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Abstract
In this paper, we discuss the notions of minimal ideals, maximal ideals and principal

ideals on a topological ternary semigroup. We express the kernel of a topological

ternary semigroup in different ways and provide characterizations of kernel in

topological ternary semigroups. We establish equivalences between minimal left

ideal, minimal ideal and maximal ternary subgroup on a paratopological ternary

group.
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1 Introduction

Generalized theory of algebra, namely n-ary algebra was studied by Kasner (1904)

[10], Dörnte (1928) [4], Post (1940) [14] and many others. Ternary algebraic system

which is known as triplexes was first introduced by Lehmer [11] in 1932. Los [12]

proved that every ternary semigroup can be embedded in a semigroup.

After many pioneering works in ternary semigroups, in 1965 Sioson [19] studied

ideal theory in ternary semigroups. He introduced the concept of prime ideals,

semiprime ideals, quasi-ideals to characterize regular ternary semigroups in terms of

these ideals. In 1980, Dudek and Grozdzinska [5] studied ideals in regular n-

semigroups. Dixit and Dewan [3] studied properties of ideals in ternary semigroups.

In paper [6] Dutta et al. studied properties of regular ternary semigroups,

completely regular ternary semigroups, intra-regular ternary semigroups and their

characterizations in terms of different ideals. Sabir and Bano [16] introduced the

notion of prime ideals, semiprime ideals and strongly prime bi-ideals in ternary

semigroups. Choosuwn and Chinram in [2] gave some characterizations of minimal

and maximal quasi ideals in ternary semigroups. Iampan in paper [7] introduced a

concept of ideal extension in ternary semigroups. He also considered the connection

between an ideal extension and semilattice congruence in ternary semigroups. Kar

and Maity in paper [9] studied different types of ideals in ternary semigroups and

studied some properties of these ideals. In recent times much works are going on

quasi ideals and fuzzy ideals in ternary semigroups. Very recently Petchkaew and

Chinram [13] studied the minimality and maximality of n-ideals in n-ary

semigroups. Srinivasan Rao et al. [15] discussed the properties of maximal ideal

on compact connected topological ternary semigroups.

In this paper, we discuss ideals on a topological ternary semigroup. After giving

some preliminary results, we study minimal ideals, maximal ideals and principal

ideals of topological ternary semigroups. We express the kernel of topological

ternary semigroups in terms of union of minimal left ideals, union of minimal right

ideals and union of maximal ternary subgroups. Finally, we establish equivalences

between minimal left ideal, minimal ideal and maximal ternary subgroup on a

paratopological ternary group.

2 Preliminaries

Definition 2.1 [19] A non-empty set S together with a ternary operation, called

ternary multiplication and denoted by juxtaposition, is said to be a ternary
semigroup if ðabcÞde ¼ aðbcdÞe ¼ abðcdeÞ, for all a; b; c; d; e 2 S.

It is said to be an abelian ternary semigroup if x1x2x3 ¼ xrð1Þxrð2Þxrð3Þ for every

permutation r of f1; 2; 3g and x1; x2; x3 2 S.

Definition 2.2 Let S be a ternary semigroup. If there exists an element 0 2 S such

that 0xy ¼ x0y ¼ xy0 ¼ 0, for all x; y 2 S then ‘0’ is called the zero element or

simply the zero of the ternary semigroup S. In this case we say that S is a ternary

semigroup with zero.
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Definition 2.3 [19] An element a of a ternary semigroup S is called idempotent if

a3 ¼ a. A ternary semigroup S is called an idempotent ternary semigroup if each

element of S is idempotent.

The set of all idempotents of a ternary semigroup S is denoted by E(S).

Definition 2.4 [8] A ternary semigroup S admits an identity (or unital element) if

there exists an element e 2 S such that eex ¼ exe ¼ xee ¼ x, for all x 2 S. In this

case ‘e’ is called an identity element (or unital element) of the ternary semigroup S.

Definition 2.5 [8] A ternary semigroup S admits a bi-unital element if there exists

an element e 2 S such that eex ¼ xee ¼ x, for all x 2 S. In this case ‘e’ is called a bi-
unital element of the ternary semigroup S.

Definition 2.6 [8] A non-empty subset T of a ternary semigroup S is called a

ternary subsemigroup if t1t2t3 2 T , for all t1; t2; t3 2 T .

Definition 2.7 [19] A ternary semigroup S is said to be

(i) left cancellative (LC) if abx ¼ aby ¼) x ¼ y, for all a; b; x; y 2 S;

(ii) right cancellative (RC) if xab ¼ yab ¼) x ¼ y, for all a; b; x; y 2 S;

(iii) laterally cancellative (LLC) if axb ¼ ayb ¼) x ¼ y, for all a; b; x; y 2 S;

(iv) cancellative if S is left, right and laterally cancellative.

Definition 2.8 [8] A ternary semigroup S is called a ternary group if for a; b; c 2 S
the equations abx ¼ c; axb ¼ c and xab ¼ c have solutions in S.

From above definition, we can easily have the following characterization.

Result 2.9 [17] A non-empty subset A of a ternary semigroup S will be a ternary

subgroup of S iff xyA ¼ xAy ¼ Axy ¼ A, for all x; y 2 A.

Definition 2.10 [8] An element a of a ternary semigroup S is said to be invertible in
S if there exists an element b 2 S such that abx ¼ bax ¼ xab ¼ xba ¼ x, for all

x 2 S. Then b is called the inverse of a (it is unique, if exists).

Theorem 2.11 A ternary subsemigroup T of a ternary semigroup S is a ternary
subgroup of S iff every element of T has an inverse in T.

This theorem is an easy consequence of equivalent conditions of Theorem 3.9 of

[6].

Definition 2.12 [19] A non-empty subset A of a ternary semigroup S is called a left
(right, lateral, two sided) ideal of S if SSA � A (respectively ASS � A; SAS � A and

SSA [ ASS [ SSASS � AÞ. If A is a left ideal, right ideal and lateral ideal, then A is

called an ideal of S.

Definition 2.13 A minimal left (right) ideal of a ternary semigroup S is a left (right)

ideal containing no other left (right) ideal of S. We denote by LðSÞ and RðSÞ
respectively the collections of all minimal left ideals and minimal right ideals of S.
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Definition 2.14 A minimal ideal of ternary semigroup S is an ideal that contains no

other proper ideal of S.

3 Ideals on a topological ternary semigroup

In this section we discuss ideals in topological ternary semigroups. For this we need

the following definition:

Definition 3.1 [15] A ternary semigroup S is said to be a topological ternary
semigroup if there exists a Hausdorff topology on S such that the ternary

multiplication
S� S� S �! S
ðx; y; zÞ �! xyz

�
is continuous, S� S� S being equipped with the

product topology.

Now we are in a position to discuss ideals in topological ternary semigroups.

First we discuss a few elementary results related to ternary semigroups that will be

required later on.

Definition 3.2 [19] Left ideal, right ideal, lateral ideal, two sided ideal and ideal

generated by a non-empty subset A of a ternary semigroup S is defined as follows:

LðAÞ ¼ A [ SSA;RðAÞ ¼ A [ ASS;MðAÞ ¼ A [ SAS [ SSASS; TðAÞ ¼ A [ SSA[
ASS [ SSASS; JðAÞ ¼ A [ SSA [ ASS [ SAS [ SSASS.

In particular if A is a singleton set say fag then we call it as ideal generated by an

element a. It is called principal ideal generated by the element a and is denoted by

J(a).

Theorem 3.3 Let S be a ternary semigroup, L be a left ideal, R be a right ideal,
M be a lateral ideal, I and J be two ideals, G be a ternary subgroup of S and A be a
non-empty subset of S, then:

(a) SSA is a left ideal, ASS is a right ideal and SAS [ SSASS is a lateral ideal as

well as an ideal of S;

(b) RML � R \M \ L and hence R \M \ L 6¼ ;;

(c) I \ J is an ideal of S;

(d) if G \ I 6¼ ;, then G � I;
(e) if J is a minimal ideal then J ¼ JðxÞ for all x 2 J;

(f) if I and J are two minimal ideals then I ¼ J;

(g) if I is a ternary subgroup of S, then I is a minimal ideal of S.

Proof

(a) Follows from Definition 2.12.

(b) We have that RML � RSS � R. Similarly RML � SMS � M and RML � L.

Therefore RML � R \M \ L. Hence R \M \ L 6¼ ;.

(c) I \ J is non-empty because ISJ � I \ J. Now SðI \ JÞS � SIS � I and

SðI \ JÞS � SJS � J, since I and J are two ideals of S and so lateral ideals

too. These two imply that SðI \ JÞS � I \ J. This implies that I \ J is a lateral
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ideal of S. Similarly we can show that I \ J is also a left ideal and a right ideal

of S. Hence I \ J is an ideal of S.

(d) Let a 2 G \ I. Since G is a ternary group, a�1 exists in G [by Theorem 2.11].

Let x 2 G. Then we have that x ¼ xa�1a 2 SSI � I (as I is an ideal of S).

Since x 2 G is any arbitrary element, it follows that G � I.
(e) From Definition 3.2 we have that for x 2 J, JðxÞ ¼ fxg [ xSS [ SSx [ SxS [

SSxSS which is an ideal of S contained in J. Now minimality of J implies that

J ¼ JðxÞ.
(f) We have shown in (c) of this Theorem that I \ J is an ideal whenever I and J

are two ideals of S. Now I \ J 6¼ ; as ISJ � I \ J and ISJ 6¼ ; if I and J both

are non-void. But I \ J � I and I \ J � J imply that I \ J ¼ I ¼ J, since

I and J are two minimal ideals of S. Hence the result.

(g) Given that I is an ideal of S such that it is a ternary subgroup of S. Then for

any ideal J of S with I \ J 6¼ ;, we have that I � J by (d) of this Theorem.

Therefore I is a minimal ideal of S.

h

Next we discuss some property related to topology for ideals.

Theorem 3.4 Closure of an ideal in a topological ternary semigroup S is also an
ideal of S.

Proof Let I be an ideal of a topological ternary semigroup S. Then we have that

SSI � I, SIS � I and ISS � I. Now applying continuity of ternary multiplication we

have that SSI � SSI � I. Similarly we can show that ISS � I and SIS � I. Therefore

I is an ideal of S.

Note 3.5 It is to be noted that same is also true for left ideals, right ideals, lateral

ideals and two sided ideals of a topological ternary semigroup.

Now we discuss some results related to compact topological ternary semigroups.

Theorem 3.6 If S is a compact (connected) topological ternary semigroup (with
identity) and A is a compact (connected) subset of S, then J(A) is compact
(connected).

Proof We have that from Definition 3.2, JðAÞ ¼ A [ SSA [ ASS [ SAS [ SSASS.

Since S and A are compact and ternary multiplication is continuous, therefore each

of the following subsets SSA, ASS, SAS, and SSASS are compact and hence J(A) is

compact. On the other hand, if S is connected and has an identity e (say), and A is a

connected subset of S, then for all a 2 A, we have that a ¼ aee ¼ eeaee 2 SSASS.

Therefore A � SSASS. Now let p 2 SAS. Then p ¼ xay, where x; y 2 S and a 2 A.

But p ¼ epe ¼ eðxayÞe 2 SSASS ) SAS � SSASS. Similarly we can show that

ASS � SSASS, SSA � SSASS. Therefore JðAÞ ¼ SSASS. Hence that J(A) is con-

nected follows from the fact that S and A both are connected and ternary

multiplication is continuous.

.
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Corollary 3.7 Let S be a compact (connected) topological ternary semigroup (with
identity) and a 2 S. Then the principal ideal J(a) generated by a is compact
(connected).

Corollary 3.8 Let S be a compact topological ternary semigroup. Then principal
left ideals, principal right ideals, principal lateral ideals, principal two sided ideals
and principal ideals are closed. If e is any idempotent element of S, then eSe is a
closed ternary subsemigroup of S with e as bi-unital element.

Proof First part follows from Corollary 3.7 and the fact that compact subset of a

Hausdorff space is closed. Now we see that eSeeSeeSe � eSSSSSSSe �
eSSSe � eSe, as S is a ternary semigroup. Therefore eSe is a ternary subsemigroup

of S. Now for p 2 eSe, we have that eep ¼ eeese for some s 2 S with p ¼ ese.

Therefore eep ¼ ese ¼ p. Similarly we can show that pee ¼ p for all p 2 eSe.

Therefore for all p 2 eSe we have that eep ¼ pee ¼ p. Hence e is a bi-unital element

of eSe. Closedness follows from the continuity of ternary multiplication and

compactness of Hausdorff space S.

If S is a topological ternary semigroup and A � S, then we define J0ðAÞ as the

union of all ideals of S contained in A, provided those ideals exist. We see that if A
contains an ideal of S, then J0ðAÞ is an ideal of S. Otherwise J0ðAÞ ¼ ;. Similarly we

can define L0ðAÞ;R0ðAÞ;M0ðAÞ and T0ðAÞ respectively as the union of all left ideals,

right ideals, lateral ideals and two sided ideals of S contained in A. If L0ðAÞ
(respectively R0ðAÞ;M0ðAÞ; T0ðAÞ) is non-empty, then L0ðAÞ ( respectively

R0ðAÞ;M0ðAÞ; T0ðAÞ) is the largest left ( respectively right, lateral, two sided) ideal

of S contained in A. Next we discuss some properties of J0ðAÞ.

Theorem 3.9 Let S be a topological ternary semigroup and A � S with J0ðAÞ 6¼ ;.
Then

(a) A is closed in S implies J0ðAÞ is closed in S;

(b) S is compact and A is open in S implies J0ðAÞ is open in S.

Proof

(a) Let S be a topological ternary semigroup. From Theorem 3.4, we have that

closure of an ideal of S is again an ideal of S. Therefore J0ðAÞ is an ideal of S.

Since J0ðAÞ � A, we have that J0ðAÞ � A ¼ A, since A is closed in S. But

maximality of J0ðAÞ implies that J0ðAÞ ¼ J0ðAÞ. This implies that J0ðAÞ is

closed in S.

(b) If J0ðAÞ 6¼ ;, fix x 2 J0ðAÞ. Then JðxÞ ¼ fxg [ xSS [ SSx [ SxS [ SSxSS � A.

So there exists an open set W in S containing x such that JðWÞ � A, by

repeated application of continuity of ternary multiplication and compactness

of S and fxg. But x 2 W � JðWÞ � J0ðAÞ and hence J0ðAÞ is open in S.

h
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Corollary 3.10 Let S be a compact topological ternary semigroup, I be a proper
ideal of S and x 2 SnI. Then J0ðSnfxgÞ is an open proper ideal of S.

Proof Since Snfxg contains an ideal I, J0ðSnfxgÞ is an ideal of S. Now S being

Hausdorff, fxg is closed. So Snfxg is open. Therefore from Theorem 3.9(b),

J0ðSnfxgÞ is an open proper ideal of S. h

Definition 3.11 An ideal I of a ternary semigroup S is a maximal proper ideal of

S if I is a proper ideal of S and is not contained in other proper ideal of S.

Theorem 3.12 Let S be a compact topological ternary semigroup. Then each
proper ideal of S is contained in a maximal proper ideal of S and each maximal
proper ideal is open.

Proof Proof is exactly same as that is done in Theorem 1.33 of [1].

Same result holds for left, right, lateral and two sided ideals also.

Corollary 3.13 If S is a compact connected topological ternary semigroup and J is a
maximal proper ideal of S, then J is dense in S.

Proof By Theorem , J is open in S. Now �J is an ideal of S, by Theorem 3.4. Then

maximality of J implies that either J ¼ �J or �J ¼ S. If J ¼ �J, then J is a clopen

proper ideal of S, contradicting the fact that S is connected. Therefore �J ¼ S. In

other words, J is dense in S.

None of the above theorems do not ensure the existence of minimal left ideals,

minimal right ideals, minimal two sided ideals, minimal lateral ideals and minimal

ideals of a topological ternary semigroup. Following theorem ensures existence of

minimal ideals on a topological ternary semigroup.

Theorem 3.14 Let S be a compact topological ternary semigroup. Then each left
ideal of S contains at least one minimal left ideal of S and each minimal left ideal of
S is closed and hence compact.

Proof Let L be any left ideal of a compact topological ternary semigroup S and T
be the collection of all closed left ideals of S that are contained in L. First of all, for

each x 2 L, SSx is a left ideal of S, since SSðSSxÞ ¼ ðSSSÞSx � SSx (since S is a

ternary semigroup). Also SSx � SSL � L (since L is a left ideal of S). Again, SSx is

compact, since S and fxg being compact, S� S� fxg is compact and continuous

image of a compact set is compact. So S being Hausdorff, SSx is closed. Therefore

T is non-empty.

We introduce partial ordering ‘� ’ on T by : for all L1; L2 2 T, L1 � L2 if

L2 � L1. Consider a linearly ordered subcollection fTig of T. Then
\
i

Ti is non-

empty (since S is compact) and hence is a left ideal in L. Therefore fTig has a

lower bound in T. So by Zorn’s lemma, there exists a minimal element L0 (say) in

T.

Let L3 be a left ideal of S contained in L0 and let x 2 L3. Then SSx is a closed left

ideal of S contained in L. Also we note that SSx � SSL3 � L3 � L0. So L0 being a
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minimal element in T, we have that SSx ¼ L0 ¼ L3. Thus L0 is a minimal left ideal

of S. Since L0 2 T, it is closed in S. Then compactness of S implies L0 is compact.

This completes the proof. h

Note 3.15 It is to be noted that same results can be obtained for right ideals, lateral

ideals and ideals also.

4 Kernel of a topological ternary semigroup

We begin with the following definition:

Definition 4.1 The intersection of all ideals of a ternary semigroup S, if it is non-

empty, is called the kernel of S. We denote it by K. It is to be noted that kernel is the

smallest ideal of S.

In this section we discuss about kernel—its algebraic expression, characteriza-

tions and some other results related to it. Again, if a ternary semigroup contains a

zero, then K only contains a zero. The ternary semigroups having ternary subgroups

and minimal ideals are frequently useful. The following theorem gives us a

sufficient condition that kernel is a ternary subgroup of a ternary semigroup S.

Theorem 4.2 Let S be a ternary semigroup such that the kernel K is a minimal ideal
and K � ZðSÞ, where ZðSÞ ¼ fx 2 S : xyz ¼ xzy ¼ yxz ¼ yzx ¼ zxy ¼ zyx;
8 y; z 2 Sg. Then K is a ternary subgroup of S.

Proof Let x; y 2 K. Then for p; q 2 S we have that pqðxyKÞ ¼
ðpqxÞyK ¼ xðpqyÞK ¼ xyðpqKÞ � xyK, since K � ZðSÞ and K is an ideal of S.

Since p; q 2 S are any two arbitrary elements, we have that SSðxyKÞ � xyK.

Therefore, xyK is a left ideal of S. Similarly we can show that xyK is a right ideal of

S. Now let x; y 2 K and p; q 2 S be any two arbitrary elements. Then

pðxyKÞq ¼ ðpxyÞKq ¼ xyðpKqÞ � xyðSKSÞ � xyK, since K � ZðSÞ and K is a

lateral ideal. Since p; q 2 S are any two arbitrary elements, we have that SðxyKÞS �
xyK and therefore, xyK is a lateral ideal of S. Hence xyK is an ideal of S. Now

xyK � SSK � K, since K is an ideal of S. So minimality of K ensures that xyK ¼ K.

Similarly we can show that xKy ¼ Kxy ¼ K. Therefore for all x; y 2 K, we have that

xyK ¼ xKy ¼ Kxy ¼ K. Hence by Result 2.9, K is a ternary subgroup of S. h

Corollary 4.3 If S is an abelian ternary semigroup such that the kernel K is a
minimal ideal, then K is a ternary subgroup of S.

Our next result is an important one. It will be required later to express kernel in

different ways. The result is available in [18]. Here we present an alternative proof.

Theorem 4.4 Let S be a ternary semigroup with kernel K. Also let us assume that
K� is the intersection of all two sided ideals of S and K� 6¼ ;. Then K ¼ K�.

Proof We can easily show that K� is a two sided ideal of S. Also we know that K is

an ideal of S. Now is easy to verify that K� is a ternary subsemigroup of S. It follows

from definitions of K and K� that K� � K. So assumption that K� 6¼ ; implies that
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K 6¼ ;. So K is a minimal ideal of S. Now K� � K implies that SK�S � SKS � K, as

K is an ideal of S. We now consider the set K� [ SK�S. Then

SSðK� [ SK�SÞ ¼ SSK� [ SSSK�S � K� [ SK�S. Therefore K� [ SK�S is a left

ideal of S. Similarly we can show that K� [ SK�S is a right ideal of S. Now

SðK� [ SK�SÞS ¼ SK�S [ SSK�SS � SK�S [ K�, as K� is a two sided ideal of S.

Hence K� [ SK�S is a lateral ideal of S. Therefore it is an ideal of S. Now K is

minimal implies that K � K� [ SK�S. Again it is easy to verify that SK�S is a two

sided ideal of S. Therefore K� � SK�S. Hence K � SK�S. Already we have proved

that SK�S � K. Therefore we have that K ¼ SK�S. Again K ¼ SK�S implies that

SKS ¼ SSK�SS � K�. Again SKS is a two sided ideal of S. Therefore K� � SKS. So

K� ¼ SKS. Now K� � K implies that SK�S � SKS which implies that K � K�.
Hence K ¼ K�.

In the following theorem we give expressions of minimal left ideals, minimal

right ideals and express K� in terms of these ideals.

Theorem 4.5 Let S be a topological ternary semigroup that has a minimal left ideal
and a minimal right ideal. Then the following results hold:

(a) if A1 and A2 both are either in LðSÞ or in RðSÞ with A1 \ A2 6¼ ;, then

A1 ¼ A2;

(b) if L 2 LðSÞ, then LLx ¼ SSx ¼ L; 8x 2 L; if R 2 RðSÞ then

xRR ¼ xSS ¼ R; 8x 2 R;

(c) S has a minimal two sided ideal K� and

K� ¼ [fL : L 2 LðSÞg ¼ [fR : R 2 RðSÞg.

Proof

(a) If A1 and A2 are in LðSÞ with A1 \ A2 6¼ ;, then we have shown in 3.3(c), that

A1 \ A2 is a left ideal of S. Also A1 \ A2 � A1 and A1 \ A2 � A2. Now

minimality of A1 and A2 implies that A1 ¼ A1 \ A2 ¼ A2.

(b) Let us assume that L 2 LðSÞ and x 2 L. Then LLx is a left ideal of S which is

contained in L. Now LLx � SSx � SSL � L. Also SSx is a left ideal of S. So

minimality of L implies that LLx ¼ SSx ¼ L; 8x 2 L . Similarly we can show

that xRR ¼ xSS ¼ R; 8x 2 R.

(c) Let L 2 LðSÞ and x 2 S. Then LLx is a left ideal of S since,

SSðLLxÞ ¼ ðSSLÞLx � LLx. Also we will show that LLx 2 LðSÞ. If possible

let L1 be a non-empty left ideal of S properly contained in LLx. Consider the

set L \ fa : abx 2 L1 for some b 2 Lg ¼ L \ P (say), where

P ¼ fa : abx 2 L1 for some b 2 Lg. Then P is non-empty because L1 is

non-empty. Then we claim that L \ P is a left ideal of S properly contained in

L. To prove it, let us assume that s1; s2 2 S and a 2 P. Then there exists

b 2 L such that abx 2 L1 with x 2 S. Then s1s2a 2 SSL � L and

s1s2abx 2 SSL1 � L1. Since s1; s2 2 S are any two arbitrary elements and a 2
P it follows that SSP � P. Hence P is a left ideal of S properly contained in L
which contradicts minimality of L. Therefore [fLLx : x 2 Sg ¼ LLS is a

union of minimal left ideals. Now it is easy to show that LLS is a two sided

ideal of S. Let I be any two sided ideal of S. Then IIL � SSL � L. Also
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IIL � ISS � I. Again IIL is a left ideal of S. Therefore L ¼ IIL � I. Thus we

see that for each L 2 LðSÞ, L � I, where I is any two sided ideal of S. Thus

we have that LLS � ISS � I for every two sided ideal I of S. Since I is any

arbitrary two sided ideal of S, it follows that LLS ¼ [fLLx : x 2 Sg is the

minimal two sided ideal of S which is K� by definition. Therefore

K� ¼ LLS ¼ [fLLx : x 2 Sg. Thus from (a), L2 ¼ LLx for some x 2 S. Thus

we have that K� ¼ [fL : L 2 LðSÞg. Similarly we can show that

K� ¼ [fR : R 2 RðSÞg.

h

Remark 4.6 From Theorems 4.4 and 4.5 (c), we can replace K� by K which gives

algebraic expression of K.

Already we have mentioned in Note 3.15, that a compact topological ternary

semigroup contains a minimal ideal. Here we can prove it using Remark 4.6 and

Theorem 4.5, which is given below as a corollary.

Corollary 4.7 A compact topological ternary semigroup contains a minimal ideal,
and hence, the kernel is non-empty.

Proof Let S be a compact topological ternary semigroup. Since S is a left ideal of

itself, by Theorem 3.14, S contains a minimal left ideal. Similarly using Note 3.15,

we can say that S also contains a minimal right ideal. Since S contains a minimal left

ideal and a minimal right ideal, by Theorem 4.5 (c), S contains a minimal two sided

ideal K�. But from Theorem 4.4, we have that K ¼ K�. Since K is the smallest ideal,

first part is proved. Also K is non-empty because it contains at least one minimal left

ideal and at least one minimal right ideal. h

Remark 4.8 It is to be noted that compactness is an essential condition for existence

of minimal ideal. If this condition is not satisfied then the theorem is no longer valid.

Consider the set 2Zþ 1 of all odd integers with usual addition and equipped with

the discrete topology. Then it is easy to see that it is a non-compact topological

ternary semigroup without minimal ideal.

Now we characterize kernel. For this reason we need the following lemma.

Lemma 4.9 Let S be a ternary semigroup and e 2 EðSÞ. Then
(a) e is a bi-unital element of eSe;
(b) eSe ¼ eSS

T
SSe.

Proof

(a) Let e be any idempotent element of a ternary semigroup S. Let x 2 eSe. Then

there exists s 2 S such that x ¼ ese. Now eex ¼ eeðeseÞ ¼ ðeeeÞse ¼ ese ¼ x.

Therefore e is a left identity element for eSe. Similarly we can show that e is a

right identity element for eSe. Hence e is a bi-unital element of eSe.

(b) For any element p 2 eSe, we have that p ¼ es1e for some s1 2 S ) p 2 eSS.

Similarly p 2 eSe ) p 2 SSe. Hence p 2 eSS
T
SSe. Since p is any arbitrary

element of eSe, we have that eSe � eSS
T
SSe. Again let q 2 eSS

T
SSe. Then
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q ¼ es3s4 ¼ s5s6e for some s3; s4; s5; s6 2 S. Now

q ¼ es3s4 ¼ eees3s4 ¼ ees5s6e 2 eSSSe � eSe. Since q is any arbitrary

element of eSS
T
SSe we have that eSS

T
SSe � eSe. Therefore

eSe ¼ eSS
T
SSe.

Following theorem gives us a characterization of kernel of a topological ternary

semigroup.

Theorem 4.10 Suppose that S is a compact topological ternary semigroup with the
kernel K and there exists e 2 EðSÞ \ K. Then x 2 K if and only if xSx is a ternary
group containing x.

Proof Let us assume that xSx is a ternary group containing x. We now consider an

element a 2 K. Let us set y ¼ xax. Then y 2 xSx. Since xSx is a ternary group, then

we have that x ¼ xy�1y ¼ xy�1xax 2 SSSKS � SKS � K, as K is an ideal of S.

Therefore x 2 K as desired.

Conversely, assume that x 2 K. From Remark 4.6 and Theorem 4.5, there exists

L 2 LðSÞ and R 2 RðSÞ such that x 2 L \ R. Consider the set RSL. It is non-empty

because, x3 2 RSL. Also ðRSLÞ3 � RS7L � RSL by repeated application of ternary

semigroup property of S and the fact that R; L � S. Therefore RSL is a ternary

subsemigroup of S. Let a; b 2 RSL. Then a; b 2 RSS � R, as R is a right ideal of S.

Similarly a; b 2 L and hence a; b 2 R \ L. Now abR � RSS � R and abR is a right

ideal of S contained in R. So minimality of R implies abR ¼ R. Similarly we can

show that Lab ¼ L for all a; b 2 L. Now abðRSLÞ ¼ ðabRÞSL ¼ RSL. Similarly

ðRSLÞab ¼ RSL. Therefore abðRSLÞ ¼ ðRSLÞab ¼ RSL for all a; b 2 RSL. Again

aðRSLÞb � RSSSL � RSL. On the other hand

RSL ¼ abðRSLÞ ¼ abðRSLÞab ¼ aðbRSLaÞb � aðRSSSLÞb � aðRSLÞb. Therefore

we have that aðRSLÞb ¼ RSL. So abðRSLÞ ¼ aðRSLÞb ¼ ðRSLÞab ¼ RSL for all

a; b 2 RSL. Hence by Result 2.9, RSL is a ternary group. Since e 2 K, by

Theorem 4.5, L ¼ SSe and R ¼ eSS. Again by Lemma 4.9,

L \ R ¼ SSe \ eSS ¼ eSe � RSL. Also RSL � L \ R. Combining we have that

RSL ¼ eSe ¼ L \ R. Therefore x 2 RSL. Again xSx � RSL and for a 2 RSL, a ¼
xx�1ax�1x 2 xSx as x�1ax�1 2 S. Since a 2 RSL is any arbitrary element, it follows

that RSL � xSx. Combining these two contentions we have that RSL ¼ xSx. Hence

xSx is a ternary group containing x. h

Corollary 4.11 Suppose that S is a compact topological ternary semigroup with the
kernel K and e 2 EðSÞ \ K . Then K is a union of pairwise disjoint ternary
subgroups of S.

Proof By Theorem 4.5(c) and Remark 4.6, x 2 K , x 2 L and x 2 R for some

L 2 LðSÞ and R 2 RðSÞ. Therefore K ¼
S
fL \ R : L 2 LðSÞ and R 2 RðSÞg.

Let us assume that L1; L2 2 LðSÞ and R1;R2 2 RðSÞ. According to the proof of

Theorem 4.10, L1 \ R1 and L2 \ R2 are two ternary subgroups of S. If possible let

x 2 ðL1 \ R1Þ \ ðL2 \ R2Þ. Then x 2 L1 \ L2 and x 2 R1 \ R2. But L1 \ L2 is a left

ideal of S and L1 \ L2 is contained in L1 and L2. But minimality of L1 and L2 imply
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L1 ¼ L1 \ L2 ¼ L2. Similarly we can show that R1 ¼ R2. Hence L1 \ R1 ¼ L2 \ R2.

Hence the result. h

Corollary 4.12 Suppose that S is a compact topological ternary semigroup with the
kernel K and e 2 K. Then SSe and eSS are respectively minimal left ideal and
minimal right ideal of S.

Proof Given that K is the kernel of S with e 2 K. Now SSe is a left ideal of S. Let us

assume that L is a left ideal of S contained in SSe. Now we consider x 2 L. Also

e 2 K implies that eSe is a ternary group containing e [by Theorem 4.10]. It is to be

noted that e is a bi-unital element of eSe [by Lemma 4.9]. Now exe 2 eSe. So it has

an inverse, say, y in eSe. Then for a; b 2 S, we have that abe ¼ abyðexeÞe ¼
abyeðeexeeÞ ¼ abyex 2 SSSSL � SSL � L (applying cancellation property), as L is

a left ideal and x 2 L. Now abe 2 SSe ) SSe � L. Hence SSe ¼ L. Similarly we

can show that eSS ¼ R is a minimal right ideal of S. h

In the beginning of this section it is mentioned when kernel becomes a ternary

group. Here is another result that also shows when kernel K becomes a ternary

group.

Theorem 4.13 Suppose that S is a compact topological ternary semigroup with
kernel K and there exists e 2 EðSÞ \ K. Then the following conditions are
equivalent:

(a) K is a ternary group;

(b) S has only one minimal left ideal and one minimal right ideal.

Proof ðaÞ ) ðbÞ Let us assume that K is a ternary group with e 2 K. Then we have

that from Corollary 4.12, L ¼ SSe is a minimal left ideal and R ¼ eSS is a minimal

right ideal of S. Now SSe � SSK � K as e 2 K and K is an ideal of S. Again let us

assume that p 2 K is any element. Since K is a ternary group and e 2 K, e is a bi-

unital element of K [For any element x 2 K, ee3x ¼ eex ) eeðeexÞ ¼
eex ) eex ¼ x, applying left cancellation property of K. So e is a left identity of

K. Similarly we can show that e is a right identity of S. So e is a bi-unital element of

K.]. Then we have that x ¼ xee 2 SSe. Since x 2 K is any arbitrary element, it

follows that K � SSe. Therefore K ¼ SSe. So SSe is the only left ideal of S.

Similarly we can show that eSS is the only minimal right ideal of S with K ¼ eSS.

Hence the proof.

ðbÞ ) ðaÞ Let us assume that S has only one minimal left ideal L and one

minimal right ideal R. But K ¼ [fL : L 2 LðSÞg ¼ [fR : R 2 RðSÞg by Remark

4.6 and Theorem 4.5. Then we have that K ¼ L ¼ R ¼ L \ R and by proof of

Theorem 4.10, L \ R is a ternary group. Thus K is a ternary group. h

It is well known that idempotent elements play important role in topological

ternary semigroup theory. Here we state necessary and sufficient condition that

kernel of a topological ternary semigroup S contains idempotent elements of S.

Theorem 4.14 Let S be a compact topological ternary semigroup and e 2 EðSÞ.
Then the following conditions are equivalent:

21 Page 12 of 15 S. Samanta et al.



ðaÞ K ¼ SeS;
ðbÞ e belongs to K;
ðcÞ eSe is a ternary group.

Proof ðaÞ , ðbÞ Let K ¼ SeS. Then it is obvious that e ¼ eee 2 SeS ¼ K.

Conversely, let e 2 K. Then SeS is an ideal of S, since SSðSeSÞ ¼ ðSSSÞeS � SeS,

ðSeSÞSS ¼ SeðSSSÞ � SeS and SðSeSÞS ¼ SðSeeeSÞS � SSSeSSS � SeS. Also SeS �
SKS � K as e 2 K and K is an ideal of S. But minimality of K implies that K ¼ SeS.

ðbÞ , ðcÞ Since S is a compact topological ternary semigroup and e 2 K,

according to Theorem 4.10, eSe is a ternary group containing e. On the other hand,

let eSe be a ternary group. Now from Lemma 4.9, eSe ¼ SSe \ eSS. Now from last

part of proof of Corollary 4.12, we have that SSe and eSS are respectively minimal

left and minimal right ideals of S each containing e. So by Theorem 4.5(c) and

Remark 4.6, we have that eSe � K. Therefore e 2 K.

In preliminaries section we defined LðSÞ and RðSÞ. In this section the kernel of a

ternary semigroup is defined. In next theorem, with the help of some additional

conditions (algebraic and topological), we obtain expressions of LðSÞ, RðSÞ and the

kernel. For this purpose we need the following definition.

Definition 4.15 [20] A topological ternary semigroup S which is also a ternary

group is called a paratopological ternary group.

Theorem 4.16 Let S be a compact paratopological ternary group. Also let
L 2 LðSÞ, R 2 RðSÞ and e 2 L \ R be an idempotent element. Then

(a) L \ R is a ternary subgroup of S;

(b) LðSÞ ¼ fSSe : e 2 K \ EðSÞg, RðSÞ ¼ feSS : e 2 K \ EðSÞg;

(c) if H(e) is a maximal ternary subgroup of S containing e, then HðeÞ ¼ eSe and

K ¼
S
fHðeÞ : e 2 K \ EðSÞg.

Proof (a) Let us consider L 2 LðSÞ and R 2 RðSÞ. Then we have that

RSL � RSS � R. Similarly RSL � SSL � L. Then we have that RSL � R \ L.

Therefore L \ R is non-empty. Now for x; y; z 2 L \ R we have that xyz 2 L \ R.

Therefore L \ R is a ternary subsemigroup of S. Again for all x; y 2 L \ R we have

that xyðL \ RÞ � L \ R. Now let p 2 L \ R. Then p ¼ xyy�1x�1p 2 xyðL \ RÞ
because, y�1x�1p 2 SSL � L and y�1x�1p ¼ xx�1y�1x�1p 2 RSSSS � RSS � R.

Since p 2 L \ R is an arbitrary element, we have that L \ R � xyðL \ RÞ. Therefore

xyðL \ RÞ ¼ L \ R. Similarly we can show that ðL \ RÞxy ¼ L \ R. Again we have

that xðL \ RÞy � L \ R. On the other hand, let p 2 L \ R. Then we have that

p ¼ xx�1py�1y. Now x�1py�1 ¼ xx�1x�1py�1 2 RSSSS � RSS � R, since R is a

right ideal of S. Similarly we can show that x�1py�1 2 L. Therefore p 2 xðL \ RÞy.

Since p 2 L \ R is an arbitrary element, we have that L \ R � xðL \ RÞy. Since x, y
are any two arbitrary elements of L \ R, we have that

xyðL \ RÞ ¼ xðL \ RÞy ¼ ðL \ RÞxy ¼ L \ R, for all x; y 2 L \ R. Hence L \ R is

a ternary subgroup of S (by Result 2.9).

(b) From Theorem 4.5(b), if L 2 LðSÞ then L ¼ LLx ¼ SSx for all x 2 L. Given

that e 2 L \ R be an idempotent element. Now by Remark 4.6, e 2 K. Therefore
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e 2 K \ EðSÞ. Then we have that L ¼ LLe ¼ SSe. Similarly we can have that

R ¼ RRe ¼ SSe. Hence the result follows.

(c) We see that SSe is a left ideal of S and for e 2 L 2 LðSÞ we have that

SSe � SSL � L. Then SSe ¼ L. Now L \ R ¼ SSe \ eSS ¼ eSe. Therefore eSe is a

ternary subgroup of S, since L \ R is a ternary subgroup of S [by (a)]. Then

HðeÞ ¼ eHðeÞe � eSe ¼ L \ R. So HðeÞ ¼ L \ R ¼ eSe, e 2 K \ EðSÞ [by (b) and

maximality of H(e)]. Now from Corollary 4.11, K ¼
S
fL \ R : L 2 LðSÞ;R 2

RðSÞg and each L \ R is a ternary subgroup of S. Since HðeÞ ¼ L \ R, so

K ¼
S
fHðeÞ : e 2 K \ EðSÞg. h

We conclude by proving the equivalence of the following algebraic conditions on

a compact paratopological ternary group which shows the relationship between

minimal left ideal, minimal ideal and maximal ternary subgroup with the help of

previous results. It is to be noted that compactness condition is not used directly

throughout the proof. It is used to ensure the existence of a minimal left ideal and

the kernel in the theorem given below.

Theorem 4.17 Let S be a compact paratopological ternary group and e 2 EðSÞ.
Then the following conditions are equivalent:

(a) SSe is a minimal left ideal of S;

(b) SeS is the kernel of S;

(c) eSe is a maximal ternary subgroup of S.

Proof ðaÞ ) ðbÞ If SSe is a minimal left ideal of S, then we have that SSe � K, by

Theorem 4.5 and Remark 4.6. Obviously e 2 K. Now we note that SeS is an ideal of

S, since SSðSeSÞ ¼ ðSSSÞeS � SeS, as S is ternary semigroup; ðSeSÞSS � SeðSSSÞ �
SeS and SðSeSÞS ¼ SðSeeeSÞS � SðSSeSSÞS ¼ ðSSSÞeðSSSÞ � SeS. Again

SeS � SKS � K, as K is an ideal of S. Then minimality of K implies that

SeS ¼ K. Hence SeS is the smallest ideal of S.

ðbÞ ) ðcÞ Let SeS be the kernel of S. Therefore SeS ¼ K. Then we have that

e 2 K. Now from proof of Theorem 4.16 (c), we have that the kernel K is the union

of H(e) where HðeÞ ¼ eSe is a maximal ternary subgroup of S with e 2 K \ EðSÞ.
Hence eSe is a maximal ternary subgroup of S.

ðcÞ ) ðaÞ Suppose that eSe is a maximal ternary subgroup of S. Also let L be a

non-empty left ideal of S properly contained in SSe. We claim that L \ eSS is non-

empty. To justify this, if possible let us assume that L \ eSS ¼ ;. Then there exists a

proper subset M of SSe such that L [M ¼ SSe. Now eSe ¼ SSe \ eSS ¼ ðL [MÞ \
eSS ¼ ðL \ eSSÞ[ ðM \ eSSÞ ¼ ; [ ðM \ eSSÞ ¼ M \ eSS$SSe \ eSS ¼ eSe,

which is a contradiction. So our claim that L \ eSS is non-empty is justified. Let

a 2 L \ eSS. Then we have that a 2 SSe \ eSS. Again SSe \ eSS ¼ eSe [by Lemma

4.9(b)]. Now there exists an element a�1 2 eSe such that aa�1x ¼ x for all x 2 eSe,

as it is a ternary subgroup of S. This implies that x ¼ aa�1x ¼ xa�1a 2 SSL � L. In

particular e ¼ eaa�1 ¼ ea�1a 2 SSL � L. But any x 2 SSe implies that x ¼ xee 2
SSL � L ) SSe � L ) SSe ¼ L which is a contradiction. Therefore SSe is a

minimal left ideal of S. h
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