the following. In Sect. 2, we study the spectral
properties of the boundary value problems D; . In Sect. 3, we prove that delays and
parameters are uniquely determined by the spectra. Then we prove that the
potentials are uniquely determined by the system of two Volterra linear integral
equations.

W Birkhauser



Recovering differential operators... Page 3 of 21 68

2 Spectral properties

It can be easily shown that the differential Eq. (1.1) under the initial condition (1.2)
along with the normalizing condition »(0) = 1 and conditions g;(x) =0 as x €
[0, 74) is equivalent to the integral equation

h |
vi(x,2) :cosxz+—sinzx+—/ q1(t) sinz(x — 6)y(t — 11,2) dt
z z
. ) (2.1)
(=1) / g2 (1) sinz(x — t)y(t — 12, 2) dt.
z

)

+

Here and in the sequel, we take A = z>. By the method of steps, it can be easily
verified that the solution of the integral equation (2.1) on the interval (27;, 7] is

h 1 i
yi(x,z) = coszx + —sinzx + — (bgi)(x,z) + (=1)'p ¥ (x, Z))

z z
h .
# 5 (006 + (1000

1 . )
t2 (biz?(x, 2) 00006, 2) + ()5 (v,2) + (1) (x.2)

h . .
+5 (b§§><x,z> + 5 (x,2) + (=1)'by ? (x,2) + (—1>’b§%”<x,z>)
(2.2)

where the integral terms in this equation are given by

b (x,z) = / qi(2) sinz(x — t) cosz(¢ — 14 dt,

Tk

bg) (x,z) = / qi(t) sinz(x — ¢) sinz(t — 1) dt,
Tk

b8 (x,2) = / (1) sinz(x — )b (1 — 1, 2) dt,
21

b8 (x,2) = / gi(t)sinz(x — )b (t — 1, 2)dt,  (I=1,2, k #1),
T1+172

b (x,2) = / gu(6) sinz(x — 062t — 1,2) dr,
2714

b (x,2) =/ gi()sinz(x — b0 (¢ — 1, 2)dr,  (1=1,2, k £1).
T1+72

T Birkhauser
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Denote
Aix = Fix(2z) = yi(m,2z) + Hyy(m, 2)
From (2.2), we obtain
}“@:(‘“l?>““+“+%W%M+$WH44%9@
L2 (06 + @)+ (40 + 1526
S (06 + 1)
1 (826 4 82) + (18020 + (-1)e20)
+ 5 (806 + 26 + (156 + (<150 )
+a (biz‘i<z> +RE) + (DB + (185 @)
+ (b;” (2) + 62 () + (=12 (@) + (1) (z)>
where
M) (z) = /n qi(t) cosz(m — t) sinz(t — 7)) dt,

b%(z) = / qi(t) cos z(m — 1) cos z(t — i) dt,

pb)(z) = / gi(t) cosz(m — )b (¢t — 14, 2) dt,

21
b = [ o) eoszln— b0 m2)d, (k2 1)
T1+72

bg;) (z) = / qi(t) cosz(m — t)bg)(t — T4, z) dt,

b4 (z) = / qi(t) cosz(x — b8 (t — 14, 2) dt,  (k #1).
T1+72

Here, for the sake of simplifying the above-given equations for F; x(z), we write (z) as
the argument of the functions instead of (,z) .

To simplify further consideration, we define the so-called transitional function g,
as follows:

W Birkhauser
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Let us also define the function

Ki(t) = KV(0) + K2 (0) + ()K" (1) + (= 1)KV (1),

KW (t) = qi(t + o) /tCIk(S)dS —qi(1) /“ qk(s) ds

Tk t+1y

Bl

- qe(s — )qi(s)ds, € [tg, T — 18],

(k)(t) =0, t€[0,t)U(m— 1,7,

K
(k1) T+ T2 ! T T T
KE0(r) = g1+ [awa-a(i-2+2) [ aeas
2 7 2 2 Hfﬁzrfz

n
Te T T+ 12 T+ 1T
- =41 ds, ¢ -
/Hﬂ;fzq’(s 2 +2)‘]"(s) > 6{ 2 "2 }

K& =0, te {0,“;”2) U <nT‘+TZ,n].

Moreover, if we introduce the notations

T T t—1g

1= [Cata 1= a0 [ awa)e
Tk 27y Tk

(k]) s =Ty

S = / qk(t)( / qi(s) dS) d
T1+172 T

and the functions

and

dic(z) = /ncjl( Ycosz(m —2t)dt, a;5(z) = /ncjl( )sinz(m — 2¢) dt,
/K )sinz(m — 2¢) dt, / K;(t) cosz(m — 2¢) dt,
uis(z) = /0 Ui(¢)sinz(m — 2¢) dt,  u.(z) = /0 Ui(t) cosz(m — 2¢) dt

where the functions U; in the last two equations are defined as

T Birkhauser



68 Page 6 of 21 B. Vojvodi¢ et al.

Uty =0V +U?(0) + (1)U (0) + (=)' UV (2)
we can easily show that the following relations hold:
JIRKW (e = -, U<2>(r) dt = 2,

1147

(2.3)
- k.l — k.l
S KO0 d = g, [ U0 a = g,

Here we note that the functions U%) (¢) differ from functions K*/)(¢) only with the
sign in front of the third integral in (2.3).

Using the aforementioned notations and relations given with (2.3), we can rewrite
the characteristic functions F;(z) as follows

hH,
Fi(z) < z+—k) sinnz + (h + Hy) cos nz

z

+ % (di,c(z) + Ji,c(z)) + ﬁz ( - LAZ‘,"S(Z) + J,',S(z))

2
2 @ 0) 4 0(2) + I (@1e() — ic(2) (2.4)
+ % (J2 is (Z) Ui s (2)) 4h2 (lec( ) + k”( ))
_%(sz() uzc( )) ZI—[SI{(JQH()—F](”( ))

where

Jic(z) = Jl(l) cosz(m — 1) + (—l)iJl(z) cosz(m — 12),
Jis(z) = JI(U sinz(m — 1) + (—1)"./1(2> sinz(m — 12),
Jric(z) =05 >cosz(n —21) +J( )cosz(n —21)
+ (=1 (B 4 I2Y) cosz(n — 11 — 1),
J2,is(2) :Jz(l) sinz(m — 271) + J2(2> sinz(m — 21;)
+ (=D (A 4 I sinz(n — 1 — 1),
The functions F;x(z) have one singular point z = 0. It can be easily proved that z = 0
is an apparent singularity. Also, the functions F;;(z) are entire in A of order 1/2.

Indeed, it is well known that the functions sinzzm and coszn are entire of order 1/2.
Since any entire function has the form of f(z) = >, a,z" and we can determine its

order as lim sup
n—oo —IN |an‘

order as the functions sinzm and coszrn. Further, using (2.4) and a well-known
method (see [1]), we obtain the asymptotic formulas for the eigenvalues (4, x) -, of
the boundary value problems D, as

, we conclude that every given function in (2.4) has the same

W Birkhauser
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2(h+Hy) | S (-1

ik =1 +?+Tcosml + cosnty +o(l), n — oo. (2.5)

Now, by Hadamard’s factorization theorem, from the spectra of D;;, we can con-
struct the characteristic functions Fj4(z). The next lemma holds.

Lemma 1 The specification of the spectrum (Jn;x),—o of the boundary value
problems Dy, uniquely determines the characteristic functions Fiy(z) by the formulas

) - )vn ik — 22
Fig(z) = n(kox — 2°) 1_[72 (2.6)

n=1 n

3 Main results

In this section, we prove that the delays and the parameters are uniquely determined
by the spectra.

Lemma 2 The delays 7y, the integrals Jl(k), and the sums h+ Hy are uniquely
determined by the eigenvalues (Ayij),

1
Proof Let us consider the sequences p,; = 3 (;bn,o,k + )nn,l‘k) and

1
0n =5 (2001 = Zn1,1). From (2.5), we have

)2 7
Pug =N +;(h+Hk)+7cosnrl+o(l)

and
g

Oni = “L_cosnty +o(l)
T

as n — oo. Obviously, the delays 71, 7, and integrals Jl(l), Jl(2> can be determined
from sequences (pn’k)zio and (an):io in the same way as for the operators with one
delay (see [9]). Lemma is proved.

Lemma 3 Parameters h and Hj are uniquely determined by the eigenvalues
()vn,oﬁk);io

Proof Functions Jﬁc(z) and J7(z) are known by virtue of Lemma 2. Since the
characteristic functions are uniquely determined by the spectra, by writing A =

4 1
( m2+ )2 in (2.6), we can define the functions

T Birkhauser
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dm + 1 H,+h 4dm + 1

4m 4+ 1 4m+1 1
)+ 2 ) Tam ()

P __JO,C(

Fjx(m) = Fo( 2 2

Then, using the form of the characteristic functions Fy given in (2.4), we get

1. 4m+1 ,
h= E"}E’I‘}Cm (FO,Z(m) — F =) (m))

Thus, we determine Hj from & + Hj and prove the lemma. []

To recover the potential functions from the spectra, we should transform the
characteristic functions (2.4). For this purpose, we use the method of integration by
parts in (2.4) once in the integrals denoted by d;,(z), d;(z), us(z), and u.(z), and
twice in the integrals denoted by k.(z) and k;(z). This is how the following function
appears

K () = KV (1) + K% (6) + (= 1) K2 (1) + (1) VK@D (p),

where
K(k)*(t) _ f; K(k)(u) du, t e [‘[k’ m— Tk]7
0, t€[0,7) U (m — 1,7,
and
j;tlﬂzK(k’l)(u)du t e [Tl +7 TC—‘CI +‘CZ:|
K(k,l)*(t) — 2 ’ 2 ) ) s
0, re 0,02y (-0t g,

2 2

One can show that the following relations hold

T—Tjk t
/ ( K® (1) du) dr = —(n — 2‘Ek)J2(k),
Tk T,

/__ ( / KO )+ KO ) ) dr

=—(n—1 — 12)(J2(1’2) +J2(2’1)).

Then we obtain the characteristic functions in the form

W Birkhauser
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Hih
Fir(z) =(— +—)s1n7rz+ (h + Hy) cos 1z

1, H, . - H,
#5300+ 2a.) - n(ie + 2d)e)
1 H,
-3 (0 + 2u@)) +a(kze + i)
(3.1)
Jic 2h + H,
+ (Z)+ ; £ (2)
Hih
< h_i>J213( )
Z
h 71372‘17
) 21L( )
where
72
(jl(c :/ (/ q; )coszn—Zt
2 2
72
(jl(é :/ (/ qi( )smzn—Zt
2 2
u :/ (/U, >coszn—21
u :/ (/U, ds>51nz7r—2t
k7 (z :/ (/ K: (s) s) cosz(m — 2t) dt,
k** :/ (/ K (s) )smz n—2¢t)d
and

(n— ka)Jék) sinz(m — 21;)

NE

(m —21)J2,5(2) =

=~

=1
—l)i(n — T — fz)(JZU'z) +J2(2’1)) sinz(w — 1 — 12),

+

2
(m—21)2.(z Z T — 27;)J- cosz(n —21)
1

=
—(=D'(m—1 - 12)(J2<1'2> +J2(2’1)) cosz(m — 11 — 12).

Since we have the transformed version of the characteristic functions (2.4), we are
now ready to recover the potential functions from the spectra. To do this, first we
need to define the functions

T Birkhauser
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2
Ai(z) = (HZF“(Z) —H1F,~2(z)) + 2zsin nz — 2h cos niz

H, — H ’ '
2h

- Ji,C(Z) - —J”(Z)
g

and
2z .
Bi(z) = (Fin(z) — Fi1(z)) — 2hsinnz — 2zcos nz — Ji4(2).
H2 — H1 ' ’ '

From (3.1), we obtain
Ai(2) = e(z) — 2042 (2) — u? (2) + 20K (2) + (2),

Bi(2) = dis(2) — 2hq\)) (z) — i (2) + 20k (2) + Bilz)

where
% (Z) _ 1 + (71'22— 2'[)1’1 JzJ"S(Z)
and
hin—2
b0 =" ) - B

The two below-given equations hold:

/))O,i :linéﬁi(z) =0,

2
oo ; :linéot,-(z) = Z (h(m — 2t + (n— Z‘Ck))Jz(k) sinz(m — 21)
zZ— =1
+ (—l)i(h(n . — 12)2 +(n—1 — 12)) (Jz(l’2> + J2(2’1)>
x sinz(m — 1 — 12).

If we put z=m, m € N into (3.2) and (3.3) and denote

Ao = 27’” (=1)"4;(m), By, = %(-1)'"*13,-(771),
omi = 2 (1)"3m), P =2 (1) )
, we obtain
Aomi = %52%1’ - %hqu,i,c - %uZm,i,c + %hk;;l.i,c + Oom,i

W Birkhauser
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2 - 4
BZm == _b2m,[ - _hq~<1>
s s

2mis m 2m is

+- hk;;la +ﬁ2m1 (37)

where

sin 2mt dt.

Wi = / G;(t) cos 2mt dt,
0
bomi = / G;(t) sin 2mz dt,
0
-2
u;m.i,s :/ / l]l 15) dl‘z) sin 2mt dt,
3\
u;m ic = / / ljz dlz) cos 2mt dt,
, - N
) 3

(
|

([ Kiois) oszmar

([ )

2 2 ~ 4 ~(1 2 * 4 ok
Ao; =~ limdi(m) = ~ao, - ;hqg,gc =ttt B (3.8)

T m—0

Further, we have

Since sequences {0}, {Pomits {42m;}, and {By,;} belong to the space L, by
virtue of Riesz—Fischer theorem, there exist functions f; and ¢; from L[0, 7] such
that

Ao
fi(t) = ; + ZAZW,,COS 2mt + Boy;sin2mt, t € [0, 7]

m=1
and

0,(t) = 0601 — 4+ Z Aom,i €08 2mt + P, ;sin2mt, t € [0, 7]

hold. Now multiplying (3.8) with %, (3.6) with cos2mt, (3.7) with sin2m¢, and then
summing up from m = 1 to m = oo, we get the system of integral equations

T2

a0 -2 [0 [veaan [ KOaa0 =50 69

Substituting functions U and K* into (3.9), we obtain

T Birkhauser
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a0~ 2 [ dfs)as - / U (s) ds - / U (s) ds

—(—1/ (U (s) + UV (s)) ds

3.10
+2h K s)ds + 2h / KW s)ds ( )
(-1 / (K02 (5) + KOV (5)) ds
utn
2
+ (1) = £i(2).
From (3.4) and (3.5), we have
0(1) = 1SV (0) + 7B @) + (1) (4" + 7)1 )
where
W _ T~ 2% 3 _Z(h(nf2rk +1 . sin2mr;
$W ==——=(h(n —20) +1) 2 cos 2mt
2h(7 — 274) o= €OS 2mT; 2h SKsin 2mT; .
— - mgl " sin 2mt — ?; " sin 2mt
and
S(l-,2)( 1) = m (h(n —n 1)+ 1)
2 him— 1) — l . si
( (n L —1)+ Zsmm cos St

m=1

2h — T — =
(n—1—1 Zcomrz—f— )sin2mt
m=1
2h Nsinm(ty + 11)

3 sin 2mt.
m

m=1

Further, we have

W Birkhauser
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SR, —a, t€ (a,m—a),
Zsm M9 cos2mt = /2 —a, t€(0,a)U(n—a,mn),
m
m=1 /4 — a, t=a, t=7—a,
—t, t€(0,a),
- n/2 —t, t€ (a,m—a),
cos2ma
Z sin2mt = T —t, te(n—a,n),
m
m=1 /4 — a, t=a,
—n/4 +a, t=m—a,
and
(m—2a)t, t € (0,a),
SRTI, a(m —2t), t€(a,m—a),
Zsmmzmasinbnt: (n —2a)(t — n), te(n—a,mn),
m=1 (m — 2a)a, t=a,
—(m — 24d)a, t=m—a.
Then we get
0, t € (0,7) U (m — 1, 1),
14 2h(t — 1), te (1, m— 1),
S8 (¢) = (t =) (% 2 (3.11)
1/2, t =1,
1/2 4 h(n — 214), t=1m— 1,
and
0, te(O,TI;U)U(n—TI;U,n)a
S12)(7) 1+ 2h(t — (11 +12)/2), re (TIJZFU, —IHZLTZ),
1/2, l:(fl+12)/2,
1/2+ h(n— 11 — 12), t=n—- (11 +1)/2.

(3.12)

Now, after summing and subtracting integral equations (3.10) and then introducing
substitution of variables, we get the system of integral equations

T Birkhauser



68 Page 14 of 21 B. Vojvodi¢ et al.

ql(x)—2h/’ ql(u)du—/’ U(z)(u—%)du—/ U(l)(u—;—l)du
T 43 £l

S k@, T T, T
+2h W%K (u 5 )du+2h[%1( (u 5 ) du 5.13)
SISO 0 - )
1 T T
=) A= D)
and
q2(x) — Zh/ q2(u) du —/ (U(l’2> (u —1—2) + U<2’1)(u - Tz)) du
T ‘Ez+% 2 2
+2h/ <K(1’2)* (u —2) + K@D (u — T—z)> du
+d 2 2 (3.14)
OS2

2
(6= -A6-2)).

Notice that each integral Eqs. (3.13) and (3.14) contains both potential functions ¢;
and ¢,. To prove uniqueness of the solutions of integral equations, we reduce integral
Egs. (3.13) and (3.14) to the linear integral equations of Volterra type. For that
purpose, we will prove that all functions containing ¢, in integral equation (3.13) are
known, as well as all functions containing ¢; in integral equation (3.14).

However, it turns out not to be true in general and depends on the relations

between delays. In integral Eqs. (3.13) and (3.14) there are unknown integrals J. (1),

J2<2>, 2(2’1), 2“"2). Although they are not known, we show that they do not exist in the

integral equations on certain sub-intervals created at the beginning and at the end of
[tk, 7]. After solving integral equations on these intervals, depending on the case we
consider, we will reveal that all integrals or some of them are known. Then, after
solving the integral equations on certain intervals, we prove that the remaining
integrals are known.

It is well known that the point 2?" is a point that separates linear and nonlinear cases
of the boundary value problem. The boundary value problem becomes linear on the
right side of this point and becomes non-linear on the left. Furthermore, the point 2?”
is a point of separation in terms of the uniqueness of the solution of the boundary
value problem. On the right side of 2?”, the boundary value problem has a unique
solution, while this is not the case on the left (see [19-21]).

This is the motivation behind the following process. First, we show that the
integral equations (3.13) and (3.14) have unique solutions on certain sub-intervals of
[tk, 7.

W Birkhauser
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Theorem 1 Let q; € Ly[ts, 7], qx(x) =0 as x € [0, 1¢). If%ngtz <t <%, then

integral equation (3.13) has a unique solution g, on intervals (tl,rz +12_1> and

T+ 5 — 12, n> , and integral equation (3.14) has a unique solution q, on intervals

|:‘E2,‘E2 —&—%} and (n—%, }

Proof From (3.11) and (3.12), we have

71 37 T T1
0, tE(?,T)U(n—E,n—i—E),
31 37 T
1+ 2h(x — 2t L
S<l)<x—f—l): + 2h(x 2), te(z,n 2)7
3T1
1/2 =—
/2 (=2t
1/2 4+ h(m—21)), t:n—%,
T] T 71 71
0, te(i,r2+5)u(n—rz+?,n+5),
T T1 71
1+ 2h(x— 1 — = t -+
ol mY)_ +2h(x =1 —7), €+ m—nts),
1/2 t=1+2
) 2 PR
1/2 4 h(n — 213), l‘:ﬂ—‘fz-‘rfz—],
and
T2 T] T1 2
0 = —)U(n—— =
) x€(2772+2) (TC 2,7T+2),
T T T
) o 1+2h(x712752), xe(rz+?l,n731),
s (’“3) 1 7
57 x:‘52+37
1 T
E—i—h(n—rl—‘cz), X=n—o.

Now we consider the following cases:
Case 1. If x € [1p,12 +%] we have SU-P(x —2) =0 and from (3.14) we
obviously get the Volterra linear integral equation

1 X
q2(x) :E(fg(x—rz—z) —fi (x—;—z)) +2h/ q2(u) du
()
which has a unique solution on [, 7, + % ].

Case 2. Letx € (7r — %,n] in (3.14). Then we both have §(12) (x — %2) =0 and
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/‘ U (- 2yar= [ K (- 2V, xe(n—2 .
T2+~ 2 72+%] 2

Since,

/:Ch(u)duz/T;qz(u)du—/anz(u)du:J1(2>_/anz(u)du

we obtain integral equation

@ (x) = gi1(x) — 2h /nqz(u) du (3.15)

where

gl(x)Z%(o(x 2)—filx— )>+2hJ<>.

Integral equation (3.15) has a unique solution on (m — %, 7].

Case 3. On the interval (‘51,‘52 +%1), we have S(! )(x—j) = S<2)( —7) =0.
Then integral equation (3.13) becomes a linear integral equation of Volterra type with
a kernel equal to one which has a unique solution ¢; on (11,7, + ).

Case 4. In the same way as in Case 2 using S<1)( — %) =5 (x — %‘) =0 on
(71 +3 1,7 }, we obtain the unique solution ¢; of integral equation (3.13) on
interval ( +53—1,7 } The theorem is proved.

Now, let us show that the integrals Jz(l), J2<2), JZ(Z'U, and J2(1'2) are known. The next

lemma holds.

Lemma 4 Integrals Jz(l), 2, J2(2,1) and J2<1’2) are determined by potentials q, on
(‘52,12 +%) U (n 3 ,n} and q, on (‘51,‘52 +%‘) U (n+%f ‘52,71]

Proof The arguments of Jz(z)

belong to the intervals (27,,7) C (m —%,7) and
(o, m—12) C (r2,74+ %), 50, ) is known. In the same way, we get that arguments
ofJ2 belong to the intervals (2t;,7) C (7 +% — 12, 7] and (1,7 — rl) (t1, 7+
%‘) and integral Jz( ) is known, too. Argument of ¢» in the integral J2 belongs to
the interval (11 + 15,7) C (n -5, n] Consequently, integral J2< Y is known.
Argument of ¢, in the integral Jz( ?) belongs to the interval (t1 + 12, ) C
(71 +3 -1, n} and argument of ¢; to the interval (1,7 — 71) C (‘52, T + %]) and
then integral J2(1,2) is known. Then, in further considerations, we take that summand
JVSO(x =) +17S@ (x—U) in integral equation (3.13) and summand
(Jz(l’z) + J2(2’1>)S (12) (x — 2) in integral equation (3.14) are known.

Now we come to our main result and prove that Inverse problem 1 has a unique
solution.
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Theorem 2 Let g; € Ly, 7, qe(x) = 0 for x € [0,714) and 2?“ <<t <L The
Jour spectra of the boundary value problem D;jy uniquely determine delays ty,
parameters h, H, and potential functions gqy.

Proof Taking Lemma 1, Lemma 2, and Theorem 1 into account, it remains to show
that integral equations (3.13) and (3.14) have unique solutions ¢; on the interval

(12 + %1 , T+ % — ‘52) and ¢, on the interval (‘cz +3,m— %‘), respectively.

Case 1. Let x € (rz +3, 32&} From (3.13), we get the integral equation

’Cz-I—TT1 X
w2 [ a@a-24 [ gl
T l’er%l
—/' U<2)(u—;—1)du+2h KO (u—2) du

2+3 n+3 2
1 T T T T
5@@—§Mﬁ@—50—A%m@—ﬁ—g%w@_éy

One can easily show that arguments of the potential ¢, appearing in the function

/ A (u — E) du
‘L'er%] 2

belong to the intervals [21,71+ ) C [n—%,7], [0,1]C [0, +%],
[212,7] C [ —%,7@, and [02,m — 7] C [r2,72 + 3 ]. We have the same for the
function ffz A K (u — 3—‘) du. Then we get the integral equation

X

q1(x) = g(x) +2h/ q1(u) du (3.16)

T
Tz+71

where

gZ(x)_xﬁ)(x—Tzl)Jrﬁ(x—g)) +/TX U<2>(u—%2)du

il
2+

X

Ty Ter%1
—2h K(Z)*(u—f)du+2h/ q1(u) du
T

.
T+

— Vs (x - %) + 5@ (x — %‘)

is a known function. Integral equation (3.16) has a unique solution ¢; on
(% .%)
Case 2. Forx € (32,1 — 2], from (3.14) we get
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37y

(I1(x)—2h/7611(u)d14—2h£q1(”>d“

T1 )
31

T o Y ay - [, B
/rﬁ%U (u > ) du [_ U (u > ) du
. £l
_ (M, ot @, T
[T U ( 2)—|—2h/r2 K (u 2)du

! +3

+2h/ K@ u—— du—|—2h/ KU u—— du

5(0()53) +f1(x§)> *szS(l)(x*Tz—l)
— P8O (x — %)_

In the same way as in Case I one can show that functions

C @, T T, T
AU (u 2)du and AK (u 2)du

are known as well as the functions

o, T L, T
[%U (u 2)du and [%K (u 2)du.

Then, we get the integral equation
00 =)+ 20 [ n(u)d (3.17)
>

where

3t
X 2L

—2h K<2)*(u—%)du+2h/2 1 (1) du
7

T
Tz+7]

T
IS0 = ) s (e )

is a known function. Integral equation (3.17) has a unique solution ¢; on

(53]
2 21

Case 3. In the same way we show that integral equation (3.13) has a unique
solution on (m — 3,7+ % — 12].

Case 4. Flnally, we prove that the integral equation (3.14) has a unique solution ¢
on (rz +3,m— f] Notice that the potential ¢, is known. From (3.14) we get
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’Cz+r71 X
w2 [ a2 [ awa

T
T2 T+

[ 12, o @y, T
/ﬂ%(U (- 2) + U 2))du

o [ (KO D) K - 3) Ja

T
Tz+7]

1
—2<0( —%2) —fl( _22))
A0 = ).

It can be easily shown that the arguments of the potential ¢, in the function

‘Cer%l 2

belong to the interval [t, m — 71] C [‘Cz, Ty + %‘} and arguments of the potential ¢, in
the function

y U(172> _‘C_z d
/w% (v~ 2) du

belong to the interval [t + 15, 7] C [n - %‘,n} . So, we get the integral equation

@2 (x) = ga(x)x + 2h /ii ¢>(u) du (3.18)

where

) =3 (=) il ))+2h/12+%q1<u>du

)

+/x (U(l’z)(u—rz)+U<2'1>(u—1-2)) du
Tz+%l 2 2

) 2

.y <1<<12>*( 2) 4 KOy ?))du

T
Tt

is a known function. Integral equation (3.18) has a unique solution on
(12 +3 ,n——} Thus, the theorem is proved.
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