ORIGINAL ARTICLE

The ϕ -Brunn–Minkowski inequalities for general convex bodies

DanDan Lai¹ • Hail in Jin¹

Received: 12 April 2021 / Accepted: 5 September 2021 / Published online: 7 October 2021 - Sociedad Matemática Mexicana 2021

Abstract

In this paper, we first give a new proof of the log-Minkowski inequality of general planar convex bodies and then extend the L_p -Brunn–Minkowski inequality and L_p -Minkowski inequality of *o*-symmetric planar convex bodies for $p \in (0, 1)$ to ϕ -Brunn–Minkowski inequality and ϕ -Minkowski inequality of general planar convex bodies. As an application, a family of ϕ -measures of asymmetry for planar convex bodies is introduced.

Keywords Brunn–Minkowski inequality - Minkowski inequality - Mixed volume - Measure of asymmetry

Mathematics Subject Classification 52A20 · 52A40

1 Introduction

The classical Brunn–Minkowski inequality for convex bodies (compact convex sets with nonempty interiors) states that for convex bodies K, L in Euclidean *n*-space, \mathbb{R}^n , , the volume of the bodies and of their Minkowski sum $K + L = \{x + y : x \in \text{and } y \in L\}$, are related by

$$
V(K+L)^{\frac{1}{n}} \ge V(K)^{\frac{1}{n}} + V(L)^{\frac{1}{n}},\tag{1}
$$

with equality if and only if K and L are homothetic.

& DanDan Lai laidandanszkj@163.com HaiLin Jin jinhailin17@163.com

¹ Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, China

$$
V((1 - \lambda)K + \lambda L) \ge V(K)^{1 - \lambda} V(L)^{\lambda},\tag{2}
$$

and for $\lambda \in (0, 1)$, there is equality if and only if K and L are translates.

The excellent survey article of Gardner [\[3](#page-13-0)] gives a comprehensive account of various aspects and consequences of the Brunn–Minkowski inequality.

In the 1960s, Firey [[2\]](#page-13-0) introduced for $p \ge 1$ the so-called Minkowski–Firey L_p sum of convex bodies that contain the origin in their interiors, and established the L_p -Brunn–Minkowski inequality, which states as follows:

$$
V((1 - \lambda) \cdot K +_{p} \lambda \cdot L)^{\frac{p}{n}} \ge (1 - \lambda)V(K)^{\frac{p}{n}} + \lambda V(L)^{\frac{p}{n}},
$$
\n(3)

with equality for $\lambda \in (0, 1)$ if and only if K and L are dilates.

In the mid-1990s, it was shown in Refs. [\[12](#page-13-0), [13](#page-13-0)] that a study of the volume of L_p -Minkowski addition leads to an L_p -Brunn–Minkowski theory. This theory has expanded rapidly.

If K and L are convex bodies that contain the origin in their interiors and $0 \leq \lambda \leq 1$ then the Minkowski–Firey L_p -combination ($p > 0$), $(1 - \lambda) \cdot K +_p \lambda \cdot L$, is defined by

$$
(1 - \lambda) \cdot K +_{p} \lambda \cdot L = \bigcap_{u \in S^{n-1}} \{x \in \mathbb{R}^{n} : x \cdot u \le ((1 - \lambda)h_{K}(u)^{p} + \lambda h_{L}(u)^{p})^{1/p}\}.
$$
 (4)

It has been noticed that the L_p -Minkowski addition makes sense for all $p > 0$. The case $p = 0$ is known as the log-Minkowski addition, $(1 - \lambda) \cdot K +_0 \lambda \cdot L$, of convex bodies K and L that contain the origin in their interior, defined by

$$
(1 - \lambda) \cdot K +_0 \lambda \cdot L = \bigcap_{u \in S^{n-1}} \{ x \in \mathbb{R}^n : x \cdot u \le h_K(u)^{1 - \lambda} h_L(u)^{\lambda} \}.
$$
 (5)

In Ref. [\[1\]](#page-13-0), Böröczky, Lutwak, Yang and Zhang conjectured the log-Brunn– Minkowski inequality: If K and L are o -symmetric convex bodies in \mathbb{R}^n , then for all $\lambda \in [0, 1],$

$$
V((1 - \lambda) \cdot K +_0 \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}.
$$
 (6)

The log-Brunn–Minkowski inequality is stronger than the L_p -Brunn–Minkowski inequality for $p > 0$. It was shown in Ref. [[1\]](#page-13-0) that the log-Brunn–Minkowski inequality is equivalent to the following log-Minkowski mixed volume inequality: If K and L are o -symmetric convex bodies in \mathbb{R}^n , then

$$
\int_{S^{n-1}} \log \frac{h_L}{h_K} d\overline{V}_K \ge \frac{1}{n} \log \frac{V(L)}{V(K)}.
$$
\n⁽⁷⁾

Here \bar{V}_K denotes the cone-volume probability measure of K.

Theorem 1.1 ([\[1](#page-13-0)]) If K and L are o-symmetric convex bodies in \mathbb{R}^2 , then for all real $\lambda \in [0, 1],$

$$
V((1 - \lambda) \cdot K +_0 \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda},
$$
\n(8)

with equality for $\lambda \in (0, 1)$ if and only if K and L are dilates or K and L are parallelograms with parallel sides.

Theorem [1](#page-13-0).2 ([1]) If K and L are o-symmetric convex bodies in \mathbb{R}^2 , then,

$$
\int_{S^1} \log \frac{h_L}{h_K} d\bar{V}_K \ge \frac{1}{2} \log \frac{V(L)}{V(K)},\tag{9}
$$

with equality if and only if K and L are dilates or K and L are parallelograms with parallel sides.

It is easily seen from definition (4) (4) that for fixed convex bodies K, L and fixed $\lambda \in [0,1]$, the L_p-Minkowski–Firey combination $(1 - \lambda) \cdot K +_{p} \lambda \cdot L$ is increasing with respect to set inclusion, as p increases, i.e., if $0 \le p \le q$,

$$
(1 - \lambda) \cdot K +_{p} \lambda \cdot L \subset (1 - \lambda) \cdot K +_{q} \lambda \cdot L. \tag{10}
$$

From (9), the L_p -Brunn–Minkowski inequality and the L_p -Minkowski inequality were proved in Ref. [[1\]](#page-13-0) for $p \in (0, 1)$.

Theorem 1.3 ([[1\]](#page-13-0)) Suppose $0 \lt p \lt 1$. If K and L are o-symmetric convex bodies in \mathbb{R}^2 , then for all real $\lambda \in [0,1],$

$$
V((1 - \lambda) \cdot K +_{p} \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}, \qquad (11)
$$

with equality for $\lambda \in (0, 1)$ if and only if $K = L$.

Theorem 1.4 ([[1\]](#page-13-0)) Suppose $0 \lt p \lt 1$. If K and L are o-symmetric convex bodies in \mathbb{R}^2 , then for all $\lambda \in [0,1],$

$$
\left(\int_{S^1} \left(\frac{h_L}{h_K}\right)^p d\bar{V}_K\right)^{\frac{1}{p}} \ge \left(\frac{V(L)}{V(K)}\right)^{\frac{1}{2}},\tag{12}
$$

with equality for $\lambda \in (0, 1)$ if and only if K and L are dilates.

In Ref. [[18\]](#page-13-0), Ma gave an alternative proof of Theorem 1.2. Some results of the log-Brunn–Minkowski inequality for $n \geq 3$, see Refs. [[19,](#page-13-0) [21,](#page-13-0) [25](#page-14-0)].

There is a counterexample, showing that, if K is an o-centered cube and L is a distinct translate of K, then (6) (6) does not hold for general non-o-symmetric convex bodies. By introducing the notion of ''dilation position'', Xi and Leng [[23\]](#page-13-0) proved the log-Brunn–Minkowski inequality and the equivalent log-Minkowski mixed volume inequality for general planar convex bodies.

Theorem 1.5 ([[23\]](#page-13-0)) If K and L are convex bodies in \mathbb{R}^2 with $o \in K \cap L$, and K, L are in dilation position, then for all real $\lambda \in [0,1]$,

$$
V((1 - \lambda) \cdot K +_0 \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}, \tag{13}
$$

with equality for $\lambda \in (0, 1)$ if and only if K and L are dilates or K and L are parallelograms with parallel sides.

Theorem 1.6 ([[24\]](#page-13-0)) If K and L are convex bodies in \mathbb{R}^2 with $o \in K \cap L$, and K, L are in dilation position, then

$$
\int_{S^1} \log \frac{h_L}{h_K} d\bar{V}_K \ge \frac{1}{2} \log \frac{V(L)}{V(K)},\tag{14}
$$

with equality if and only if K and L are dilates or K and L are parallelograms with parallel sides.

The Orlicz–Brunn–Minkowski theory originated with the work of Lutwak et al. [\[15](#page-13-0), [16\]](#page-13-0). By introducing the Orlicz–Minkowski addition, Gardner, Hug and Weil [\[4](#page-13-0)], and Xi et al. [[24\]](#page-13-0) proved the Orlicz–Brunn–Minkowski inequality and Orlicz– Minkowski inequality. It is a natural extension of the L_p -Brunn–Minkowski theory for $p > 1$. For dual Orlicz–Brunn–Minkowski theory see [\[5](#page-13-0), [26\]](#page-14-0).

Let Φ be the set of strictly increasing functions $\phi : (0, \infty) \to I \subset \mathbb{R}$ which are continuously differentiable on $(0, \infty)$ with positive derivative, and satisfy that $\lim_{t\to\infty} \phi(t) = \infty$ and that $\log \circ \phi^{-1}$ is concave. Observe that whenever $\phi \in \Phi$ is convex, the composite function $log \circ \phi^{-1}$ is concave. The collection of convex functions from Φ shall be denoted by \mathcal{C} .

Let $\lambda \in [0,1]$ and $\phi \in \Phi$. For $u \in S^{n-1}$, we define a function $h_{\lambda}(u)$ as

$$
h_{\lambda}(u) = \inf \{ \tau > 0 : (1 - \lambda) \phi\left(\frac{h_K(u)}{\tau}\right) + \lambda \phi\left(\frac{h_L(u)}{\tau}\right) \le \phi(1) \}.
$$
 (15)

By the strict monotonicity of ϕ , we have

$$
\phi(1) = (1 - \lambda)\phi\left(\frac{h_K(u)}{h_\lambda(u)}\right) + \lambda\phi\left(\frac{h_L(u)}{h_\lambda(u)}\right). \tag{16}
$$

The ϕ -combination $(1 - \lambda) \cdot K +_{\phi} \lambda \cdot L$ of $K, L \in \mathcal{K}_o^n$ is defined in Ref. [[17](#page-13-0)] by $(1 - \lambda) \cdot K +_{\phi} \lambda \cdot L =$ $u \in S^{n-1}$ { $x \in \mathbb{R}^n : x \cdot u \le h_\lambda(u)$ }. (17)

Note that if $\phi(t) = t^p$ with $p > 0$, then the ϕ -combination reduces to the L_p -Minkowski combination. Further, if $\phi(t) = \alpha \log(t)(\alpha > 0)$, then we retrieve the log-Minkowski combination. In Ref. [\[17](#page-13-0)], Lv proved the ϕ -Minkowski inequality and ϕ -Brunn–Minkowski inequality for general functions ϕ for o-symmetric planar convex bodies K, L. If $\phi(t) = t^p, p \in (0, 1)$, then the ϕ -Minkowski inequality reduces to the L_p -Minkowski inequality ([12\)](#page-2-0) and L_p -Brunn–Minkowski inequality [\(11](#page-2-0)).

In this paper, we first present a new proof Theorem 1.[6,](#page-3-0) and extend Theorems [1](#page-2-0).3 and [1](#page-2-0).4 from $p \in (0, 1)$ and o-symmetric convex bodies K, Lto general case ϕ and general convex bodies K, L. More precisely, we have the following main results.

Theorem 1.7 Let $\phi \in \Phi$ with $\phi \neq \alpha \log(\alpha > 0)$, and K and L are planar convex bodies containing the origin o in their interiors, and $o \in K \cap L$. If K and L are at a dilation position, then

$$
\int_{S^1} \phi\left(\frac{h_L}{h_K}\right) d\bar{V}_K \ge \phi\left(\frac{V(L)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}}\right),\tag{18}
$$

with equality if and only if K and L are dilates.

Theorem 1.8 Let $\phi \in \Phi$, $\phi \neq \alpha \log(\alpha > 0)$ be concave on $(0, \infty)$, and K and L are planar convex bodies containing the origin o in their interiors, and $o \in K \cap L$. If K and L are at a dilation position, then for all real $\lambda \in [0,1],$

$$
V((1 - \lambda) \cdot K +_{\phi} \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}, \tag{19}
$$

with equality for $\lambda \in (0, 1)$ if and only if $K = L$.

2 Preliminaries

Let K^n be the class of convex bodies (compact convex sets with nonempty interiors) in \mathbb{R}^n , and let \mathcal{K}_o^n be those sets in \mathcal{K}^n containing the origin in their interiors.

The support function $h_K : \mathbb{R}^n \to \mathbb{R}$, of compact convex subset K of \mathbb{R}^n is defined by $h_K(x) = \{x \cdot y : y \in K\}$, for $x \in \mathbb{R}^n$, and uniquely determines the convex set.

A boundary point $x \in \partial K$ of the convex body K is said to have $u \in S^{n-1}$ as one of its outer unit normals provided $x \cdot u = h_K(u)$. A boundary point is said to be singular if it has more than one unit normal vector. It is well known that the set of singular boundary points of a convex body has $(n - 1)$ -dimensional Hausdorff measure \mathcal{H}^{n-1} equal to 0.

Let $K \in \mathcal{K}^n$ and $v_K : \partial K \to S^{n-1}$ the generalized Gauss map. For each Borel set $\omega \subset S^{n-1}$, the inverse spherical image $v_K^{-1}(\omega)$ of ω is the set of all boundary points of K which have an outer unit normal belonging to the set ω . The surface area measure S_K of $K \in \mathcal{K}^n$ is defined by

$$
S_K(\omega) = \mathcal{H}^{n-1}(v_K^{-1}(\omega)),\tag{20}
$$

for each Borel set $\omega \subset S^{n-1}$, i.e., $S_K(\omega)$ is the $(n-1)$ -dimensional Hausdorff measure of the set of all points on ∂K that have a unit normal that lies in ω .

The Hausdorff distance $d_H(K, L)$ of compact convex sets K, L is defined by $d_H(K, L) = ||h_K - h_L||_{\infty}$. A sequence of convex bodies, K_i , is said to converge to a body K, i.e., $\lim_{i\to\infty} K_i = K$ if $d_H(K_i, K) \to 0$. If K is a convex body and K_i is a sequence of convex bodies then

$$
\lim_{i \to \infty} K_i = K \Rightarrow \lim_{i \to \infty} S_{K_i} = S_K, \text{ weakly.}
$$
\n(21)

The cone-volume measure V_K of $K \in \mathcal{K}^n$ is a Borel measure on the unit sphere S^{n-1} defined for a Borel set $\omega \subset S^{n-1}$ by

$$
V_K(\omega) = \frac{1}{n} \int_{x \in v_K^{-1}(\omega)} x \cdot v_K(x) d\mathcal{H}^{n-1}(x), \tag{22}
$$

and thus

$$
dV_K = -\frac{1}{n} h_K dS_K. \tag{23}
$$

Since,

$$
V(K) = \frac{1}{n} \int_{u \in S^{n-1}} h_K(u) dS_K(u), \tag{24}
$$

we can define the cone-volume probability measure \bar{V}_K of K by

$$
\bar{V}_K = \frac{1}{V(K)} V_K. \tag{25}
$$

Suppose $K, L \in \mathcal{K}_o^n$. For $p \neq 0$, the L_p -mixed volume $V_p(K, L)$ can be defined as

$$
V_p(K,L) = \int_{u \in S^{n-1}} \left(\frac{h_L}{h_K}\right)^p dV_K.
$$
 (26)

The normalized L_p -mixed volume $\bar{V}_p(K, L)$ was first defined in Ref. [[14\]](#page-13-0),

$$
\bar{V_p}(K,L) = \left(\int_{u \in S^{n-1}} \left(\frac{h_L}{h_K}\right)^p d\bar{V_K}\right)^{\frac{1}{p}}.
$$
\n(27)

For $p = \infty$, we define

$$
\bar{V}_{\infty}(K,L) = \max\{h_L/h_K : u \in \text{supp}S_K\},\tag{28}
$$

and we have

$$
\lim_{p \to \infty} \bar{V_p}(K, L) = \bar{V_\infty}(K, L). \tag{29}
$$

Letting $p \rightarrow 0$ gives

$$
\bar{V}_0(K,L) = \exp\biggl(\int_{u \in S^{n-1}} \log \frac{h_L}{h_K} d\bar{V}_K\biggr),\tag{30}
$$

which is the normalized log-mixed volume of K and L . From Jesen's inequality we know that $p \mapsto \bar{V}_p(K, L)$ is strictly monotone increasing, unless h_L/h_K is constant on $suppS_K$.

Suppose $K, L \in \mathcal{K}^n$. The inradius $r(K, L)$ and $R(K, L)$ of K with respect to L are defined by

$$
r(K,L) = \sup\{t > 0 : x + tL \subset K \text{ and } x \in \mathbb{R}^n\},\
$$

$$
R(K,L) = \inf\{t > 0 : x + tL \supset K \text{ and } x \in \mathbb{R}^n\}.
$$

From the definition, it follows that $r(K, L) = 1/R(L, K)$. If K, L happen to be o -symmetric convex bodies, then clearly

$$
r(K, L) = \min_{u \in S^{n-1}} \frac{h_K(u)}{h_L(u)} \text{ and } R(K, L) = \max_{u \in S^{n-1}} \frac{h_K(u)}{h_L(u)}.
$$
 (31)

Let $K, L \in \mathcal{K}^n$. K and L are said to be at a *dilation position*, if $o \in K \cap L$, and

$$
r(K,L)L \subset K \subset R(K,L)L. \tag{32}
$$

The definition and some properties of dilation position were first given by Xi and Leng $[23]$ $[23]$. It is easy to prove that if K, L are *o*-symmetric convex bodies, then K and L are at a dilation position.

In general, we refer the reader to [[20\]](#page-13-0) for standard notation concerning convex bodies.

3 A new proof of Theorem [1.6](#page-3-0)

In Ref. [\[18](#page-13-0)], Ma gave a proof of Theorem [1.1.](#page-2-0) In the following, we demonstrate an alternate proof of Theorem 1.5 by employing Ma's approach $[18]$ $[18]$. The following lemma is needed in our proof.

Lemma 3.1 ([\[23](#page-13-0)]) Let $K, L \in \mathbb{K}^2$ with $o \in K \cap L$. If K and L are at a dilation position, then

$$
\int_{S^1} \frac{h_K}{h_L} d\bar{V}_K \le \frac{V(L, K)}{V(L)},\tag{33}
$$

with equality if and only if K and L are dilates, or K and L are parallelograms with parallel sides.

We repeat the statement of Theorem 1.[6](#page-3-0), and present our approach.

Theorem 3.2 ([[23\]](#page-13-0)) If K and L are convex bodies in \mathbb{R}^2 with $o \in K \cap L$, and K, L are at a dilation position, then

$$
\int_{S^1} \log \frac{h_L}{h_K} d\bar{V}_K \ge \frac{1}{2} \log \frac{V(L)}{V(K)},\tag{34}
$$

with equality if and only if K and L are dilates or K and L are parallelograms with parallel sides.

Proof Set

$$
F(t) = \int_{S^1} \log\left(\frac{h_{L+iK}}{h_K}\right) d\bar{V}_K - \frac{1}{2} \log\left(\frac{V(L+tK)}{V(K)}\right), \quad t \in [0, \infty). \tag{35}
$$

Since
$$
h_{L+tk} = h_L + th_K
$$
 and $V(L + tK) = V(L) + 2V(L, K)t + V(K)t^2$, we have
\n
$$
F'(t) = \int_{S^1} \frac{h_K}{h_L + th_K} d\bar{V}_K - \frac{(V(L, K) + V(K)t)}{V(L) + 2V(L, K)t + V(K)t^2}
$$
\n
$$
= \int_{S^1} \frac{h_K}{h_{L+tk}} d\bar{V}_K - \frac{V(L + tK, K)}{V(L + tK)}.
$$

By Lemma 5.2 of Ref. [\[23](#page-13-0)], we have K and $L + tK$ are at a dilation position. Therefore, we get $F'(t) \leq 0$ from Lemm[a3.1,](#page-6-0) which implies that $F(t)$ is decreasing on $[0, \infty)$.

By mean value theorem for integrals, there exists $u_0 \in S^1$ such that

$$
\int_{S^1} \log \left(\frac{h_{L+iK}}{h_K} \right) d\bar{V}_K = \log \left(\frac{h_{L+iK}(u_0)}{h_K(u_0)} \right).
$$
\n(36)

Let
$$
t \to \infty
$$
, then
\n
$$
F(t) = \log \left(\frac{h_{L+tK}(u_0)}{h_K(u_0)} \right) - \frac{1}{2} \log \left(\frac{V(L+tK)}{V(K)} \right)
$$
\n
$$
= \log \left(\frac{h_L(u_0) + th_K(u_0)}{h_K(u_0)} \cdot \frac{V(K)^{\frac{1}{2}}}{V(L+tK)^{\frac{1}{2}}} \right)
$$
\n
$$
= \log \left(\frac{h_L(u_0) + th_K(u_0)}{h_K(u_0)} \cdot \frac{V(K)^{\frac{1}{2}}}{(V(L)+2tV(L,K)+t^2V(K))^{\frac{1}{2}}} \right)
$$
\n
$$
\to 0.
$$

Therefore, $F(t) \ge 0$ for $t \in [0, \infty)$. In particular, $F(0) \ge 0$, which implies $S¹$ $\log \frac{h_L}{h_K} d\overline{V}_K \ge \frac{1}{2}$ $\frac{1}{2} \log \frac{V(L)}{V(K)}$.

If the equality holds in ([34\)](#page-6-0), then $F(0) = 0$, which implies $F(t) \equiv 0$ for $t \in [0, \infty)$. Therefore, $F'(t) \equiv 0$ for all $t \in [0, \infty)$. By Lemma [3.1](#page-6-0), we have K and $L + tK$ are dilates, or K and $L + tK$ are parallelograms with parallel sides. So, K and L are dilates, or K and L are parallelograms with parallel sides. Conversely, if K and L are dilates, or K and L are parallelograms with parallel sides, the equality of (34) (34) (34) holds.

Remark 3.3 In Ref. [\[23](#page-13-0)], Xi and Leng proved that Theorems [1.5](#page-3-0) and [1.6](#page-3-0) are equivalent.

4 Proofs of Theorems [1.7](#page-4-0) and [1.8](#page-4-0)

Suppose $K, L \in \mathcal{K}_o^n$. For $\phi \in \Phi$, the ϕ -mixed volume $V_{\phi}(K, L)$ was defined in Ref. $[17]$ $[17]$ by

$$
V_{\phi}(K,L) = \int_{S^{n-1}} \phi\left(\frac{h_L}{h_K}\right) dV_K. \tag{37}
$$

The normalized ϕ -mixed volume $\bar{V}_{\phi}(K, L)$ of $K, L \in \mathcal{K}_o^n$ was defined in Ref. [\[17](#page-13-0)] by

$$
\bar{V}_{\phi}(K,L) = \phi^{-1}\bigg(\int_{S^{n-1}} \phi\bigg(\frac{h_L}{h_K}\bigg)d\bar{V}_K\bigg). \tag{38}
$$

In particular, if $\phi(t) = t^p$ with $p > 0$, the normalized ϕ -mixed volume $\overline{V}_{\phi}(K, L)$ reduces to the normalized L_p -mixed volume $\bar{V}_p(K, L)$.

We repeat the statements of Theorems [1.7](#page-4-0) and [1.8.](#page-4-0)

Theorem 4.1 Suppose that $\phi \in \Phi$ with $\phi \neq \alpha \log(\alpha > 0)$, and $K, L \in \mathcal{K}^2_{o}$ with $o \in K \cap L$. If K and L are at a dilation position, then

$$
\int_{S^1} \phi\left(\frac{h_L}{h_K}\right) d\bar{V}_K \ge \phi\left(\frac{V(L)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}}\right),\tag{39}
$$

with equality if and only if K and L are dilates.

Proof From the log-concavity of ϕ^{-1} , we have

$$
\int_{S^{n-1}} \log \frac{h_L}{h_K} d\bar{V}_K \le \log \circ \phi^{-1} \bigg(\int_{S^{n-1}} \phi \bigg(\frac{h_L}{h_K} \bigg) d\bar{V}_K \bigg), \tag{40}
$$

which is equivalent to

$$
\exp\left(\int_{S^{n-1}} \log \frac{h_L}{h_K} d\bar{V}_K\right) \leq \phi^{-1}\left(\int_{S^{n-1}} \phi\left(\frac{h_L}{h_K}\right) d\bar{V}_K\right). \tag{41}
$$

That is

$$
\bar{V_0}(K,L) \le \bar{V}_{\phi}(K,L),\tag{42}
$$

with equality if and only if h_L/h_K is constant on suppS_K. From [\(14](#page-3-0)), we have

$$
\bar{V}_{\phi}(K,L) \ge \frac{V(L)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}},\tag{43}
$$

which leads to (39) . From the equality condition of (14) (14) and (42) , we have equality holds in (39) if and only if K and L are dilates. \square **Theorem 4.2** Suppose that $\phi \in \Phi$, $\phi \neq \alpha \log(\alpha > 0)$ be concave on $(0, \infty)$, and $K, L \in \mathcal{K}^2$ with $o \in K \cap L$. If K and L are at a dilation position, then for all real $\lambda \in [0, 1],$

$$
V((1 - \lambda) \cdot K +_{\phi} \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}, \tag{44}
$$

with equality for $\lambda \in (0, 1)$ if and only if $K = L$.

Proof Set $Q_{\lambda} = (1 - \lambda) \cdot K +_{\phi} \lambda \cdot L$. From [\(16](#page-3-0)) and the concavity of ϕ , we have

$$
\phi(1) = (1 - \lambda)\phi\left(\frac{h_K(u)}{h_\lambda(u)}\right) + \lambda\phi\left(\frac{h_L(u)}{h_\lambda(u)}\right) \le \phi\left(\frac{(1 - \lambda)h_K + \lambda h_L}{h_\lambda}\right). \tag{45}
$$

By the monotone property of ϕ , we have

$$
h_{\lambda} \leq (1 - \lambda)h_K + \lambda h_L. \tag{46}
$$

From [\(17](#page-3-0)), we have $h_{\lambda} = h_{Q_{\lambda}}$ with respect to the surface area measure $S_{Q_{\lambda}}$. Hence, we have

$$
Q_{\lambda} \subset (1 - \lambda)K + \lambda L. \tag{47}
$$

On the other hand, from ([16\)](#page-3-0), we have $(h_n(u))$ $(h_n(u))$

$$
1 = \phi^{-1}\left((1 - \lambda)\phi\left(\frac{h_K(u)}{h_\lambda(u)}\right) + \lambda\phi\left(\frac{h_L(u)}{h_\lambda(u)}\right)\right).
$$
 (48)

From the log-concavity of ϕ , we have $(h_n(u))$ $(h_n(u))$

$$
0 = (\log \circ \phi^{-1}) \left((1 - \lambda) \phi \left(\frac{h_K(u)}{h_\lambda(u)} \right) + \lambda \phi \left(\frac{h_L(u)}{h_\lambda(u)} \right) \right)
$$

$$
\geq (1 - \lambda) \log \frac{h_K(u)}{h_\lambda(u)} + \lambda \log \frac{h_L(u)}{h_\lambda(u)}
$$

$$
= \log \frac{h_K^{1-\lambda} h_L^{\lambda}}{h_\lambda},
$$

which implies $h_K^{1-\lambda} h_L^{\lambda} \leq h_{\lambda}$. Hence,

$$
(1 - \lambda) \cdot K +_0 \lambda \cdot L \subset Q_{\lambda}.
$$
 (49)

From (13) (13) , we have $V(Q_{\lambda}) \geq V((1 - \lambda) \cdot K +_0 \lambda \cdot L) \geq V(K)^{1 - \lambda} V(L)^{\lambda}$ (50)

If equality holds in (44), then $V((1 - \lambda) \cdot K +_0 \lambda \cdot L) = V(K)^{1-\lambda}V(L)^{\lambda}$. By the equality condition of (13) (13) , we have K and L are dilates. In addition, from $V(Q_{\lambda}) = V((1 - \lambda) \cdot K +_0 \lambda \cdot L)$, we have $(1 - \lambda) \cdot K +_0 \lambda \cdot L = Q_{\lambda}$, which implies $K = L.$

We can get the L_p -Minkowski inequality and L_p -Brunn–Minkowski inequality for general planar convex bodies by setting $\phi(t) = t^p$ in Theorems [4.1](#page-8-0) and [4.2.](#page-9-0)

Corollary 4.3 Suppose that $0 < p < 1$, and $K, L \in \mathcal{K}^2$ with $o \in K \cap L$. If K and L are at a dilation position, then

$$
\left(\int_{S^1} \left(\frac{h_L}{h_K}\right)^p d\bar{V}_K\right)^{\frac{1}{p}} \ge \left(\frac{V(L)}{V(K)}\right)^{\frac{1}{2}},\tag{51}
$$

with equality if and only if K and L are dilates.

Corollary 4.4 Suppose that $0 < p < 1$, and $K, L \in \mathcal{K}^2$ with $o \in K \cap L$. If K and L are at a dilation position, then for all real $\lambda \in [0,1],$

$$
V((1 - \lambda) \cdot K +_{\phi} \lambda \cdot L) \ge V(K)^{(1 - \lambda)} V(L)^{\lambda}, \tag{52}
$$

with equality for $\lambda \in (0, 1)$ if and only if $K = L$.

5 ϕ -Minkowski measure of asymmetry

In the well-known paper [\[6](#page-13-0)], abstracting from some extremal problems arising from geometry or other mathematical branches and from the previous work of many mathematicians, Grünbaum formulated a concept of measures of asymmetry (or symmetry) for convex bodies which, among other applications, can be used to describe how far a convex set is from a (centrally) symmetric one. Since then, the properties and applications of these known asymmetry measures are studied by many mathematicians (see $[7-11, 22]$ $[7-11, 22]$ $[7-11, 22]$ and references therein).

In Ref. [[7\]](#page-13-0), Guo introduced a family of measures of (central) asymmetry, the socalled p-measures of asymmetry, which have the well-known Minkowski measure of asymmetry as a special case, and showed some similar properties of the pmeasures to the Minkowski one. In Ref. [\[11](#page-13-0)], Jin, Leng and Guo extended the p-Minkowski measure of asymmetry to an Orlicz version. In addition, Jin et al. [\[11](#page-13-0)] showed that $p(1 \leq p \leq \infty)$ -Minkowski measures of asymmetry are closely related to L_p -mixed volumes. More precisely, we can define $p \ (1 \leq p \leq \infty)$ -Minkowski measures of asymmetry by L_p -mixed volumes. In Ref. [[9\]](#page-13-0), Jin introduced a measure of asymmetry $as_0(K)$ for planar convex bodies K in terms of the log-mixed volume, and extended the p-Minkowski measures of asymmetry to the case $0 \le p \le \infty$.

For $K \in \mathcal{K}^n$, $x \in \text{int}(K)$ and $1 \leq p \leq \infty$, the p-Minkowski measure of asymmetry of K is defined by

$$
as_p(C) = \inf_{x \in int(C)} \bar{V}_p(K_x, -K_x), \tag{53}
$$

where K_x denotes $K + \{-x\}$. A point $x \in \text{int}(K)$ satisfying $\overline{V}_p(K_x, -K_x) = \text{as}_p(K)$ is called a *p*-critical point of K. The set of all *p*-critical points is denoted by $C_p(K)$. The well-known Minkowski measure of asymmetry is the special case that $p = \infty$.

Theorem 5.1 ([[6](#page-13-0), [7\]](#page-13-0)) For $1 \le p \le \infty$, if $K \in \mathcal{K}^n$ then,

$$
1 \le \operatorname{as}_p(K) \le n,\tag{54}
$$

equality holds on the left-hand side if and only if K is symmetric, and on the righthand side if and only if K is a simplex.

For the p-critical set $C_n(K)$, we have the following theorem.

Theorem 5.2 ([\[6](#page-13-0), [7\]](#page-13-0)) For $1 \leq p \leq \infty$, and $K \in \mathcal{K}^n$, we have the following statements:

(1) if $p = 1$, then $C_1(K) = \text{int}(K)$:

(2) if $p = \infty$, then $\mathcal{C}_{\infty}(K)$ is a convex set with $\dim(\mathcal{C}_{\infty}(K)) + \text{as}_{\infty}(K) \leq n$;

(3) if $p \in (1,\infty)$, then $C_p(K)$ is a singleton.

Note that if $K\in{\mathcal{K}}^2$, then ${\mathcal{C}}_\infty(K)$ is a singleton, i.e., each planar convex body has a unique critical ∞ -critical point.

For fixed $K \in \mathcal{K}^n$, we denotes the unique p-critical point of K by x_p for $p \in (1,\infty)$. It is easy to see that x_p are coincide with the center of K if K is symmetric; if K is a simplex, then x_p are coincide with the centroid of K. There are some other convex bodies that have this property that all $p(1\lt p\ltfty)$ -critical points coincide.

Example 5.3 (1) If $K := a_1 a_2 a_3 a_4$ with $a_1(-3,0), a_2(0,-3), a_3(4,0)$ and $a_4(0,3),$ then the quadrilateral K has centroid $c(\frac{1}{4}, 0)$ and $x_p(\frac{4}{15}, 0)$ for $p \in (1, \infty]$;

(2) If $K := a_1 a_2 a_3 a_4$ with $a_1(-5, 0), a_2(0, -5), a_3(12, 0)$ and $a_4(0, 5)$, then the quadrilateral K has centroid $c(\frac{7}{3},0)$ and $x_p(\frac{84}{41},0)$ for $p \in (1,\infty]$.

Therefore, we state the following problem.

Problem 5.4 Suppose that $K \in \mathcal{K}^n$. Is it that dim(conv $\{x_p : p \in (1, \infty)\}\) = 0$?

The p-Minkowski measure of asymmetry for the case $p \in [0, 1)$ is introduced in Ref. [[9\]](#page-13-0).

Given $K \in \mathcal{K}^2$, let $s \in \mathcal{C}_\infty(K)$ be the unique ∞ -critical point of K. The log-Minkowski measure $as_0(K)$ of K is defined by

$$
as_0(K) = \bar{V}_0(K_s, -K_s). \tag{5.3}
$$

Theorem 5.5 ([[9](#page-13-0)])

If $K \in \mathcal{K}^2$, then,

$$
1 \le \operatorname{as}_0(K) \le 2. \tag{56}
$$

Equality holds on the left-hand side if and only if K is symmetric, and equality holds on the right-hand side if and only if K is a triangle.

If we define $\text{as}_0(K) = \inf_{x \in \text{int}(K)} \overline{V}_0(K_x, -K_x)$, then when K is a square, $\text{as}_0(C)$ < 1. This result shows that $\text{as}_0(K)$ is not a measure of asymmetry in the sense of Grünbaum $[6]$ $[6]$.

In the following, we introduce a new measure of asymmetry in terms of the normalized ϕ -mixed volume.

Definition 5.6 Suppose that $\phi \in \Phi$ be concave on $(0, \infty)$, $K \in \mathcal{K}^2$, and $s \in \mathcal{C}_\infty(K)$ be the unique ∞ -critical point of K. The ϕ -Minkowski measure as_{ϕ}(K) of K is defined by

$$
as_{\phi}(K) = \bar{V}_{\phi}(K_s, -K_s). \tag{57}
$$

For the ϕ -Minkowski measure, we have the following theorem.

Theorem 5.7 Suppose that $\phi \in \Phi$ be concave on $(0, \infty)$. If $K \in \mathcal{K}^2$, then,

$$
1 \le \operatorname{as}_{\phi}(K) \le 2. \tag{58}
$$

Equality holds on the left-hand side if and only if K is symmetric, and equality holds on the right-hand side if and only if K is a triangle.

Proof From (57) , (42) (42) and (56) (56) , we have

$$
as_{\phi}(K) = \bar{V}_{\phi}(K_s, -K_s)
$$

\n
$$
\geq \bar{V}_0(K_s, -K_s)
$$

\n
$$
= as_0(K)
$$

\n
$$
\geq 1.
$$

On the other hand, from the concavity of ϕ , we have 4, S^{n-1} $\phi\Big(\frac{h_{-K_s}}{h_{-K_s}}\Big)$ h_{K_s} $\frac{1}{h}$ $\frac{1}{h}$ $d\bar{V_{K_s}} \leq \phi$ \mathcal{P} S^{n-1} h_{-K_s} h_{K_s} ${\rm d} \bar{V_{K_s}}$ $\begin{pmatrix} 0, & w \in \text{have} \\ 0, & b, & \end{pmatrix}$ (59)

From (27) (27) , (38) (38) , (53) (53) , (54) (54) and (59) , we have $\widehat{\mathrm{as}_{\phi}(K)} = \widehat{V}_{\phi}(K_s, -K_s)$

$$
= \phi^{-1}\left(\int_{S^{n-1}} \phi\left(\frac{h_{-K_s}}{h_{K_s}}\right) d\bar{V}_{K_s}\right)
$$

\n
$$
\leq \int_{S^{n-1}} \frac{h_{-K_s}}{h_{K_s}} d\bar{V}_{K_s}
$$

\n
$$
= \bar{V}_1(K_s, -K_s)
$$

\n
$$
= as_1(K)
$$

\n
$$
\leq 2.
$$

Hence,

$$
1 \le \operatorname{as}_0(K) \le \operatorname{as}_{\phi}(K) \le \operatorname{as}_1(K) \le 2.
$$

If K is a triangle, then we have $2 = as_0(K) \le as_0(K) \le as_1(K) = 2$, which implies as_{$\phi(K) = 2$; Conversely, if as $\phi(K) = 2$, then $2 = \text{as}_{\phi}(K) \leq \text{as}_{1}(K) \leq 2$,} which implies $as_1(K) = 2$, so K is a triangle.

Funding Project supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province No. KYCX20_2745 and by National Nature Science Foundation of China Nos. 12071334 and 12071277.

References

- 1. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)
- 2. Firey, W.J.: p-means of convex bodies. Math. Scand. 10, 17–24 (1962)
- 3. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)
- 4. Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)
- 5. Gardner, R.J., Hug, D., Weil, W., Ye, D.: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430, 810–829 (2015)
- 6. Grünbaum, B.: Measures of symmetry for convex sets, Convexity, Proceedings of Symposia in Pure Mathematics, vol. 7, pp. 233–270. American Mathematical Society, Providence (1963)
- 7. Guo, Q.: On p-measures of asymmetry for convex bodies. Adv. Geom. 12(2), 287–301 (2012)
- 8. Guo, Q., Guo, J., Su, X.: The measures of asymmetry for coproducts of convex bodies. Pac. J. Math. 276, 401–418 (2015)
- 9. Jin, H.: The log-Minkowski measure of asymmetry for convex bodies. Geom. Dedicata 196, 27–34 (2018)
- 10. Jin, H.: Electrostatic capacity and measure of asymmetry. Proc. Am. Math. Soc. 147, 4007–4019 (2019)
- 11. Jin, H., Leng, G., Guo, Q.: Mixed volumes and measures of asymmetry. Acta Math. Sin. 30, 1905–1916 (2014)
- 12. Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)
- 13. Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)
- 14. Lutwak, E., Yang, D., Zhang, G.: L_p John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)
- 15. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)
- 16. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)
- 17. Lv, S.: The ϕ -Brunn–Minkowski inequality. Acta Math. Hungar. 156, 226–239 (2018)
- 18. Ma, L.: A new proof of the log-Brunn–Minkowski inequality. Geom. Dedicata 177, 75–82 (2015)
- 19. Saroglou, C.: Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedicata 177, 353–365 (2015)
- 20. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)
- 21. Stancu, A.: The logarithmic Minkowski inequality for non-symmetric convex bodies. Adv. Appl. Math. 73, 43–58 (2016)
- 22. Toth, G.: Measures of Symmetry for Convex Sets and Stability. Springer, New York (2015)
- 23. Xi, D., Leng, G.: Dar's conjecture and the Log-Brunn–Minkowski inequality. J. Differ. Geom. 103, 145–189 (2016)
- 24. Xi, D., Jin, H., Leng, G.: The Orlicz–Brunn–Minkowski inequality. Adv. Math. 264, 350–374 (2014)

25. Yang, Y., Zhang, D.: The log-Brunn–Minkowski inequality in \mathbb{R}^3 . Proc. Am. Math. Soc. 147, 4465–4475 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

^{26.} Zhu, B., Zhou, J., Xu, W.: Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 264, 700–725 (2014)