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Abstract

In this paper, we first give a new proof of the log-Minkowski inequality of general
planar convex bodies and then extend the L,-Brunn—-Minkowski inequality and L,,-
Minkowski inequality of o-symmetric planar convex bodies for p € (0,1) to ¢-
Brunn—Minkowski inequality and ¢-Minkowski inequality of general planar convex
bodies. As an application, a family of ¢-measures of asymmetry for planar convex
bodies is introduced.
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volume - Measure of asymmetry

Mathematics Subject Classification 52A20 - 52A40

1 Introduction

The classical Brunn—Minkowski inequality for convex bodies (compact convex sets
with nonempty interiors) states that for convex bodies K, L in Euclidean n-space,
R*, the volume of the bodies and of their Minkowski sum
K+L={x+y:xe€andy e L}, are related by

V(K + L) > V(K)' + V(L) (1)

with equality if and only if K and L are homothetic.
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The Brunn—Minkowski inequality has an equivalent formulation as for all real
A €0,1],

V((1 = A)K + L) > V(K) V(L) (2)

and for A € (0, 1), there is equality if and only if K and L are translates.

The excellent survey article of Gardner [3] gives a comprehensive account of
various aspects and consequences of the Brunn—Minkowski inequality.

In the 1960s, Firey [2] introduced for p > 1 the so-called Minkowski-Firey L,
sum of convex bodies that contain the origin in their interiors, and established the
L,-Brunn—Minkowski inequality, which states as follows:

V((1=2) - K 4, 4-L)" > (1 = )V(K) + AV(L)F, (3)
with equality for A € (0, 1) if and only if K and L are dilates.

In the mid-1990s, it was shown in Refs. [12, 13] that a study of the volume of L,-
Minkowski addition leads to an L,-Brunn—-Minkowski theory. This theory has
expanded rapidly.

If K and L are convex bodies that contain the origin in their interiors and
0 <2 <1 then the Minkowski—Firey L,-combination (p > 0), (1 — 1) - K+, A- L, is
defined by

(1=2) Kty i-L= () {reR :x-u<((1 = Dhg(u)f + i (u))""}. @)

ucSr—1

It has been noticed that the L,-Minkowski addition makes sense for all p > 0.
The case p =0 is known as the log-Minkowski addition, (1 — 1) - K 4+¢ 4- L, of
convex bodies K and L that contain the origin in their interior, defined by

(1=2)-K+oi L= () {xeR x-uhge(w)  h(u)}. (5)

ues !

In Ref. [1], Boroczky, Lutwak, Yang and Zhang conjectured the log-Brunn—
Minkowski inequality: If K and L are o-symmetric convex bodies in R”, then for all
2 €10,1],

V((1=7)-K+i-L)>V(E) v (6)

The log-Brunn—Minkowski inequality is stronger than the L,-Brunn—-Minkowski
inequality for p > 0. It was shown in Ref. [1] that the log-Brunn—Minkowski
inequality is equivalent to the following log-Minkowski mixed volume inequality: If
K and L are o-symmetric convex bodies in R", then

1. V(L)

hy
log £ gV > ~log =) 7
/SH e K= B VK 0

Here Vi denotes the cone-volume probability measure of K.
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The planar case of the log-Brunn—Minkowski inequality and the equivalent log-
Brunn—-Minkowski inequality were proved in Ref. [1].

Theorem 1.1 ([1]) If K and L are o-symmetric convex bodies in R?, then for all real
2 €10,1],

V(l—A)-K+oA-L)> V(K)“*}')V(L)l’ (8)

with equality for A € (0,1) if and only if K and L are dilates or K and L are
parallelograms with parallel sides.

Theorem 1.2 ([1]) If K and L are o-symmetric convex bodies in R?, then,

hy — 1 V(L)
/51 log » dVg > 2log VK) 9)
with equality if and only if K and L are dilates or K and L are parallelograms with
parallel sides.

It is easily seen from definition (4) that for fixed convex bodies K, L and fixed
2 €10,1], the L,-Minkowski—Firey combination (1 — 1) -K +, A - L is increasing
with respect to set inclusion, as p increases, i.e., if 0 <p <gq,

(1—2) - K4, 2-LC(1=2)-K+,4-L. (10)

From (9), the L,-Brunn—Minkowski inequality and the L,-Minkowski inequality
were proved in Ref. [1] for p € (0, 1).

Theorem 1.3 ([1]) Suppose O<p < 1. If K and L are o-symmetric convex bodies in
R?, then for all real ). € [0,1],

V(L =2)- K+, 4-L) > V(K) " Pv(L), (11)
with equality for A € (0,1) if and only if K = L.

Theorem 1.4 ([1]) Suppose O<p<1. If K and L are o-symmetric convex bodies in
R?, then for all J. € [0,1],

(Yo - (22

with equality for A € (0, 1) if and only if K and L are dilates.

In Ref. [18], Ma gave an alternative proof of Theorem 1.2. Some results of the
log-Brunn—Minkowski inequality for n > 3, see Refs. [19, 21, 25].

There is a counterexample, showing that, if K is an o-centered cube and L is a
distinct translate of K, then (6) does not hold for general non-o-symmetric convex
bodies. By introducing the notion of “dilation position”, Xi and Leng [23] proved
the log-Brunn—Minkowski inequality and the equivalent log-Minkowski mixed vol-
ume inequality for general planar convex bodies.
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Theorem 1.5 ([23]) If K and L are convex bodies in R> witho € KNL, and K, L
are in dilation position, then for all real /. € [0, 1],

V((1=2)-K +4-L)>V(EK) " IV(L, (13)

with equality for A € (0,1) if and only if K and L are dilates or K and L are
parallelograms with parallel sides.

Theorem 1.6 ([24]) If K and L are convex bodies in R? witho € KNL, and K, L
are in dilation position, then

hr 1 V(L)
/log dVi > 5 gv( ) (14)
with equality if and only if K and L are dilates or K and L are parallelograms with
parallel sides.

The Orlicz—Brunn—Minkowski theory originated with the work of Lutwak et al.
[15, 16]. By introducing the Orlicz—Minkowski addition, Gardner, Hug and Weil
[4], and Xi et al. [24] proved the Orlicz—Brunn—Minkowski inequality and Orlicz—
Minkowski inequality. It is a natural extension of the L,-Brunn—Minkowski theory
for p> 1. For dual Orlicz—Brunn—Minkowski theory see [5, 26].

Let @ be the set of strictly increasing functions ¢ : (0,00) — I C R which are
continuously differentiable on (0,00) with positive derivative, and satisfy that
lim,_. ¢(t) = co and that logod ™" is concave. Observe that whenever ¢ € ® is
convex, the composite function logo¢™' is concave. The collection of convex
Sfunctions from ® shall be denoted by C.

Let 2. € [0,1] and ¢ € ®. For u € S""!, we define a function h;(u) as

ot =5 > 0+ (1= ) (") g (") <o )

By the strict monotonicity of ¢, we have

I

The ¢-combination (1 — 1) -K +4 A-L of K,L € K, is defined in Ref. [17] by
(1=2)-K+4i-L= () {xeR" :x-u<hy(u)}. (17)

uesSn—1

Note that if ¢(t) = t” with p > 0, then the ¢-combination reduces to the L,-Min-
kowski combination. Further, if ¢(r) = alog(t)(o > 0), then we retrieve the log-
Minkowski combination. In Ref. [17], Lv proved the ¢-Minkowski inequality and ¢-
Brunn—Minkowski inequality for general functions ¢ for o-symmetric planar convex
bodies K, L. If ¢(t) =, p € (0, 1), then the ¢p-Minkowski inequality reduces to the
L,-Minkowski inequality (12) and L,-Brunn—Minkowski inequality (11).
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In this paper, we first present a new proof Theorem 1.6, and extend Theorems 1.3
and 1.4 from p € (0, 1) and o-symmetric convex bodies K, Lto general case ¢ and
general convex bodies K, L. More precisely, we have the following main results.

Theorem 1.7 Let ¢ € ® with ¢ # alog(a > 0), and K and L are planar convex
bodies containing the origin o in their interiors, and o € K N L. If K and L are at a

dilation position, then
E - V(L)
/ ¢(hK)dvkz¢<—V(K) ) (18)

with equality if and only if K and L are dilates.

Ol—

ol

Theorem 1.8 Let ¢p € ®, ¢ # alog(a > 0) be concave on (0,00), and K and L are
planar convex bodies containing the origin o in their interiors, and o € K N L. If K
and L are at a dilation position, then for all real J. € [0, 1],

V(1L =72)-K +4 2-L) > V(K) V(L) (19)

with equality for A € (0,1) if and only if K = L.

2 Preliminaries

Let K" be the class of convex bodies (compact convex sets with nonempty interiors)
in R", and let K, be those sets in K" containing the origin in their interiors.

The support function hg : R" — R, of compact convex subset K of R" is defined
by hg(x) = {x-y:y € K}, for x € R", and uniquely determines the convex set.

A boundary point x € 0K of the convex body K is said to have u € ! as one of
its outer unit normals provided x - u = hg (u). A boundary point is said to be singular
if it has more than one unit normal vector. It is well known that the set of singular
boundary points of a convex body has (n — 1)-dimensional Hausdorff measure
H"! equal to 0.

Let K € K" and vg : 0K — S"~! the generalized Gauss map. For each Borel set
@ C §"7!, the inverse spherical image v '(w) of w is the set of all boundary points
of K which have an outer unit normal belonging to the set w. The surface area
measure Sg of K € K" is defined by

Sk(w) =H"" (v (@), (20)

for each Borel set o C $"7!, ie., Sk(w) is the (n— 1)-dimensional Hausdorff
measure of the set of all points on 0K that have a unit normal that lies in m.

The Hausdorff distance dy(K,L) of compact convex sets K, L is defined by
du(K,L) = ||hg — hr]|- A sequence of convex bodies, Kj, is said to converge to a
body K, i.e., lim;o K; = K if dy(K;,K) — 0. If K is a convex body and K; is a
sequence of convex bodies then

T Birkhauser
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lim K; = K = lim Sk, = Sk, weakly. (21)

1—00 1—00

The cone-volume measure Vg of K € K" is a Borel measure on the unit sphere
S"=! defined for a Borel set w C S"~! by

1
Vie(o) =+ / X v (X dH (x), (22)
n Jxevi' (o)
and thus
1
dVi = ~ hgdS. (23)
Since,
1
V(K) = —/ hi (u)dSk (u), (24)
nJyes-1
we can define the cone-volume probability measure Vi of K by
Ve=—L v 25

Suppose K, L € K. For p # 0, the L,-mixed volume V, (K, L) can be defined as

P
V,(K,L) = / (ff) dvi. (26)
MGS”’I K

The normalized L,-mixed volume V,(K,L) was first defined in Ref. [14],

For p = oo, we define

Voo (K, L) = max{hy/hk : u € suppSk}, (28)
and we have
lim V,(K,L) = Voo (K, L). (29)
p—0

Letting p — 0 gives
_ hy -
Vo(K,L) = exp log—dVg |, (30)
ues ! hK
which is the normalized log-mixed volume of K and L. From Jesen’s inequality we

know that p—V,(K, L) is strictly monotone increasing, unless s /hx is constant on
suppSk.
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Suppose K, L € K". The inradius (K, L) and R(K, L) of K with respect to L are
defined by

r(K,L) =sup{t >0:x+tL C K andx € R"},
R(K,L)=1inf{r >0:x+4¢L D K and x € R"}.

From the definition, it follows that r(K,L) = 1/R(L,K).
If K, L happen to be o-symmetric convex bodies, then clearly

r(K,L) = min e () and R(K,L) = max fc () .
ues*! hL(u) ues"-! hL(I/l)

(31)

Let K,L € K". K and L are said to be at a dilation position, if o € K N L, and
r(K,L)L C K C R(K,L)L. (32)

The definition and some properties of dilation position were first given by Xi and
Leng [23]. It is easy to prove that if K, L are o-symmetric convex bodies, then K and
L are at a dilation position.

In general, we refer the reader to [20] for standard notation concerning convex
bodies.

3 A new proof of Theorem 1.6

In Ref. [18], Ma gave a proof of Theorem 1.1. In the following, we demonstrate an
alternate proof of Theorem 1.5 by employing Ma’s approach [18]. The following
lemma is needed in our proof.

Lemma 3.1 ([23]) Let K,L € K* with o € KN L. If K and L are at a dilation
position, then

h _
Kavg <

o hL VL) (33)

with equality if and only if K and L are dilates, or K and L are parallelograms with
parallel sides.
We repeat the statement of Theorem 1.6, and present our approach.

Theorem 3.2 ([23]) If K and L are convex bodies in R? witho € KNL, and K, L
are at a dilation position, then

hy - 1 V(L)
log—dVgx > —log ——=% 4
/Sl Ogh[( k= 2 g V(K) ’ (3 )

with equality if and only if K and L are dilates or K and L are parallelograms with
parallel sides.
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Proof Set
i v 1 V(L + 1K)
F(t)= [ 1 dVg — zlog| ———+—= 0 . 35
0= [ toe(" Yavi — jrog (VT ) e 69
Since Ay = hy + thg and V(L +tK) = V(L) +2V(L,K)t + V(K)t*, we have
_ (V(L,K) + V(K)t

! _ hg + )
F) = /SI hL+tthVK_ V(L) +2V(L,K)i + V(K)??

hg .- V(L+1K,K)
= dvg —
St hL-HK (L + tK)

By Lemma 5.2 of Ref. [23], we have K and L+ tK are at a dilation position.
Therefore, we get F'(¢) <0 from Lemma3.1, which implies that F(¢) is decreasing
on [0, 00).

By mean value theorem for inteérals, there exists uy € S' such that

h - h
/ log( LK ) gy, = 10g< L+t1<(uo))_ (36)
St hK
Let t — oo, then

hg (uo)

:10g<hL(u0)+thK(u0)' V(K)? )

hi (uo) V(L+ tK)}
 tog [10) + thiluo) V(K)

hi (i) (V(L) + 2tV(L,K) + 2V (K))?
—0.

Therefore, F(r) >0 for ¢ € [0,00). In particular, F(0) >0, which implies
L

s V(K)

If the equality holds in (34), then F(0) = 0, which implies F(¢) = 0 for ¢ € [0, c0).
Therefore, F'(t) = 0 for all ¢t € [0,00). By Lemma 3.1, we have K and L + tK are
dilates, or K and L + tK are parallelograms with parallel sides. So, K and L are
dilates, or K and L are parallelograms with parallel sides. Conversely, if K and L
are dilates, or K and L are parallelograms with parallel sides, the equality of (34)
holds. O

log L dVi > ~1
og; Vx> 7 log

Remark 3.3 In Ref. [23], Xi and Leng proved that Theorems 1.5 and 1.6 are
equivalent.
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4 Proofs of Theorems 1.7 and 1.8

Suppose K, L € K. For ¢ € @, the ¢-mixed volume Vy(K,L) was defined in Ref.
[17] by

Vy(K,L) = /S . (Z) dvi. (37)

The normalized ¢-mixed volume V4 (K, L) of K, L € K was defined in Ref. [17]

by
Vo(K,L) = ¢! (/S ¢(:_,L<> dVK>. (38)

In particular, if ¢(r) = # with p > 0, the normalized ¢-mixed volume Vj(K,L)
reduces to the normalized L,-mixed volume V,,(K,L).
We repeat the statements of Theorems 1.7 and 1.8.

Theorem 4.1 Suppose that ¢ € @ with ¢ # alog(e > 0), and K,L € K2 with
o€ KNL If K and L are at a dilation position, then
h - V(L
/¢(L>dVKZ¢ ), (39)
s\l V(K)
Proof From the log-concavity of ¢, we have
hy . - h -
/ log —dVi < logo¢p ™! ( / o <—L> de) : (40)
gn—1 hK gn—1 hK

with equality if and only if K and L are dilates.
which is equivalent to

exp(/sﬂ1 logZ—:dVK) <¢! (~/S"' d)(Z_,L() dVK>. (41)

Vo(K,L) <Vg(K,L), (42)

Ol—

ol—

That is

with equality if and only if A, /hg is constant on suppSk. From (14), we have

‘7¢, (K, L) > V(L)E

; (43)

which leads to (39). From the equality condition of (14) and (42), we have equality
holds in (39) if and only if K and L are dilates. O

T Birkhauser
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Theorem 4.2 Suppose that ¢ € @, ¢ # alog(o > 0) be concave on (0,00), and
K,Le IC(Z) with o € KN L. If K and L are at a dilation position, then for all real
A €0,1],

V((1=2) K+ 2-L)>V(K)" V(L) (44)
with equality for A € (0,1) if and only if K = L.
Proof Set Q; = (1 —A)-K +¢ 4- L. From (16) and the concavity of ¢, we have

=1 o (8) ()

By the monotone property of ¢, we have
hy, <(1 = 2)hg + Ahy. (46)

From (17), we have h, = hy, with respect to the surface area measure Sp,.

Hence, we have
0, C(1—-A)K+AL. (47)

On the other hand, from (16), we have

R )

o (e () s0(29)
N 0 |
o) hulw)

=

>(1—2)log + Alog

hl—/lh),
— log KhA L,

which implies ik *h; < h;. Hence,

(l—ﬂv)-K—H))wLCQ), (49)

From (13), we have ) )
V(Q)>V((1=2) K49 4-L)>V(K) V(L) (50)

If equality holds in (44), then V((1 — 2)- K +¢ 4- L) = V(K)""*V(L)". By the
equality condition of (13), we have K and L are dilates. In addition, from
V(Q))=V((1—=2)-K+¢A-L),wehave (1 —2)-K +o A-L = Qj, which implies
K =1L O

W Birkhauser
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We can get the L,-Minkowski inequality and L,-Brunn—Minkowski inequality
for general planar convex bodies by setting ¢(¢) = #” in Theorems 4.1 and 4.2.

Corollary 4.3 Suppose that 0<p<1,and K,L € /Ci witho € KN L. If K and L are
at a dilation position, then

1 1
h\? P V(L) \2
/ LA AR AICAY (51)
S1 hK V(K)
with equality if and only if K and L are dilates.

Corollary 4.4 Suppose that 0<p<1,and K,L € ICz witho € KNL. If K and L are
at a dilation position, then for all real 1 € [0, 1],

V(1 =72)-K +4 2 L) > V(K) V(L) (52)

with equality for A € (0,1) if and only if K = L.

5 ¢-Minkowski measure of asymmetry

In the well-known paper [6], abstracting from some extremal problems arising from
geometry or other mathematical branches and from the previous work of many
mathematicians, Griinbaum formulated a concept of measures of asymmetry (or
symmetry) for convex bodies which, among other applications, can be used to
describe how far a convex set is from a (centrally) symmetric one. Since then, the
properties and applications of these known asymmetry measures are studied by
many mathematicians (see [7-11, 22] and references therein).

In Ref. [7], Guo introduced a family of measures of (central) asymmetry, the so-
called p-measures of asymmetry, which have the well-known Minkowski measure
of asymmetry as a special case, and showed some similar properties of the p-
measures to the Minkowski one. In Ref. [11], Jin, Leng and Guo extended the p-
Minkowski measure of asymmetry to an Orlicz version. In addition, Jin et al. [11]
showed that p (1 <p < oo)-Minkowski measures of asymmetry are closely related
to L,-mixed volumes. More precisely, we can define p (1 <p < oo)-Minkowski
measures of asymmetry by L,-mixed volumes. In Ref. [9], Jin introduced a measure
of asymmetry asy(K) for planar convex bodies K in terms of the log-mixed volume,
and extended the p-Minkowski measures of asymmetry to the case 0 <p < oc.

For K € K", x € int(K) and 1 < p < 0o, the p-Minkowski measure of asymmetry
of K is defined by

(€)= dhle) VoK =K, (53)
where K, denotes K + {—x}. A point x € int(K) satisfying V,(Ky, —K) = as,(K) is
called a p-critical point of K. The set of all p-critical points is denoted by C,(K). The
well-known Minkowski measure of asymmetry is the special case that p = oo.

Theorem 5.1 ([6, 7]) For 1 <p<oo, if K € K" then,

T Birkhauser
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1<as,(K)<n, (54)

equality holds on the left-hand side if and only if K is symmetric, and on the right-
hand side if and only if K is a simplex.
For the p-critical set C,(K), we have the following theorem.

Theorem 5.2 ([6, 7]) For 1<p<oo, and K € K", we have the following
statements:

(1) if p=1, then C;(K) = int(K);

(2) if p = o0, then Cx(K) is a convex set with dim(C (K)) 4 asoo (K) <y

(3) if p € (1,00), then C,(K) is a singleton.

Note that if K € K2, then Co (K) is a singleton, i.e., each planar convex body has
a unique critical oco-critical point.

For fixed K € K", we denotes the unique p-critical point of K by x, for

€ (1,00). It is easy to see that x, are coincide with the center of K if K is
symmetric; if K is a simplex, then x, are coincide with the centroid of K. There are
some other convex bodies that have this property that all p(1<p<oo)-critical
points coincide.

Example 5.3 (1) If K := ajayazas with a;(—3,0),a2(0,—-3),a3(4,0) and a4(0, 3),
then the quadrilateral K has centroid c¢(§, 0) and %y (75,0) for p € (1,00];

(2) If K .= ayazasag with al( ) ( , ) a3(12 0) and 04(0 5) then the
quadrilateral K has centroid ¢(3,0) and x,(8,0) for p € (1, 00].

Therefore, we state the following problem.

Problem 5.4 Suppose that K € K". Is it that dim(conv{x, : p € (1,00)}) = 0?
The p-Minkowski measure of asymmetry for the case p € [0, 1) is introduced in
Ref. [9].
Given K € K2, let s € Cs(K) be the unique oo-critical point of K. The log-
Minkowski measure asy(K) of K is defined by

aso(K) = Vo(Ks, _Ks)- (53)

Theorem 5.5 ([9])
IfK € K2, then,

1 <aso(K) <2. (56)

Equality holds on the left-hand side if and only if K is symmetric, and equality
holds on the right-hand side if and only if K is a triangle.

If we define asy(K) = infcink) Vo(Ky, —K,), then when K is a square,
aso(C) < 1. This result shows that asy(K) is not a measure of asymmetry in the sense
of Grunbaum [6].

In the following, we introduce a new measure of asymmetry in terms of the
normalized ¢-mixed volume.
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Definition 5.6 Suppose that ¢ € ® be concave on (0,00), K € K%, and s € Co(K)
be the unique oo-critical point of K. The ¢-Minkowski measure asy(K) of K is

defined by
asy(K) = Vo (Ky, —K;). (57)

For the ¢-Minkowski measure, we have the following theorem.

Theorem 5.7 Suppose that ¢ € ® be concave on (0,00). If K € K2, then,
1 <asg(K) <2. (58)

Equality holds on the left-hand side if and only if K is symmetric, and equality
holds on the right-hand side if and only if K is a triangle.

Proof From (57), (42) and (56), we have
asy(K) = Vy(K;, —K;)
Z VO(K?» _KS‘)
=asp(K)
> 1.

On the other hand, from the concavity of ¢, we have

hog\ .- hog -
/ qb( K‘)dVKSqu(/ KVdv,g) (59)
Sn—1 h[{Y sn—1 hK;

From (27), (38), (53), (54) and (59), we have
asg(K) = Vy(K,, ~K.)

! h-k\ 4y
(o Ge)ens)

hog .-
< —dV,
- /S'nfl th K

= ‘71 (Kv» _Kv)
=as;(K)
< 2.

Hence,
1 <aso(K) <asg(K) <as;(K)<2.
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If K is symmetric, then we have 1 =asy(K) <asy(K)<as;(K) =1, which
implies asy(K) = 1; Conversely, if asy(K) =1, then 1<aso(K)<asy(K) =1,
which implies asy(K) = 1, so K is symmetric.

If K is a triangle, then we have 2 = asy(K) <asy(K) <as;(K) =2, which
implies asy(K) = 2; Conversely, if asy(K) =2, then 2 = asy(K) <as;(K) <2,
which implies as; (K) = 2, so K is a triangle. O
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