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Abstract
In this paper, we first give a new proof of the log-Minkowski inequality of general

planar convex bodies and then extend the Lp-Brunn–Minkowski inequality and Lp-

Minkowski inequality of o-symmetric planar convex bodies for p 2 ð0; 1Þ to /-
Brunn–Minkowski inequality and /-Minkowski inequality of general planar convex

bodies. As an application, a family of /-measures of asymmetry for planar convex

bodies is introduced.

Keywords Brunn–Minkowski inequality � Minkowski inequality � Mixed

volume � Measure of asymmetry

Mathematics Subject Classification 52A20 � 52A40

1 Introduction

The classical Brunn–Minkowski inequality for convex bodies (compact convex sets

with nonempty interiors) states that for convex bodies K, L in Euclidean n-space,
Rn, the volume of the bodies and of their Minkowski sum

K þ L ¼ fxþ y : x 2 and y 2 Lg, are related by

V K þ Lð Þ
1
n �VðKÞ

1
n þ VðLÞ

1
n; ð1Þ

with equality if and only if K and L are homothetic.
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The Brunn–Minkowski inequality has an equivalent formulation as for all real

k 2 ½0; 1�,

V ð1� kÞK þ kLð Þ�VðKÞ1�kVðLÞk; ð2Þ

and for k 2 ð0; 1Þ, there is equality if and only if K and L are translates.

The excellent survey article of Gardner [3] gives a comprehensive account of

various aspects and consequences of the Brunn–Minkowski inequality.

In the 1960s, Firey [2] introduced for p� 1 the so-called Minkowski–Firey Lp
sum of convex bodies that contain the origin in their interiors, and established the

Lp-Brunn–Minkowski inequality, which states as follows:

V ð1� kÞ � K þp k � L
� �p

n �ð1� kÞVðKÞ
p
n þ kVðLÞ

p
n; ð3Þ

with equality for k 2 ð0; 1Þ if and only if K and L are dilates.

In the mid-1990s, it was shown in Refs. [12, 13] that a study of the volume of Lp-
Minkowski addition leads to an Lp-Brunn–Minkowski theory. This theory has

expanded rapidly.

If K and L are convex bodies that contain the origin in their interiors and

0� k� 1 then the Minkowski–Firey Lp-combination (p[ 0), ð1� kÞ � K þp k � L, is
defined by

ð1� kÞ � K þp k � L ¼
\

u2Sn�1

fx 2 Rn : x � u� ð1� kÞhKðuÞp þ khLðuÞpð Þ1=pg: ð4Þ

It has been noticed that the Lp-Minkowski addition makes sense for all p[ 0.

The case p ¼ 0 is known as the log-Minkowski addition, ð1� kÞ � K þ0 k � L, of
convex bodies K and L that contain the origin in their interior, defined by

ð1� kÞ � K þ0 k � L ¼
\

u2Sn�1

fx 2 Rn : x � u� hKðuÞ1�khLðuÞkg: ð5Þ

In Ref. [1], Böröczky, Lutwak, Yang and Zhang conjectured the log-Brunn–

Minkowski inequality: If K and L are o-symmetric convex bodies in Rn, then for all

k 2 ½0; 1�,

V ð1� kÞ � K þ0 k � Lð Þ�VðKÞð1�kÞVðLÞk: ð6Þ

The log-Brunn–Minkowski inequality is stronger than the Lp-Brunn–Minkowski

inequality for p[ 0. It was shown in Ref. [1] that the log-Brunn–Minkowski

inequality is equivalent to the following log-Minkowski mixed volume inequality: If

K and L are o-symmetric convex bodies in Rn, then
Z

Sn�1

log
hL
hK

d �VK � 1

n
log

VðLÞ
VðKÞ : ð7Þ

Here �VK denotes the cone-volume probability measure of K.
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The planar case of the log-Brunn–Minkowski inequality and the equivalent log-

Brunn–Minkowski inequality were proved in Ref. [1].

Theorem 1.1 ([1]) If K and L are o-symmetric convex bodies in R2, then for all real
k 2 ½0; 1�,

V ð1� kÞ � K þ0 k � Lð Þ�VðKÞð1�kÞVðLÞk; ð8Þ

with equality for k 2 ð0; 1Þ if and only if K and L are dilates or K and L are

parallelograms with parallel sides.

Theorem 1.2 ([1]) If K and L are o-symmetric convex bodies in R2, then,
Z

S1
log

hL
hK

d �VK � 1

2
log

VðLÞ
VðKÞ ; ð9Þ

with equality if and only if K and L are dilates or K and L are parallelograms with

parallel sides.

It is easily seen from definition (4) that for fixed convex bodies K, L and fixed
k 2 ½0; 1�, the Lp-Minkowski–Firey combination ð1� kÞ � K þp k � L is increasing
with respect to set inclusion, as p increases, i.e., if 0� p� q,

ð1� kÞ � K þp k � L � ð1� kÞ � K þq k � L: ð10Þ

From (9), the Lp-Brunn–Minkowski inequality and the Lp-Minkowski inequality

were proved in Ref. [1] for p 2 ð0; 1Þ.

Theorem 1.3 ([1]) Suppose 0\p\1. If K and L are o-symmetric convex bodies in

R2, then for all real k 2 ½0; 1�,

V ð1� kÞ � K þp k � L
� �

�VðKÞð1�kÞVðLÞk; ð11Þ

with equality for k 2 ð0; 1Þ if and only if K ¼ L.

Theorem 1.4 ([1]) Suppose 0\p\1. If K and L are o-symmetric convex bodies in

R2, then for all k 2 ½0; 1�,
Z

S1

hL
hK

� �p

d �VK

� �1
p

� VðLÞ
VðKÞ

� �1
2

; ð12Þ

with equality for k 2 ð0; 1Þ if and only if K and L are dilates.

In Ref. [18], Ma gave an alternative proof of Theorem 1.2. Some results of the
log-Brunn–Minkowski inequality for n� 3; see Refs. [19, 21, 25].

There is a counterexample, showing that, if K is an o-centered cube and L is a
distinct translate of K, then (6) does not hold for general non-o-symmetric convex
bodies. By introducing the notion of ‘‘dilation position’’, Xi and Leng [23] proved
the log-Brunn–Minkowski inequality and the equivalent log-Minkowski mixed vol-
ume inequality for general planar convex bodies.
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Theorem 1.5 ([23]) If K and L are convex bodies in R2 with o 2 K \ L, and K, L
are in dilation position, then for all real k 2 ½0; 1�,

V ð1� kÞ � K þ0 k � Lð Þ�VðKÞð1�kÞVðLÞk; ð13Þ

with equality for k 2 ð0; 1Þ if and only if K and L are dilates or K and L are

parallelograms with parallel sides.

Theorem 1.6 ([24]) If K and L are convex bodies in R2 with o 2 K \ L, and K, L
are in dilation position, then

Z

S1
log

hL
hK

d �VK � 1

2
log

VðLÞ
VðKÞ ; ð14Þ

with equality if and only if K and L are dilates or K and L are parallelograms with

parallel sides.

The Orlicz–Brunn–Minkowski theory originated with the work of Lutwak et al.
[15, 16]. By introducing the Orlicz–Minkowski addition, Gardner, Hug and Weil
[4], and Xi et al. [24] proved the Orlicz–Brunn–Minkowski inequality and Orlicz–
Minkowski inequality. It is a natural extension of the Lp-Brunn–Minkowski theory

for p� 1. For dual Orlicz–Brunn–Minkowski theory see [5, 26].
Let U be the set of strictly increasing functions / : ð0;1Þ ! I � R which are

continuously differentiable on ð0;1Þ with positive derivative, and satisfy that

limt!1 /ðtÞ ¼ 1 and that log �/�1 is concave. Observe that whenever / 2 U is

convex, the composite function log �/�1 is concave. The collection of convex
functions from U shall be denoted by C.

Let k 2 ½0; 1� and / 2 U. For u 2 Sn�1, we define a function hkðuÞ as

hkðuÞ ¼ inffs[ 0 : ð1� kÞ/ hKðuÞ
s

� �
þ k/

hLðuÞ
s

� �
�/ð1Þg: ð15Þ

By the strict monotonicity of /, we have

/ð1Þ ¼ ð1� kÞ/ hKðuÞ
hkðuÞ

� �
þ k/

hLðuÞ
hkðuÞ

� �
: ð16Þ

The /-combination ð1� kÞ � K þ/ k � L of K; L 2 Kn
o is defined in Ref. [17] by

ð1� kÞ � K þ/ k � L ¼
\

u2Sn�1

fx 2 Rn : x � u� hkðuÞg: ð17Þ

Note that if /ðtÞ ¼ tp with p[ 0, then the /-combination reduces to the Lp-Min-

kowski combination. Further, if /ðtÞ ¼ a logðtÞða[ 0Þ, then we retrieve the log-
Minkowski combination. In Ref. [17], Lv proved the /-Minkowski inequality and /-
Brunn–Minkowski inequality for general functions / for o-symmetric planar convex
bodies K, L. If /ðtÞ ¼ tp; p 2 ð0; 1Þ, then the /-Minkowski inequality reduces to the
Lp-Minkowski inequality (12) and Lp-Brunn–Minkowski inequality (11).
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In this paper, we first present a new proof Theorem 1.6, and extend Theorems 1.3
and 1.4 from p 2 ð0; 1Þ and o-symmetric convex bodies K, Lto general case / and
general convex bodies K, L. More precisely, we have the following main results.

Theorem 1.7 Let / 2 U with / 6¼ a logða[ 0Þ, and K and L are planar convex
bodies containing the origin o in their interiors, and o 2 K \ L. If K and L are at a
dilation position, then

Z

S1
/

hL
hK

� �
d �VK �/

VðLÞ
1
2

VðKÞ
1
2

 !

; ð18Þ

with equality if and only if K and L are dilates.

Theorem 1.8 Let / 2 U, / 6¼ a logða[ 0Þ be concave on ð0;1Þ, and K and L are
planar convex bodies containing the origin o in their interiors, and o 2 K \ L. If K
and L are at a dilation position, then for all real k 2 ½0; 1�,

V ð1� kÞ � K þ/ k � L
� �

�VðKÞð1�kÞVðLÞk; ð19Þ

with equality for k 2 ð0; 1Þ if and only if K ¼ L.

2 Preliminaries

Let Kn be the class of convex bodies (compact convex sets with nonempty interiors)

in Rn, and let Kn
o be those sets in Kn containing the origin in their interiors.

The support function hK : Rn ! R, of compact convex subset K of Rn is defined

by hKðxÞ ¼ fx � y : y 2 Kg, for x 2 Rn, and uniquely determines the convex set.

A boundary point x 2 oK of the convex body K is said to have u 2 Sn�1 as one of

its outer unit normals provided x � u ¼ hKðuÞ. A boundary point is said to be singular

if it has more than one unit normal vector. It is well known that the set of singular

boundary points of a convex body has ðn� 1Þ-dimensional Hausdorff measure

Hn�1 equal to 0.

Let K 2 Kn and mK : oK ! Sn�1 the generalized Gauss map. For each Borel set

x � Sn�1, the inverse spherical image m�1
K ðxÞ of x is the set of all boundary points

of K which have an outer unit normal belonging to the set x. The surface area

measure SK of K 2 Kn is defined by

SKðxÞ ¼ Hn�1ðm�1
K ðxÞÞ; ð20Þ

for each Borel set x � Sn�1, i.e., SKðxÞ is the ðn� 1Þ-dimensional Hausdorff

measure of the set of all points on oK that have a unit normal that lies in x.
The Hausdorff distance dHðK; LÞ of compact convex sets K, L is defined by

dHðK; LÞ ¼ khK � hLk1. A sequence of convex bodies, Ki, is said to converge to a

body K, i.e., limi!1 Ki ¼ K if dHðKi;KÞ ! 0. If K is a convex body and Ki is a

sequence of convex bodies then
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lim
i!1

Ki ¼ K ) lim
i!1

SKi
¼ SK ; weakly: ð21Þ

The cone-volume measure VK of K 2 Kn is a Borel measure on the unit sphere

Sn�1 defined for a Borel set x � Sn�1 by

VKðxÞ ¼
1

n

Z

x2m�1
K ðxÞ

x � mKðxÞdHn�1ðxÞ; ð22Þ

and thus

dVK ¼ 1

n
hKdSK : ð23Þ

Since,

VðKÞ ¼ 1

n

Z

u2Sn�1

hKðuÞdSKðuÞ; ð24Þ

we can define the cone-volume probability measure �VK of K by

�VK ¼ 1

VðKÞVK : ð25Þ

Suppose K; L 2 Kn
o. For p 6¼ 0, the Lp-mixed volume VpðK; LÞ can be defined as

VpðK; LÞ ¼
Z

u2Sn�1

hL
hK

� �p

dVK : ð26Þ

The normalized Lp-mixed volume �VpðK; LÞ was first defined in Ref. [14],

�VpðK; LÞ ¼
Z

u2Sn�1

hL
hK

� �p

d �VK

� �1
p

: ð27Þ

For p ¼ 1, we define

�V1ðK; LÞ ¼ maxfhL=hK : u 2 suppSKg; ð28Þ

and we have

lim
p!1

�VpðK; LÞ ¼ �V1ðK; LÞ: ð29Þ

Letting p ! 0 gives

�V0ðK; LÞ ¼ exp

Z

u2Sn�1

log
hL
hK

d �VK

� �
; ð30Þ

which is the normalized log-mixed volume of K and L. From Jesen’s inequality we

know that p 7! �VpðK; LÞ is strictly monotone increasing, unless hL=hK is constant on

suppSK .
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Suppose K; L 2 Kn. The inradius r(K, L) and R(K, L) of K with respect to L are

defined by

rðK; LÞ ¼ supft[ 0 : xþ tL � K and x 2 Rng;

RðK; LÞ ¼ infft[ 0 : xþ tL 	 K and x 2 Rng:

From the definition, it follows that rðK; LÞ ¼ 1=RðL;KÞ.
If K, L happen to be o-symmetric convex bodies, then clearly

rðK; LÞ ¼ min
u2Sn�1

hKðuÞ
hLðuÞ

and RðK; LÞ ¼ max
u2Sn�1

hKðuÞ
hLðuÞ

: ð31Þ

Let K; L 2 Kn. K and L are said to be at a dilation position, if o 2 K \ L, and

rðK; LÞL � K � RðK; LÞL: ð32Þ

The definition and some properties of dilation position were first given by Xi and

Leng [23]. It is easy to prove that if K, L are o-symmetric convex bodies, then K and

L are at a dilation position.

In general, we refer the reader to [20] for standard notation concerning convex

bodies.

3 A new proof of Theorem 1.6

In Ref. [18], Ma gave a proof of Theorem 1.1. In the following, we demonstrate an

alternate proof of Theorem 1.5 by employing Ma’s approach [18]. The following

lemma is needed in our proof.

Lemma 3.1 ([23]) Let K; L 2 K2 with o 2 K \ L. If K and L are at a dilation
position, then

Z

S1

hK
hL

d �VK � VðL;KÞ
VðLÞ ; ð33Þ

with equality if and only if K and L are dilates, or K and L are parallelograms with

parallel sides.

We repeat the statement of Theorem 1.6, and present our approach.

Theorem 3.2 ([23]) If K and L are convex bodies in R2 with o 2 K \ L, and K, L
are at a dilation position, then

Z

S1
log

hL
hK

d �VK � 1

2
log

VðLÞ
VðKÞ ; ð34Þ

with equality if and only if K and L are dilates or K and L are parallelograms with

parallel sides.
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Proof Set

FðtÞ ¼
Z

S1
log

hLþtK

hK

� �
d �VK � 1

2
log

VðLþ tKÞ
VðKÞ

� �
; t 2 ½0;1Þ: ð35Þ

Since hLþtK ¼ hL þ thK and VðLþ tKÞ ¼ VðLÞ þ 2VðL;KÞt þ VðKÞt2, we have

F0ðtÞ ¼
Z

S1

hK
hL þ thK

d �VK � ðVðL;KÞ þ VðKÞtÞ
VðLÞ þ 2VðL;KÞt þ VðKÞt2

¼
Z

S1

hK
hLþtK

d �VK � VðLþ tK;KÞ
VðLþ tKÞ :

By Lemma 5.2 of Ref. [23], we have K and Lþ tK are at a dilation position.

Therefore, we get F0ðtÞ� 0 from Lemma3.1, which implies that F(t) is decreasing
on ½0;1Þ.

By mean value theorem for integrals, there exists u0 2 S1 such thatZ

S1
log

hLþtK

hK

� �
d �VK ¼ log

hLþtKðu0Þ
hKðu0Þ

� �
: ð36Þ

Let t ! 1, then

FðtÞ ¼ log
hLþtKðu0Þ
hKðu0Þ

� �
� 1

2
log

VðLþ tKÞ
VðKÞ

� �

¼ log
hLðu0Þ þ thKðu0Þ

hKðu0Þ
� VðKÞ

1
2

VðLþ tKÞ
1
2

 !

¼ log
hLðu0Þ þ thKðu0Þ

hKðu0Þ
� VðKÞ

1
2

ðVðLÞ þ 2tVðL;KÞ þ t2VðKÞÞ
1
2

 !

!0:

Therefore, FðtÞ� 0 for t 2 ½0;1Þ. In particular, Fð0Þ� 0, which impliesZ

S1
log

hL
hK

d �VK � 1

2
log

VðLÞ
VðKÞ :

If the equality holds in (34), then Fð0Þ ¼ 0, which implies FðtÞ 
 0 for t 2 ½0;1Þ.
Therefore, F0ðtÞ 
 0 for all t 2 ½0;1Þ. By Lemma 3.1, we have K and Lþ tK are

dilates, or K and Lþ tK are parallelograms with parallel sides. So, K and L are

dilates, or K and L are parallelograms with parallel sides. Conversely, if K and L
are dilates, or K and L are parallelograms with parallel sides, the equality of (34)

holds. h

Remark 3.3 In Ref. [23], Xi and Leng proved that Theorems 1.5 and 1.6 are

equivalent.
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4 Proofs of Theorems 1.7 and 1.8

Suppose K; L 2 Kn
o. For / 2 U, the /-mixed volume V/ðK; LÞ was defined in Ref.

[17] by

V/ðK; LÞ ¼
Z

Sn�1

/
hL
hK

� �
dVK : ð37Þ

The normalized /-mixed volume �V/ðK; LÞ of K; L 2 Kn
o was defined in Ref. [17]

by

�V/ðK; LÞ ¼ /�1

Z

Sn�1

/
hL
hK

� �
d �VK

� �
: ð38Þ

In particular, if /ðtÞ ¼ tp with p[ 0, the normalized /-mixed volume �V/ðK; LÞ
reduces to the normalized Lp-mixed volume �VpðK;LÞ.

We repeat the statements of Theorems 1.7 and 1.8.

Theorem 4.1 Suppose that / 2 U with / 6¼ a logða[ 0Þ, and K; L 2 K2
o with

o 2 K \ L. If K and L are at a dilation position, then

Z

S1
/

hL
hK

� �
d �VK �/

VðLÞ
1
2

VðKÞ
1
2

 !

; ð39Þ

with equality if and only if K and L are dilates.

Proof From the log-concavity of /�1, we have
Z

Sn�1

log
hL
hK

d �VK � log �/�1

Z

Sn�1

/
hL
hK

� �
d �VK

� �
; ð40Þ

which is equivalent to

exp

Z

Sn�1

log
hL
hK

d �VK

� �
�/�1

Z

Sn�1

/
hL
hK

� �
d �VK

� �
: ð41Þ

That is
�V0ðK; LÞ� �V/ðK; LÞ; ð42Þ

with equality if and only if hL=hK is constant on suppSK . From (14), we have

�V/ðK; LÞ�
VðLÞ

1
2

VðKÞ
1
2

; ð43Þ

which leads to (39). From the equality condition of (14) and (42), we have equality

holds in (39) if and only if K and L are dilates. h
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Theorem 4.2 Suppose that / 2 U, / 6¼ a logða[ 0Þ be concave on ð0;1Þ, and
K; L 2 K2

o with o 2 K \ L. If K and L are at a dilation position, then for all real
k 2 ½0; 1�,

V ð1� kÞ � K þ/ k � L
� �

�VðKÞð1�kÞVðLÞk; ð44Þ

with equality for k 2 ð0; 1Þ if and only if K ¼ L.

Proof Set Qk ¼ ð1� kÞ � K þ/ k � L. From (16) and the concavity of /, we have

/ð1Þ ¼ ð1� kÞ/ hKðuÞ
hkðuÞ

� �
þ k/

hLðuÞ
hkðuÞ

� �
�/

ð1� kÞhK þ khL
hk

� �
: ð45Þ

By the monotone property of /, we have
hk �ð1� kÞhK þ khL: ð46Þ

From (17), we have hk ¼ hQk with respect to the surface area measure SQk .

Hence, we have
Qk � ð1� kÞK þ kL: ð47Þ

On the other hand, from (16), we have

1 ¼ /�1 ð1� kÞ/ hKðuÞ
hkðuÞ

� �
þ k/

hLðuÞ
hkðuÞ

� �� �
: ð48Þ

From the log-concavity of /, we have

0 ¼ ðlog �/�1Þ ð1� kÞ/ hKðuÞ
hkðuÞ

� �
þ k/

hLðuÞ
hkðuÞ

� �� �

�ð1� kÞ log hKðuÞ
hkðuÞ

þ k log
hLðuÞ
hkðuÞ

¼ log
h1�k
K hkL
hk

;

which implies h1�k
K hkL � hk. Hence,

ð1� kÞ � K þ0 k � L � Qk: ð49Þ

From (13), we have

VðQkÞ�Vðð1� kÞ � K þ0 k � LÞ�VðKÞ1�kVðLÞk: ð50Þ

If equality holds in (44), then Vðð1� kÞ � K þ0 k � LÞ ¼ VðKÞ1�kVðLÞk. By the

equality condition of (13), we have K and L are dilates. In addition, from

VðQkÞ ¼ Vðð1� kÞ � K þ0 k � LÞ, we have ð1� kÞ � K þ0 k � L ¼ Qk, which implies

K ¼ L. h
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We can get the Lp-Minkowski inequality and Lp-Brunn–Minkowski inequality

for general planar convex bodies by setting /ðtÞ ¼ tp in Theorems 4.1 and 4.2.

Corollary 4.3 Suppose that 0\p\1, and K; L 2 K2
o with o 2 K \ L. If K and L are

at a dilation position, then

Z

S1

hL
hK

� �p

d �VK

� �1
p

� VðLÞ
VðKÞ

� �1
2

; ð51Þ

with equality if and only if K and L are dilates.

Corollary 4.4 Suppose that 0\p\1, and K; L 2 K2
o with o 2 K \ L. If K and L are

at a dilation position, then for all real k 2 ½0; 1�,

V ð1� kÞ � K þ/ k � L
� �

�VðKÞð1�kÞVðLÞk; ð52Þ

with equality for k 2 ð0; 1Þ if and only if K ¼ L.

5 /-Minkowski measure of asymmetry

In the well-known paper [6], abstracting from some extremal problems arising from

geometry or other mathematical branches and from the previous work of many

mathematicians, Grünbaum formulated a concept of measures of asymmetry (or

symmetry) for convex bodies which, among other applications, can be used to

describe how far a convex set is from a (centrally) symmetric one. Since then, the

properties and applications of these known asymmetry measures are studied by

many mathematicians (see [7–11, 22] and references therein).

In Ref. [7], Guo introduced a family of measures of (central) asymmetry, the so-

called p-measures of asymmetry, which have the well-known Minkowski measure

of asymmetry as a special case, and showed some similar properties of the p-
measures to the Minkowski one. In Ref. [11], Jin, Leng and Guo extended the p-
Minkowski measure of asymmetry to an Orlicz version. In addition, Jin et al. [11]

showed that p ð1� p�1Þ-Minkowski measures of asymmetry are closely related

to Lp-mixed volumes. More precisely, we can define p ð1� p�1Þ-Minkowski

measures of asymmetry by Lp-mixed volumes. In Ref. [9], Jin introduced a measure

of asymmetry as0ðKÞ for planar convex bodies K in terms of the log-mixed volume,

and extended the p-Minkowski measures of asymmetry to the case 0� p�1.

For K 2 Kn, x 2 intðKÞ and 1� p�1, the p-Minkowski measure of asymmetry

of K is defined by

aspðCÞ ¼ inf
x2intðCÞ

�VpðKx;�KxÞ; ð53Þ

where Kx denotes K þ f�xg. A point x 2 intðKÞ satisfying �VpðKx;�KxÞ ¼ aspðKÞ is
called a p-critical point of K. The set of all p-critical points is denoted by CpðKÞ. The
well-known Minkowski measure of asymmetry is the special case that p ¼ 1.

Theorem 5.1 ([6, 7]) For 1� p�1, if K 2 Kn then,
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1� aspðKÞ� n; ð54Þ

equality holds on the left-hand side if and only if K is symmetric, and on the right-

hand side if and only if K is a simplex.

For the p-critical set CpðKÞ, we have the following theorem.

Theorem 5.2 ([6, 7]) For 1� p�1, and K 2 Kn, we have the following
statements:

(1) if p ¼ 1, then C1ðKÞ ¼ intðKÞ;
(2) if p ¼ 1, then C1ðKÞ is a convex set with dimðC1ðKÞÞ þ as1ðKÞ� n;
(3) if p 2 ð1;1Þ, then CpðKÞ is a singleton.

Note that if K 2 K2, then C1ðKÞ is a singleton, i.e., each planar convex body has
a unique critical 1-critical point.

For fixed K 2 Kn, we denotes the unique p-critical point of K by xp for

p 2 ð1;1Þ. It is easy to see that xp are coincide with the center of K if K is
symmetric; if K is a simplex, then xp are coincide with the centroid of K. There are

some other convex bodies that have this property that all pð1\p\1Þ-critical
points coincide.

Example 5.3 (1) If K :¼ a1a2a3a4 with a1ð�3; 0Þ; a2ð0;�3Þ; a3ð4; 0Þ and a4ð0; 3Þ,
then the quadrilateral K has centroid cð1

4
; 0Þ and xpð 4

15
; 0Þ for p 2 ð1;1�;

(2) If K :¼ a1a2a3a4 with a1ð�5; 0Þ; a2ð0;�5Þ; a3ð12; 0Þ and a4ð0; 5Þ, then the

quadrilateral K has centroid cð7
3
; 0Þ and xpð8441 ; 0Þ for p 2 ð1;1�.

Therefore, we state the following problem.

Problem 5.4 Suppose that K 2 Kn. Is it that dimðconvfxp : p 2 ð1;1ÞgÞ ¼ 0?

The p-Minkowski measure of asymmetry for the case p 2 ½0; 1Þ is introduced in

Ref. [9].

Given K 2 K2, let s 2 C1ðKÞ be the unique 1-critical point of K. The log-

Minkowski measure as0ðKÞ of K is defined by

as0ðKÞ ¼ �V0ðKs;�KsÞ: ð5:3Þ

Theorem 5.5 ([9])

If K 2 K2, then,

1� as0ðKÞ� 2: ð56Þ

Equality holds on the left-hand side if and only if K is symmetric, and equality
holds on the right-hand side if and only if K is a triangle.

If we define as0ðKÞ ¼ infx2intðKÞ �V0ðKx;�KxÞ, then when K is a square,

as0ðCÞ\1. This result shows that as0ðKÞ is not a measure of asymmetry in the sense
of Grünbaum [6].

In the following, we introduce a new measure of asymmetry in terms of the
normalized /-mixed volume.
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Definition 5.6 Suppose that / 2 U be concave on ð0;1Þ, K 2 K2, and s 2 C1ðKÞ
be the unique 1-critical point of K. The /-Minkowski measure as/ðKÞ of K is

defined by

as/ðKÞ ¼ �V/ðKs;�KsÞ: ð57Þ

For the /-Minkowski measure, we have the following theorem.

Theorem 5.7 Suppose that / 2 U be concave on ð0;1Þ. If K 2 K2, then,

1� as/ðKÞ� 2: ð58Þ

Equality holds on the left-hand side if and only if K is symmetric, and equality
holds on the right-hand side if and only if K is a triangle.

Proof From (57), (42) and (56), we have

as/ðKÞ ¼ �V/ðKs;�KsÞ
� �V0ðKs;�KsÞ
¼ as0ðKÞ
� 1:

On the other hand, from the concavity of /, we haveZ

Sn�1

/
h�Ks

hKs

� �
d �VKs

�/
Z

Sn�1

h�Ks

hKs

d �VKs

� �
: ð59Þ

From (27), (38), (53), (54) and (59), we have
as/ðKÞ ¼ �V/ðKs;�KsÞ

¼/�1

Z

Sn�1

/
h�Ks

hKs

� �
d �VKs

� �

�
Z

Sn�1

h�Ks

hKs

d �VKs

¼ �V1ðKs;�KsÞ
¼ as1ðKÞ
� 2:

Hence,
1� as0ðKÞ� as/ðKÞ� as1ðKÞ� 2:
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If K is symmetric, then we have 1 ¼ as0ðKÞ� as/ðKÞ� as1ðKÞ ¼ 1, which

implies as/ðKÞ ¼ 1; Conversely, if as/ðKÞ ¼ 1, then 1� as0ðKÞ� as/ðKÞ ¼ 1,

which implies as0ðKÞ ¼ 1, so K is symmetric.

If K is a triangle, then we have 2 ¼ as0ðKÞ� as/ðKÞ� as1ðKÞ ¼ 2, which

implies as/ðKÞ ¼ 2; Conversely, if as/ðKÞ ¼ 2, then 2 ¼ as/ðKÞ� as1ðKÞ� 2,

which implies as1ðKÞ ¼ 2, so K is a triangle. h

Funding Project supported by Postgraduate Research and Practice Innovation Program of Jiangsu
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