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Abstract

Let A be the class of all normalized analytic functions f in the unit disk
D={zeC:lz|<l}, givenby f(z) =z+ >, a,z" for z € D. We give the sharp
bound for the modulus of the functional a,a; — a4, and the second Hankel deter-
minant H,,(f) = axas — a3 when f € M,(exp) C A, the class of a-convex func-
tions (0 <o < 1), associated with the exponential function.
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1 Introduction

Let H denote the class of all analytic functions in D := {z € C: |z| <1} and A be
the subclass of functions f of the form

f(z):z—|—ZanZ”, ze D. (1)
n=2

Denote by S C A the subclass of univalent functions.
For o € [0, 1], denote by M, C A, the so-called a-convex functions f satisfying

Re{(l — ) Z/{;S) + cx(l +Z/J:,éz))> } >0, zeD.

The class M,, was introduced by Mocanu [16] (see also [8, Vol. I, pp. 142-147]),
who showed that M, C S.
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We note that when o = 0 the class M reduces to the class of starlike functions
denoted by S”, introduced by Alexander [1] ([17], see also [8, Vol. I, Chapter 8]), and
when o = 1 the class M, reduces to the class of convex functions denoted by S°
defined by Study [24] (see also [8, Vol. I, Chapter 8]). In [15] it was shown that
M, C My for every o € [0, 1], and so all functions in M, are starlike, which was
observed by Sakaguchi [23] before the advent of the a-convexity concept (cf. [8, Vol.
L. pp. 142-143]). Also in [15] Mocanu and Reade showed that M,, C M,, for every
0<o<wa; <1, and Mocanu [16], showed that functions in M, have some
interesting geometrical properties.

Thus the class M, creates a “continuous passage” on o € [0, 1] from the family of
starlike functions S* = M to the family of convex functions M; = S°.

The class M,, plays an important role in geometric function theory and has been
studied by many authors (e.g., [20, 19, Chapter 7] for further references).

We say that a function f* € H is subordinate to a function g € H, if there exists a
function w € H with w(0) = 0 and |w(z)| <1 for z € D (called a Schwarz function),
such that f(z) = g(w(z)) for z€ D. We write f <g. If g is univalent and
f(0) = g(0), then f < g is equivalent to /(D) C g(D).

Suppose that the function ¢ is analytic and univalent in D and is starlike with
respect to the point ¢(0) = 1 with ¢'(0) > 0, and is symmetric about the real axis,
then Ma and Minda [13] generalized the classes of starlike and convex functions as
follows:

. EAC I
S(go).{feA.f(Z) < o(z2), e[l])}
and
_ LG
C(qo).{feA.lJrf,(Z) =< ¢(2), elD}.

Clearly, ¢(z) = exp(z), z € D, is a valid choice of the super-ordinate, which appears
to have been first considered by Mendiratta et al. [14], and recently several authors
have considered problems in the resulting classes of starlike and convex functions
(see e.g. [25, 26], and the references therein).

Also Breaz et al. [2] have recently defined the following subclass of M,,.

Definition 1.1 A function / € A is said to be in the class M, (exp), o € [0,1], if /
satisfies the following condition:

T (1450

=70 )

) <exp(z), zeD. (2)

In this paper we consider problems in the class M, (exp), o € [0, 1], of a-convex
functions associated with the exponential function, noting that S*(exp) := M (exp)
and C(exp) := M, (exp).

We also note that in [2], Breaz et al. gave non-sharp bounds for various coefficient
functionals in M,,.
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In recent years, there has been a great deal of attention given to finding bounds for
the modulus of the second Hankel determinant H;» (f) = axas — ag, when fbelongs
to various subclasses of A (cf. [4] and [9] with further references).

In this paper, we find the sharp bound for |H,(f)| when f € M,(exp), a €
[0, 1], together with the sharp bound of the functional

V23(f)] = lazas — aal,

when f € M,(exp), a € [0,1].

Note that |J;3(f)] is a specific case of the generalized Zalcman functional |a,a,, —
anym+1| investigated by Ma [12] for f € S (cf. [21] for further references), and that
sharp bounds for |J;3(f)| for some specific general cases such as S*(¢) and C(¢)
have been found in [5].

2 Preliminary lemmas

Denote by P, the class of analytic functions p in D with positive real part on D given
by

p@) =1+ ', zeD. (3)
n=1

Clearly if w is a Schwarz function, then there exists p € P such that

_p) -1
(z) _p(z) e e D, 4)

and vice versa, if p € P, then there exists a Schwarz function w € H such that

p(2) 21;28’

zeD.

In the proofs of our results, we will use the following lemma given in [6]. It contains
the well known formulas (5) for ¢; [3] and (6) for ¢; (e.g., [18, p. 166]). The formula
(7) for ¢3 in the case when {; € [0, 1] is due to Libera and Ztotkiewicz [10] and [11].
Let D:={z€C:|z|[<1}and T:={z€ C: |z = 1}.

Lemma 2.1 Ifp € P and is given by (3), then
e =2(, (5)
o =20 +2(1- L)% (6)
and
o3 =20 +2(1 = |GG - L)L+ 20— [P (1 = LG (7)
for some {,{,,{3 € D.

For {; € T, there is a unique function p € P with c; as in (5), namely,
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_1+£1Z

p(z)_l—é'lz’ e D.

For {; € D and {, € T, there is a unique function p € P with ¢; and ¢; as in (6) and
(7), namely,

_ 1+ (ZICZ +{))z + (7
1+ (6 - 0)z = 622

p(z) ze D. (8)

We will also use the following lemma.
Lemma 2.2 [7] For real numbers A, B, C, let
Y(4,B,C) := max{|A 4B+ CR| 41—z iz € @}.
If AC >0, then
[+ Bl +ICl,  [B]=2(1 - |C]),
Y(4,B,C) = B

144
)+

A=)’ |B] <2(1 —|C]).

If AC <0, then

2

14A|+m, —44C(C2 — 1)< B> A |B|<2(1 —|C)),
YABO =1, 4] +4(1i2|0)’ B < min{4(1 +|C)?, —44C(C2 — 1)},
R(4,B,C), otherwise,
where
|+ |B| =], CI(1B] + 4l4]) < |4B],
Ra,8,C)em | TMIFIBLEICL (48] CI(E - A,
B
(IC] + 14)) l—m, otherwise.

3 The Zalcman functional

We first consider the Zalcman functional |aza3 — as|, noting that a non-sharp
inequality was found in [2].

Theorem 3.1 Let o € [0,1]. If f € My(exp) and is given by (1), then
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lazas — a4
2(o 4 2) (4o + 1)J (o)
9o+ 1) (2 + 1)(Bor + 1)(2603 + 9202 + 490+ 7)
- 1
33c+1)’

o€ [0,0], )

v e (1],

where  J(a) := 1/2(2603 + 9202 + 490+ 7) (4o + 1) (2 +2)(x+ 1) and o ~
0.814445 is the unique root in [0,1] of the equation

42400 + 1728° + 10140* — 11340° — 7350 — 1080 — 1 = 0.
Both inequalities are sharp.

Proof Fix o € [0,1] and let /' € M, (exp) be of the form (1). Then by (2), we can
write

IRRELCN (AL

[ f'(2)

where w is a Schwarz function. Thus there exists p € P given by (3) such that (4) is
satisfied, and so (10) can be written as

( —a)zj,{'(ij)+a<1 +ZJ’:((ZZ))> zexpczgli), zeD. (11)

Substituting (1) and (3) into (11) and equating the coefficients gives

) =exp(w(z)), zeD, (10)

b € A1+ 40— o?)
P21 +a) AT+ 20) 161+ 20)(1 + 2)
402 — 90— 1
a4 = C3 C[CQ( 04 9u ) (12)

6(1+30)  24(1 +30)(1 + 2e)(1 + )
(4ot — 3103 + 210 — 1700 — 1)
288(1 + o)’ (1 4 2a)(1 + 3

Since both the class M, (exp) and the functional M, (exp) 3 f—|aza; — as| are
rotationally invariant, without loss of generality we may assume that ¢; € [0,2], i.e.,
by (5) that {; € [0, 1]. Using Lemma 2.1 in (12) we then obtain

1
144304 1) (204 1) (e + 1)

|a2a3 — d4| =

[P, (13)

where
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Y= (20° — 402 — 350 — 5)c) — 12+ 1)(24% + 1)cica
+24(0+ 1220+ 1)c3
= 8[(27 + 140" — 170 = 5)( +6(x + 1) (207 + 60+ 1)(1 = (1)1 & (14)
—6(a+ 1)Q2u+ 1)(1 — )8
+6(a+ 1?2+ 1)(1 = (1 = L)

for some (;,¢, (5 € D.
(A) Suppose first that {; = 1. Note now that
202 4+ 140> — 170 — 5<0, « < [0,1], (15)
and that from (13) and (14) we have
—203 — 1402 + 1700+ 5

lazas = aa] = 18Gu+ )2at Dot 1)? (16)

(B) Suppose next that {; € [0, 1). Using the fact that |{3] < 1, we obtain from (14)
that

|P| <48(1 — 3)(2a + 1) (ot + 1)*D(4, B, C),

where
©(4,B,C) = |A+ Bl + CO| + 1 — |0l
with
(263 + 1402 — 170 — 5)(3 (202 + 60+ 1){,
A:= - L B="——— 2 Ci=-{.
6(2u+ 1)(a+ 1)*(1 =) 20+ 1)(e+ 1)

Hence and from (15) it follows that AC > 0.
(B1) Consider first the condition |B| >2(1 —|C]), i.e.,

(202 + 60+ 1){,

>2(1-¢y),
Qu+1)(a+1) = (1=4&)
which is equivalent to

3202 + 4o+ 1) =22+ 1) (o + 1)
2o+ 1)(x+1)

>0

and is true when {; > {’, where

2Q2a+ 1)(a+1)

ro s\ I\eT 1)
¢ 3(202 4+ 4o+ 1)

Note that the inequality ' <1 is equivalent to —2a? — 60 — 1 <0 which is true for
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a € 0,1].
Assume now that {; € [, 1). Then applying Lemma 2.2 we have
[P <48(1 = (7) (20 + 1) (2 + 1)*(14] + |B| +|C).
Hence, and by (13),
1

lazas — as] = 1443 + 1) (20 + 1)( + 1) #l<7(C), (17

where
t

1830+ )20+ D)+ 1)
[(2607 + 9207 + 490 + 7)¢* — 6(do + 1) (ot + 2) (2 + 1)].

Rot—y(t) ==

Since y'(¢) = 0 is equivalent to
(260 4+ 9207 + 4900 4 7)* — 2(4o + 1)(2t +2) (e + 1) = 0,

it follows that y has the unique positive critical point

o V/2(2603 + 9202 + 4900 + 7) (403 + 1302 + 110+ 2) (18)
o 2603 + 9202 + 495 + 7 ’

where the function y has a local maximum with

2(o+2) (4o + 1)4/2(2603 + 9202 + 4900 + 7) (4ot + 1) (o + 2) (2 + 1) .

) t/ =
/) 9(a+ 1)(20 + 1)(3o + 1)(2603 + 9202 + 490 + 7)

Note that # <1 for all « € [0, 1], which is equivalent to
3(60° + 2202 + 9ot + 1)(260° 4+ 920 + 490 +7) > 0, € [0, 1].
Moreover ¢ > {' if, and only if,
—640® — 25207 — 360" + 3840’ + 25807 + 570 +4 >0

which is true for all o € [0, 1]. Consequently, y(¢) < y(¢) for ¢ € [, 1), and in par-
ticular for  := {;, so we obtain y({;) <7(¢'). Hence, and by (17) we have

\a2a3 — a4| < y(l‘/). (19)
(B2) Suppose now that {; € [0,{’), then applying Lemma 2.2 we have
BZ
|P| <48(1 — 3)(20+ 1) (a + 1)2<1 + 14| +—),
: 4(1—|cl)
and so by (13) we obtain
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1
14430+ 1) (204 1) (a + 1)°

axas —a4| = |\P|§Q(Cl)a (20)

where

1
R > t—o(t) :== > > [(40* + 1207 + 1600 + 900 + 13)£°
3630+ 1)(2a+ 1)" (e + 1)

—9(20% + 1) (202 + 4o+ 1) + 12(0+ 12 (200 + 1)2}.

Since ¢'(¢) = 0 is equivalent to
t[t(4o* + 1207 4 1600 + 900 + 13) — 6(20” + 1)(2e> + 4o + 1)] = 0,
it follows that ¢ has the unique positive critical point

g 6(202 +1)(207 + 4o+ 1)
" 4ot 4 1203 + 16002 + 900 + 137

which is a local minimum point. Observe now that ¢/ <’ if, and only if,
640° +2520° + 360 — 3840’ — 2580 — 570 — 4<0
which holds for all o € [0, 1]. Therefore,
o(t) < max{e(0),0(()}, 0<t<{,

and in particular when ¢ = {; we have ¢({;) < max{(0), o({')}, and hence by (20)
we obtain

|azas — as| < max{e(0), o({)}. (21

It is easy to check that y({') = o({'), so the function

(o), teo,),
[0,1] 2 t—y(2) := { 1), teld1],

is continuous, has a local minimum at z = #’ and a local maximum at ¢ = ¢. Since
"<t and (1) = (1) = a, where a is defined by (16), it follows from (16), (19)
and (21) that

laxas — as| < max{y(¢) : t € [0, 1]} = max{g(0),7(¢)}.

A simple calculation shows that
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7(t') — e(0)
2(0+2) (4o + 1)1/2(2603 + 9202 + 490 + 7) (4ot + 1) (o + 2)(ac + 1) 1

9(o+ 1)(2a + 1)(Bor + 1)(2603 + 9202 + 490 + 7) 33a+1)

() >0
(a4 1)(2a+ 1)(Bo + 1)(2603 + 920> + 490+ 7) —

if, and only if,

w(@) == =3+ 1)(2e + 1)(26¢ + 9207 + 490 + 7)

4 2(00 4 2) (4o + 1)1/2(2603 + 9202 + 490 + 7) (4o + 1) (2t + 2) (2 + 1) > 0,

or equivalently, if, and only if]

2o+ 2) (4o + 1)4/2(2603 + 9202 + 490 + 7) (4ot + 1) (ot +2) (o + 1)
>3(a+ 1)(200+ 1)(260° + 9202 + 490 + 7).
Squaring both sides of the above inequality gives

(o + 1)(260 + 920% 4 490 + 7)(4240° + 17282 + 1014o* — 11340
—7350% — 108 — 1) <0

which is true for o € [0, o], where o’ ~ 0.814445 is the unique root in [0, 1] of the
equation

42400 + 1728° + 10140* — 11340 — 7350 — 1080 — 1 = 0.

(C) It remains to show that both inequalities in Theorem 3.1 are sharp. If o € (¢/, 1],
then the function f given by (10) with w(z) :=2*, z € D, for which a; = 0,a3 = 0
and a4 = 1/3(1 4 3a) is extremal for the second inequality in (9).

For the first inequality let o € [0,0/], and set © := ¢/, where ¢ is defined by (18).
Since 7 < 1, the function p given by (8) with {; = 7 and {, = —1, i.e., the function

1 —22 5
=== —_ DRI [ED
p(z) TR r—— 14+2tz+ (41° —2)2 +---, zeD,

belongs to P. Thus the function f given by (11), with p as above and

b T . (B2 4+ 120+ 5) — 2(1 +a)’?
4o 7 4(1 + 20) (1 + )’ ’

1((520* + 3176 + 63302 + 3550 + 59)72 — 6(802 + 2700+ 7)(1 + 2)°)
ag = .

36(1 + )’ (1 + 200) (1 + 300)

belongs to M, (exp) and is extremal for the first inequality in (9), which completes
the proof of the Theorem 3.1. l

For o = 0, we deduce the following ([25, Corollary 2]).
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Corollary 3.1 Iff € My(exp) and is given by (1), then
8v7
—aal < 22
lazas — as| < ==
The inequality is sharp.
For o = 1, we deduce the following [25, Corollary 5].
Corollary 3.2 Iff € M, (exp) and is given by (1), then

—a < —.
|azas a4|_12

The inequality is sharp.

4 The Hankel determinant H, > (f)

In this section, we find the sharp bound for the modulus of the second Hankel
determinant H(f) = axas — a3 when f € M,(exp).

Theorem 4.1 Let o € [0,1]. If f € My(exp) and is given by (1), then
[Hoa(f)| = |azas — a
1
420+ 1)*
340 + 8207 + 2700+ 3
(3o + 1)(1730* + 54603 4 44002 + 1260 + 11)

o€ [07(‘/6_ 1)/5]7

IN

, ae ((Ve-1)/51].
(22)

Both inequalities are sharp.

Proof Fix o € [0,1] and let f € M,(exp) be of the form (1). Since both the class

M, (exp) and the functional M,(exp) > fr—H,,(f) are rotationally invariant,

without loss of generality we may assume that ¢; € [0,2], i.e., by (5) that {; € [0, 1].
From (12) applying Lemma 2.1 we obtain

1
230430+ 1)(2u + 1) (a4 1)°

|a2a4 —a§| |LIJ‘7 (23)

where
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¥ = (50t — 300° — 23207 — 1620 — 13) — 1442 (1 4 30)(1 + o)’
— 242 ¢y (702 — 204 1)(1 4 a)* + 192¢1¢3(1 + 2)* (1 + 20)*
= 16((50* + 420> — 880 — 900t — 13)(}

+12(7% + 100+ 1) (24 1)*(1 = 3G (24)
—12( 4+ 1)*(1 = &) (7% + 4+ D +3(1 + o) (1 + 30))
+48(a+ 1’2z + DX(1 = (1 - 1))
for some (;, (5,5 € D.
(A) Suppose first that {; = 1. Since
—50% — 4203 + 8802 + 900 + 13 =0, xefo1] (25)

14430+ 1) (204 1)*(a + 1)°
from (23) and (24) we have

—5a* — 4203 + 880 + 900 + 13
14430 4 1) 204 1) (a4 1)°

|azas — a3| =

(B) Now suppose that {; € [0, 1). Noting from (24) that |(3| <1, we obtain

[P <768(, (1 — ) (20 + 1) (e + 1)°D(4, B, C),

where
®(4,B,C) == |A+ B, + Co|+ 1 - |6,
with
(50 + 4207 — 8802 — 900 — 13)(] B (702 + 100 + 1)
4820+ 1) (a4 1)1 =) 4Qa+ 172
C::_(7a2+4a+1)c§+9a2+12a+3_

420+ 1)%¢,

A simple calculation using (25) shows that AC > 0.
(B1) Thus, we first consider the condition |B| >2(1 —|C]), i.e.,

(702 4 100 + 1), o1 (702 + 4o+ 1){5 + 92 + 1200+ 3
420+ 1) 420+ 1)°¢ ’

which can be equivalently written as
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3(702 + 604 1) — 8200 4 1)°¢ + 6(3a+ 1) (o + 1)
420+ 1)

which is true for all o € [0, 1] and {; € [0, 1). Thus, applying Lemma 2.2 we have

>0,

P| < 768C, (1 — (7) (2 + 1) (e + 1)*(|4] + |B| + | C]).
Hence and by (23)
1

3
aay — a3| = Y| <y(6),
lazas = as| 2304(3<x+1)(2<x+1)2(oc+1)3‘ <26

where

1
14430+ 1) (20 + 1)* (2 + 1)°
x [—(1730* + 54607 + 4400* + 1260 4 11)¢*

Rat—y(1) ==

+12(502 + 200 — 1)(o + 1)*72 +36(30 + 1) (o + 1)3]
Since y'(¢) = 0 is equivalent to
[(173oc4 45460 + 44002 + 1260+ 11)22 — 6(50% + 20 — 1)(a + 1)2}t —0,

it follows that for (v/6 — 1)/5<a <1 the function y has the unique positive critical
point

v (0 +1)1/6(1730% + 54603 + 44002 + 1260 + 11)(502 + 200 — 1) (26)
' 17304 + 54603 + 44002 + 1260 + 11

where the function y has a local maximum with

3403 + 8202 + 270 + 3
(3o + 1)(173a* + 54603 + 44002 + 1260+ 11)

() =
Note that ¢/ <1, since this is equivalent to

(1430 + 4740 + 3920% 4 1260 + 17)(1730* + 5460 + 4400% + 1260 + 11) > 0.
For ogag(\/é— 1)/5 we have
V(t) < max{y(O),y(l)} = V(O) = 2 re [05 1];

since
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1 —5o0* — 4203 + 880 4+ 900 + 13
4020+ 17 144G3u+ D)(Q2a+ 1) (2 + 1)
11304 + 40203 + 34402 + 1260 + 23
O 1440Ga+ )Q2a+ D e+ 1)

7(0) —»(1) =

>0, a€]l0,1].

(C) It remains to show that the inequalities in Theorem 4.1 are sharp. If o €
[0, (v/6 — 1)/5], then the function £ given by (10) with w(z) := 2%, z € D, for which
a =0,a; =1/(2(1 4+ 2a)) and a4 = 0 is extremal for the first inequality in (22).
For the second inequality, let « € ((v/6 —1)/5,1], and set 7 := ¢, where ¢ is
given by (26). Since 7 < 1, the function p given by (8) with {; = tand {, = —1, i.e.,
the function
1 -2

.— — 2 _ e
p(z)'il—Zrz—kzz 142tz 4 (402 =2)22 +---, zeD,

belongs to P. Thus the function f given by (11) has the form (1) with

, T . (B2 + 120+ 5) — 2(1 + a)’?

P lva P 4(1 + 20)(1 + )’
. (520" 4 3176 + 6330 + 3550 + 59)7% — 6(802 + 270 + 7)(1 + 2)%))
4 = 5

36(1 + o)’ (1 + 24)(1 4 30)
which gives equality in (22). OJ
When o = 0, we deduce the following [25, Corollary 3].

Corollary 4.1 Iff € S*(exp), then

1

2 < -
The inequality is sharp.

When o = 1, we deduce the following ([25, Corollary 6]).

Corollary 4.2 Iff € C(exp), then

73
H. < —.

The inequality is sharp.

Remark 4.1 We end by noting that in [22] it was recently shown that for the third
Hankel determinant

H3’1(f) = 2a2a3a4 — ag — aﬁ + as (a3 — a%),

when f € S*(exp), the sharp bound is |H3;(f)| <1/9, and when f € C(exp), the
sharp bound is |H;1(f)| < 1/144.

T Birkhauser



62

Page 14 of 15 B. Smiarowska

Clearly finding the sharp bound for |H3;(f)| when f € M,(exp) presents a

significantly difficult problem.
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