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Abstract
The main purpose of this note is to prove the following: let n� 3 be a fixed integer

number and let K be a convex body such that for every equiangular circumscribed

n-gon, the midpoints of its sides belong to K. Then K is a disc. We also prove that a

3-dimensional convex body K such that the centers of the faces of all its circum-

scribed regular tetrahedra belong to K is a ball.

Keywords Euclidean ball � Isoptic curves � Equiangular polygons
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1 Introduction

The Euclidean ball has been extensively studied for a long time. Since it is a

geometric object rich in interesting properties, several characterizations of the ball

have appeared in the literature. We are especially interested in characterizations that

are related to properties of circumscribed polytopes. We must recall that a polytope

is the convex hull of a finite set of points, for instance, the convex hull of a finite set

of points in the plane is a polygon. We say that a convex set K � Rn, n� 2, is a

convex body if it is compact and with non-empty interior. A polytope P is
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circumscribed to a convex body K if K � P and every n� 1-dimensional face of P
is tangent to K. We have the following: Let K � Rn be a convex body and let P be

any rectangular parallelepiped circumscribed to K. If the centers of all the ðn� 1Þ-
dimensional faces of P are in the boundary of K, then K is a ball. This

characterization was posed as a problem in 1926 by Blaschke (see [4]) and was

solved by Kneser (see for instance [5]). The two dimensional analogue of this result

was proved by Green [7], Khassa [10], and Groemer [8]. In [2], Bezdek and

Connelly proved a similar result that considers equilateral circumscribed triangles

instead of rectangles.

A convex polygon, all of whose internal angles have the same measure is called

an equiangular polygon. In the case of three and four sides the corresponding

equiangular polygons are the equilateral triangles and the rectangles. Inspired by the

two results mentioned above and looking for another proof of a Gutkin’s theorem on

caustics of constant angle (see [9]), the following was conjectured in [1]:

Conjecture 1 Let n� 3 be a fixed integer number and let K � R2 be a convex body
such that for every equiangular circumscribed n-gon, the midpoints of its sides
belong to K. Then K is a disc.

In this note, we provide a proof for this conjecture and a characterization of the

3-dimensional ball in the sense of the Blaschke–Kneser’s result mentioned at the

beginning. More precisely, we prove the following two results.

Theorem 1 Let n� 3 be a fixed integer and let K � R2 be a convex body. Suppose
that for every equiangular circumscribed n-gon, the midpoints of its sides belong to
K. Then K is a disc.

Theorem 2 Let K � R3 be a convex body. Suppose that for every circumscribed
regular tetrahedra the centers of its faces belong to K. Then K is a ball.

2 Auxiliary results on isoptic curves

The proof of Theorem 1 relies in some results related to some especial curves

known as isoptic curves. Let K be a strictly convex body (without segments in its

boundary) in the plane with differentiable boundary. For any a 2 ð0; pÞ, the a-
isoptic Ka of K is defined as the locus of points from which K is seen under an angle

a, i.e., Ka is the set of points where two tangent lines of K intersect at an angle a (see

Fig. 1).

Isoptic curves were first studied by La Hire in 1704 and Chasles in 1837, and

have important applications in Kinematic Geometry, cam mechanisms, architecture,

and there is an extensive bibliography dealing with isoptic curves and their

properties [3, 5, 11].

Let p : R ! R denote the support function of K, i.e., the value p(t) is defined as

maxz2Khz; ðcos t; sin tÞi. In particular, if O is in the interior of K and using complex

notation, we have that p(t) is the positive number such that pðtÞeit lies on one of the
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two tangent lines of K that are orthogonal to eit. It is well known that the boundary

of K can be parametrized by (see [11] and Fig. 2)

zðtÞ ¼ pðtÞeit þ p0ðtÞieit; ð1Þ

while Ka can be parametrized as (see [6])

zaðtÞ ¼ pðtÞeit þ pðtÞ cot aþ 1

sin a
pðt þ p� aÞ

� �
ieit: ð2Þ

For any t 2 R, we denote (see Fig. 3)

aðtÞ ¼ jzaðtÞ � zðtÞj; ð3Þ

bðtÞ ¼ jzaðtÞ � zðt þ p� aÞj: ð4Þ

After some simple computations, we have (see Fig. 4)

Fig. 1 The p=2-isoptic of an
ellipse is a circle

Fig. 2 Parametrization of the
boundary of K
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Fig. 3 Parameters of the isoptic
curve

Fig. 4 aðtÞ ¼ 1
sin a pðt þ p� aÞ þ pðtÞ cos a� p0ðtÞ sin a½ �
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aðtÞ ¼ 1

sin a
½pðt þ p� aÞ þ pðtÞ cos a� p0ðtÞ sin a�; ð5Þ

bðtÞ ¼ 1

sin a
½pðt þ p� aÞ cos aþ p0ðt þ p� aÞ sin aþ pðtÞ�: ð6Þ

3 Proof of Theorem 1

We need the following lemmas.

Lemma 1 Let a 2 ð0; pÞ. For any natural number n� 2, the following inequality is
satisfied:

j sin naj\n sin a:

Proof Notice that

j sin 2aj ¼ j2 cos a sin aj\2j sin aj ¼ 2 sin a:

Assume that j sin naj\n sin a, for every n� k, where k is a natural number. Then,

for n ¼ k þ 1, we have that

j sinðk þ 1Þaj ¼ j sin ka cos aþ sin a cos kaj
� j sin ka cos aj þ sin aj cos kaj
\k sin aþ sin a ¼ ðk þ 1Þ sin a:

Thus, the result follows by induction. h

To prove that the only convex body such that its circumscribed rectangles are

touched at the midpoints of their sides must be a disc, Green arrives in [7] to the

equation 2p0ðtÞ ¼ pðt þ p=2Þ � pðt � p=2Þ whose solution is of the form

pðtÞ ¼ cþ a sin t þ b cos t, which corresponds to the support function of a disc

(see Fig. 5). The following lemma shows that when we replace the angle p=2 by the

angle p� a, in Green’s equation, the solution is also of the same form.

Lemma 2 Let a be a fixed number in the interval ð0; pÞ and let p : R ! R be a
differentiable periodic function with period 2p that satisfies the differential equation

2 sin a p0ðtÞ ¼ pðt þ p� aÞ � pðt � pþ aÞ: ð7Þ

Then p is of the form pðtÞ ¼ cþ a sin t þ b cos t, where a, b and c are real constants.

Proof Since p is a periodic function with period 2p, we may consider its Fourier

series, i.e.,

pðtÞ ¼ a0
2
þ
X1
n¼1

an cos nt þ bn sin ntð Þ:
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On the other side, the Fourier series of p0 is given by (see for instance [8])

p0ðtÞ ¼ �
X1
n¼1

nan sin nt � nbn cos ntð Þ:

Substituting the Fourier series representation of p and p0 into (7) gives

� 2 sin a
X1
n¼1

nan sin nt � nbn cos ntð Þ

¼ a0
2
þ
X1
n¼1

an cos nðt þ p� aÞ þ bn sin nðt þ p� aÞ½ �

� a0
2
�
X1
n¼1

an cos nðt � pþ aÞ þ bn sin nðt � pþ aÞ½ �:

Simplifying the previous equation using trigonometrical identities yields

sin a
X1
n¼1

nan sin nt � nbn cos nt½ � ¼
X1
n¼1

sin nðp� aÞ an sin nt � bn cos nt½ �:

For n ¼ 1, we have

ða1 sin t � b1 cos tÞ sin a ¼ ða1 sin t � b1 cos tÞ sinðp� aÞ:

Since sin a ¼ sinðp� aÞ, the previous equality holds for any real numbers a1 and b1.
Now, for any n[ 1, we have

ðan sin nt � bn cos ntÞn sin a ¼ ðan sin nt � bn cos ntÞ sin nðp� aÞ:

By Lemma 1, we know that n sin a 6¼ sin nðp� aÞ for a 2 ð0;pÞ, it follows that

an sin nt � bn cos nt ¼ 0; for every t 2 ½0; 2pÞ: Hence, we have that an ¼ bn ¼ 0 for

every n[ 1. Therefore,

Fig. 5 Support function of a
disc with center (a, b) and radius
c
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pðtÞ ¼ a0
2
þ a1 cos t þ b1 sin t:

h

We have the following result.

Theorem 3 Let K be a strictly convex body with differentiable boundary. If there
exists an a 2 ð0; pÞ such that bðtÞ ¼ aðt þ p� aÞ for every t 2 R, then K is a disc.

Proof Using the hypothesis bðtÞ ¼ aðt þ p� aÞ and Eqs. (5) and (6), we have

2 sin a p0ðt þ p� aÞ ¼ pðt þ 2p� 2aÞ � pðtÞ:

Letting h ¼ t þ p� a, we obtain the differential equation

2 sin a p0ðhÞ ¼ pðhþ p� aÞ � pðh� pþ aÞ:

It follows from Lemma 2 that p is of the form pðhÞ ¼ cþ a sin hþ b cos h, i.e., p is

the support function of a disc with center (a, b) and radius r ¼ c. h

Proof of Theorem 1 Let n be any integer greater than or equal to 3. It is not difficult

to see that a convex body with the property that all the sides of the circumscribed

equiangular n-gons are touched at their midpoints must be strictly convex and with

differentiable boundary. Since the circumscribed n-gons are equiangular, we have

that all its vertices are in the isoptic curve Ka, for a ¼ ðn�2Þp
n : The hypothesis of the

theorem means that aðt þ p� aÞ ¼ bðtÞ for every t 2 R, so we apply Theorem 3

and conclude that K must be a disc. h

4 Proof of the 3-dimensional characterization of the ball

Before proving Theorem 2, we show an easy consequence of Theorem 1 which

contains as a particular case the Blaschke–Kneser’s theorem. We say that a prism is

an n-equiangular prism if its base is an equiangular polygon with n sides.

Proposition 1 Let K � R3 be a convex body and let n� 3 be a fixed integer
number. If all the lateral faces of every circumscribed n-equiangular prism are
touched at their centers, then K is a ball.

Proof Let u 2 S2 be a fixed direction. Consider all the n-equiangular prisms

circumscribed to K and whose base is orthogonal to u. Since the lateral faces of any
circumscribed prism are touched at their centers, we have that the orthogonal

projection of K in direction u, denoted by puðKÞ, is a planar convex body with the

property that the sides of every circumscribed equiangular n-gon are touched at their
midpoints. We apply Theorem 1 and obtain that puðKÞ is a disc. Since this is true for
every vector u 2 S2, we have that all the 2-dimensional projections of K are discs,

therefore, K is a ball. h
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Proof of Theorem 2 Let u 2 S2 be an arbitrary unit vector and let H(u) be the

support plane of K which has u as outward normal vector. Consider an arbitrary

regular simplex circumscribed to K with one face on the plane H(u). The envelope

of the sides of the faces contained in H(u), of all such simplexes, is a convex curve

cðuÞ. To see that cðuÞ is the boundary of a convex set just notice the following: if

‘ � HðuÞ is the line that contains one side of a simplex (among the simplexes with

one face in H(u)), then cðuÞ is contained in a half-plane in H(u) with boundary ‘.
This means that through every point of cðuÞ there exists a support line and hence

cðuÞ is the boundary of a convex planar body (see for instance [11]).

By hypothesis, we have that cðuÞ has the property that the sides of every

circumscribed equilateral triangle are touched at their midpoints. By Theorem 1, we

have that cðuÞ is a circle. Every tangent line of the circle cðuÞ is obtained as

intersection between H(u) and a support plane of K which has outward normal

vector forming an angle b ¼ p� 2 arcsinð 1ffiffi
3

p Þ with respect to u. It follows that all

the support planes of K with outward normal vector forming an angle b with respect

to u, concur at a point xu: Note that the central projection of K over the plane H(u)
from the point xu is precisely the disc with boundary cðuÞ. If we consider all the unit
vectors u 2 S2, the points xu comprise a closed surface X which encloses K and

such that from every point z 2 X, K looks circular. It was proved by Bianchi and

Gruber [3], that a convex body under these conditions must be a ball. Therefore, the

proof is complete. h
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