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Abstract
We study semi-Riemannian hypersurfaces with a canonical principal direction

(CPD) with respect to a nondegenerate closed conformal vector field on a semi-

Riemannian ambient manifold. We give a characterization of such hypersurfaces. In

the case when such hypersurface is a surface with constant mean curvature in a

semi-Riemannian space form, we prove that it has an intrinsic Killing vector field. A

special case of hypersurfaces with a CPD are those with constant angle with respect

to a parallel vector field in the semi-Riemannian ambient. We prove that a surface

with zero mean curvature and constant angle, in a Loretzian ambient of arbitrary

dimension, is necessarily flat. When the surface is timelike and the ambient has non

positive curvature then the surface is totally geodesic. When the surface is spacelike

and the ambient has non negative curvature then the surface is totally geodesic. In

general when the ambient is of dimension three then the surface is always totally

geodesic.
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1 Introduction

It is well known that a hypersurface in a semi-Riemannian ambient does not

necessarily have a principal direction, which is an eigenvector of its shape operator.

Of course spacelike hypersurfaces have a diagonalizable shape operator and so a

basis of principal directions. But for example a timelike or a hypersurface whose

metric have index greater than one could not have one. Let us recall that in

Minkowski three dimensional space there are non trivial flat surfaces with zero

mean curvature with a unique principal direction which is lightlike: For example the

last surface given in the classification Theorem 5.1 of [3]. So it is interesting to

investigate those hypersurfaces with a principal direction, in particular those

hypersurfaces with a special one.

We say that a nondegenerate hypersurface isometrically immersed in a semi-

Riemannian ambient manifold has a canonical principal direction if the tangent part

of a vector field in the ambient is a principal direction. In this manuscript, we ask

this vector field in the ambient to be closed conformal, in particular it could be a

parallel vector field. The first works in the literature about surfaces with a canonical

principal direction with respect to a parallel vector field in the ambient manifold

were [5] and [6]. The Riemannian ambient manifolds in these works are S2 � R and

H2 � R, respectively. Since then, many other works have appeared: [4, 8, 9]. In [8],

where the authors investigated CPD hypersurfaces with respect to a closed

conformal vector field in a Riemannian ambient manifold. In [14], the authors

extended some results of [8] into a Lorentz ambient. We want to remark the recent

work [2], where the authors consider the concept of canonical vector field with

respect to a radial (which is closed conformal) vector field in semi-Euclidean space.

We should remark that helix or constant angle hypersurfaces (see Definition 3.1)

with respect to a parallel or closed conformal vector field in some semi-Riemannian

ambient manifolds are examples of CPD hypersurfaces as we can check in [10] and

[7]. This latter class of surfaces have been also studied with respect to a Killing

vector field in instead of a parallel or a closed conformal one, see for example [12]

and [11].

We now describe the three main results in this manuscript. In Theorem 2.14, we

give a characterization of CPD semi-Riemannian hypersurfaces with respect to a

closed conformal vector field Z in the ambient. In particular, to have a CPD is

equivalent to: The integral curves of the normalized tangent part T :¼ ZT=jZT j of
Z are geodesics of the hypersurface. In Theorem 2.20, we prove that in a CPD

nondegenerate surface with constant mean curvature the vector field fT is closed

conformal and fW is Killing, where W is unitary and orthogonal to T and f is an

explicit function on M. This can be interpreted as the surface having some

symmetry. Finally, in Theorem 3.7, we consider nondegenerate surfaces in a

Lorentzian ambient of arbitrary dimension, with zero mean curvature and constant

angle with respect to a parallel vector field. We deduce that. they are flat. We also

have that such surfaces are totally geodesic under any of the following conditions:

• The ambient has dimension three.

• The surface is timelike and the ambient has non positive curvature.
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• The surface is spacelike and the ambient has non negative curvature.

2 Hypersurfaces with a canonical principal direction

Notation 2.1 In this manuscript we assume the next facts and use the following
notation:

• All the manifolds, functions, vector fields are of class C1.

• N is a semi-Riemannian manifold. Standard references are [13] and also [1].

• Z is a vector field on N.
• M is a nondegenerate immersed submanifold of N, i. e. the induced metric on

M is nondegenerate.
• We denote by D the Levi–Civita connection of N and by r the Levi–Civita

connection of M.

• n is an unitary vector field orthogonal to M.

• An is the shape operator of M in N with respect to the normal vector field n.
• a denotes the second fundamental form of M in N.

• r? is the normal connection on the normal bundle of M in N.

• ZT is the tangent part of Z on M and Z? its orthogonal part. We will assume that

Z> and Z? are nowhere zero on M and are nondegenerate in the sense that they
are either spacelike or timelike vector fields.

Definition 2.2 Let N be a semi-Riemannian manifold. Let Z be a vector field on N.
We say that Z is a closed conformal vector field, if there exists a function u on N
such that for every Y 2 XðNÞ we have the relation

DYZ ¼ uY :

Notation 2.3 In the next results of this section we will assume that:

• Z will be a nondegenerate closed conformal vector field on the semi-Riemannian
manifold N. So, Z will be either timelike or spacelike.

• M will be a hypersurface of N.

Definition 2.4 Let us consider a nondegenerate hypersurface M � N. We say that a

vector field X on M is a principal direction of M, if AnðXÞ ¼ jX for some function j
on M.

Remark 2.5 In general, when the hypersurfaceM is timelike the principal directions

do not necessarily exist. On other hand, when M is spacelike its shape operator An is

diagonalizable.

Definition 2.6 We say that a nondegenerate hypersurface L of N is umbilical if and

only if the shape operator AL of L satisfies:
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AL
m ðuÞ ¼ f m;

for some function f on L and for every u 2 XðLÞ. Here m is a unitary vector field

orthogonal to L.

A direct computation proves the next result.

Lemma 2.7 Let Z be a nondegenerate closed conformal vector field on N.

(1) If Y 2 XðNÞ is orthogonal to Z, then Y � jZj ¼ 0.

(2) The integral curves of Z are geodesics in N.
(3) If Z is nowhere zero along N then the orthogonal distribution to Z is

integrable with umbilical leaves.

Example 2.8 Of course, parallel vector fields are closed conformal vector fields

with u � 0. But there are closed conformal vector fields which are non parallel.

Let I � R be an open interval. In the semi-Riemannian warped product I �q N
there is a natural closed conformal vector field: the vector field qot. Here q : I �! R

is a C1 positive function. ot is the lift into I � N of the canonical unitary vector

field on the interval I. We apply the properties of the Levi–Civita connection D of

the above semi-Riemannian warped product. In particular, we apply Proposition 35,

p. 206 of [13]. We have that

Dotot ¼ 0; DVot ¼
ot � q
q

V ;

for every vector field V on I �q N tangent to the leaves ftg � N. Therefore,

DotðqotÞ ¼ ðot � qÞot; DVðqotÞ ¼ ðV � qÞot þ qDVot ¼ ðot � qÞV :

This proves that for every vector field Y on I �q N, DYðqotÞ ¼ ðot � qÞY , i.e. qot is a
closed conformal vector field.

Lemma 2.9 Let M be a nondegenerate hypersurface of a semi-Riemannian
manifold N. Then we can decompose Z as

Z ¼ k � T þ l � n

where T, n, k y l are defined by

• T :¼ ZT

jZT j

• n :¼ Z?

jZ?j
• k :¼ jZT j
• l :¼ jZ?j.

Proof We can decompose Z in its tangent and normal parts to obtain
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Z ¼ ZT þ Z?

¼ jhZT ; ZTij1=2 � T þ jhZ?; Z?ij1=2 � n

¼ k � T þ l � n:

h

Proposition 2.10 The following equations are valid for the immersed hypersurface
M � N: Let X 2 XðMÞ, then

(a) u � X ¼ XðkÞ � T þ k � rXT � l � AnX
(b) 0 ¼ XðlÞ � nþ k � aðX; TÞ

where

• u 2 C1ðNÞ such that DXZ ¼ uX

• k ¼ jZj � jkj1=2 ¼ jZ>j and l ¼ jZj � jlj1=2 ¼ jZ?j.

Proof Let X 2 XðMÞ. Let us compute DXZ using the decomposition of Z in

Lemma 2.9

DXZ ¼ DX k � T þ l � n½ �

¼ ðX � kÞT þ kDXT þ ðX � lÞnþ lDXn

¼ ðX � kÞT þ k rXT þ aðX; TÞð Þ þ ðX � lÞn� lAnX:

On other hand, since Z is a closed and conformal vector field, DXZ ¼ u � X. Thus

u � X ¼ ðX � kÞT þ ðX � lÞnþ k rXT þ aðX; TÞð Þ � lAnX:

Now, we can take the tangent and normal parts of the above equation to get

u � X ¼ ðX � kÞT þ krXT � lAnX

0 ¼ ðX � lÞnþ kaðX; TÞ:

h

Example 2.11 We will see that if M is an umbilical hypersurface of N, then ZT is a

closed conformal vector field on M.

By Proposition 2.10, we have that for every X 2 XðMÞ

k � rXT ¼ �XðkÞ � T þ l � AnX þ u � X:

Equivalently,

rXðkTÞ ¼ lAnX þ uX

rXðjZ>j TÞ ¼ jZ?jAnX þ uX

rXZ
> ¼ jZ?jAnX þ uX:

Since M is an umbilical hypersurface, there is a function j on M such that
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AnX ¼ jX, for every X 2 XðMÞ.
We deduce that,

rXZ
> ¼ jZ?jjX þ uX ¼ ðjZ?jjþ uÞX:

This proves that Z> is closed conformal on M.

Let us observe that a semi-Euclidean space have parallel vector fields. This imply

that, the semi-Riemannian space forms have closed conformal vector fields because

they are umbilical hypersurfaces in a semi-Euclidean ambient manifold.

Corollary 2.12 Let W 2 XðMÞ be a vector field orthogonal to T. Let us define
un :¼ hn; ni ¼ �1. Then the following equations are valid:

(a) AnW ¼ 1

l
� ½WðkÞ � T þ k � rWT � u �W �

(b) AnT ¼ TðkÞ � u
l

� T þ k
l
� rTT

(c) aðW ; TÞ ¼ �WðlÞ
k

� n

(d) aðT; TÞ ¼ � TðlÞ
k

� n

(e) haðW ; TÞ; ni ¼ �WðlÞ
k

� un

(f) haðT ; TÞ; ni ¼ � TðlÞ
k

� un

(g) WðlÞ ¼ � k2

l
� un � hrTT ;Wi.

Proof

(a) In Proposition 2.10 (a), we can take X ¼ W and solve for An:

AnW ¼ 1

l
� ½WðkÞ � T þ k � rWT � u �W �:

(b) Similarly as in (a) above, now we can take X ¼ T :

AnT ¼ TðkÞ � u
l

� T þ k
l
� rTT:

(c) We apply again Proposition 2.10 (b), taking X ¼ W and solving for aðW ; TÞ:

aðW ; TÞ ¼ �WðlÞ
k

� n:

(d) Analogously as in (c) above, now we take X ¼ T :

aðT ; TÞ ¼ � TðlÞ
k

� n:
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(e) We apply (c) to get

haðW ; TÞ; ni ¼ �WðlÞ
k

� hn; ni ¼ �WðlÞ
k

� un:

(f) Now, we apply (d) above:

haðT; TÞ; ni ¼ � TðlÞ
k

� hn; ni ¼ � TðlÞ
k

� un:

(g) We can use that W y T are orthogonal and (b) above.

haðW ; TÞ; ni ¼ hW ;AnTi

¼ 1

l
� ½TðkÞ � u� � hW ; Ti þ k

l
� hW ;rTTi

¼ k
l
� hW ;rTTi:

On other side, we have that

haðW ; TÞ; ni ¼ �WðlÞ
k

; equivalently �WðlÞ
k

¼ k
l
� hW ;rTTi

and therefore

WðlÞ ¼ � k2

l
� un � hrTT ;Wi:

h

Definition 2.13 We say that a nondegenerate hypersurface M � N has a canonical

principal direction with respect to Z, if the tangent part Z> of Z along M is nowhere

degenerate and it is a principal direction of M.

Our Theorem 2.14 is an extension into a semi-Riemannian context of part of

Theorem 5 in [8] given in a Riemannian context. A similar result is Theorem 2.3 in

[14] for a spacelike hypersurface in a Lorentz ambient.

Theorem 2.14 Let M be a nondegenerate hypersurface of N. Then the following are
equivalent:

(1) M has a canonical principal direction with respect to Z, i.e. T is a principal
direction.

(2) jZ?j is constant along directions tangent to M and orthogonal to T.
(3) The integral curves of T are geodesics of M.

(4) In Z is nowhere zero on M, the function hZ=jZj; ni is constant in the directions
tangent to M and ortogonal to T.
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Proof Let W be a vector field in XðMÞ orthogonal to T. We have the following

implications:

• (1))(2)

Since T is a principal direction, we have that AnT ¼ h � T . By Corollary 2.12 (b),

we deduce that

h � T ¼ AnT ¼ TðkÞ � u
l

� T þ k
l
� rTT :

Solving for rTT we get

rTT ¼ l � h� TðkÞ � u
k

� �
� T :

Now, we substitute the latter equation in Corollary 2.12 (g):

WðlÞ ¼ � k2

l
� un � hrTT ;Wi

¼ � l � h� TðkÞ � u
k

� �
� k

2

l
� un � hT ;Wi ¼ 0:

Therefore

l ¼ jZ?j

is constant along the direction W.

• (2))(3)

Since l is constant, by Corollary 2.12 (g) we deduce that hrTT ;Wi ¼ 0.

Moreover, since T is unitary, we obtain that hrTT ; Ti ¼ ð1=2Þ � ThT; Ti ¼ 0.

This proves that rTT ¼ 0.

• (3))(1)

We have that rTT ¼ 0, so by Corollary 2.12 (b) we get that

AnT ¼ TðkÞ � u
l

� T þ k
l
� rTT ¼ TðkÞ � u

l
� T :

As a consequence, T is a principal direction.

• (2))(4)

Let us recall that Z? ¼ hn; nihZ; nin. Thus,

hZ?; Z?i ¼ hn; nihZ; ni2:

So, jZ?j ¼ jhZ; nij. We deduce that, jZ?j=jZj ¼ jhZ=jZj; nij. This says that

hZ=jZj; ni ¼ �jZ?j=jZj, where � ¼ �1. Let X 2 XðMÞ and orthogonal to T.

Therefore, X is also orthogonal to Z. By our assumption (2), X � jZ?j ¼ 0. By

Lemma 2.7, X � jZj ¼ 0. This implies that

X � hZ=jZj; ni ¼ �ðX � jZ?j=jZjÞ ¼ 0:
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• (4))(2)

In a similar fashion, we just have to apply the relation jZ?j ¼ �jZjhZ=jZj; ni and
Lemma 2.7.

h

Definition 2.15 Let F : N �! R be a function. We say that F is a transnormal

function if there is a function b : I �! R defined on some interval I � R such that

jrFj ¼ b 	 F:

Lemma 2.16 Let F : N �! R be a transnormal function. Let rF be a nowhere
zero vector field which is either spacelike or timelike. Then X � hrF;rFi ¼ 0 for
every X 2 XðNÞ orthogonal to rF.

Proof By our hypothesis, the level hypersurfaces of F are nondegenerate

hypersurfaces of N orthogonal to rF. Let X 2 XðNÞ be orthogonal to rF, in
consequence X is tangent to the level hypersurfaces of F. Now, let us observe that

jhrF;rFij ¼ ðb 	 FÞ2 and that it is nowhere zero. So, hrF;rFi ¼ �ðb 	 FÞ2,
where � ¼ �1. Therefore,

X � hrF;rFi ¼ 2�ðb 	 FÞ½X � ðb 	 FÞ� ¼ 0;

because the function b 	 F is constant along the level hypersurfaces of F. h

Example 2.17 We use a transnormal function to construct a hypersurface with a

canonical principal direction.

Let F : N �! R be a transnornal function such that hrF;rFi þ 1 is nowhere

zero along N. We also assume thatrF is nowhere zero and it is either spacelike or a

timelike vector field.

We verify that the graph of F given by

M :¼ fp ¼ ðx;FðxÞÞ 2 N � Rj x 2 Ng;

is a hypersurface in the semi-Riemannian manifold N � R with a canonical prin-

cipal direction with respect to the parallel vector field ot.

We proceed as follows: Let us observe that a unitary vector field orthogonal to M

is defined by n :¼ ðrF � otÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhrF;rFi þ 1j

p
. This is true because a basis on the

tangent spaces TpM is given by

fX1 þ ðX1 � FÞot; . . .;XdimN þ ðXdimN � FÞotg;

where X1; . . .;XdimN is any basis of T � N. In particular, if we choose the basis

rF; Y2; . . .; YdimN for TxN, with Y2; . . .; YdimN orthogonal to rF, the basis for TpM
becomes
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rF þ hrF;rFiot; Y2; . . .;YdimN :

Now, it is clear that n is orthogonal to the latter basis of TpM because ot is

orthogonal to rF; Y2; . . .; YdimN .

This observation also implies that o>t is linearly dependent of rF þ hrF;rFiot.
In particular, a basis for the orthogonal directions to o>t and tangent toM is given by

Y2; . . .; YdimN .
Finally, we will apply Theorem 2.14 case (4): We need the following

computation,

hot; ni ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhrF;rFi þ 1j

p
:

By Lemma 2.16, hrF;rFi is constant along the level hypersurfaces of F. Since,
Y2; . . .; YdimN are orthogonal to rF and tangent to N, they are also tangent to the

level hypersurfaces of F. But these directions Y2; . . .; YdimN are tangent to M as was

explained above. So, hot; ni is constant along the directions tangent to M and

orthogonal to rF. This proves that the hypersurface M of N ¼ M � R has a

canonical principal direction with respect to Z ¼ ot.

Lemma 2.18 Let M be a semi-Riemannian surface and let f be a function on M. Let
U and V be orthonormal vector fields in XðMÞ, with �V :¼ hV ;Vi. Let us assume
that U is a geodesic vector field on M : rUU ¼ 0. Then the next conditions are
equivalent

(1) fU is a closed conformal vector field on M.

(2) f satisfies

V � f ¼ 0; U � f ¼ �Vf hrVU;Vi:

(3) fV is a Killing vector field on M.

Proof Since U is a geodesic vector field, rUV ¼ 0. Let us observe that for all

X 2 XðMÞ,

rUðfUÞ ¼ ðU � f ÞU þ frUU ¼ ðU � f ÞU

and

rVðfUÞ ¼ ðV � f ÞU þ �Vf hrVU;ViV:

From de above equations we deduce that fU is a closed conformal vector field if and

only if V � f and U � f ¼ �Vf hrVU;Vi. This proves the equivalence between (1) and

(2).

Another direct computation proves that (2) implies (3).

Let us prove that (3) implies (2):

Since fV is Killing,
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0 ¼ hrVðfVÞ;Vi ¼ ðV � f ÞhV ;Vi ¼ ðV � f Þ�V :
ðU � f Þ�V ¼ hrUðfVÞ;Vi ¼ �hrVðfVÞ;Ui ¼ �f hrVV ;Ui ¼ f hrVU;Vi:

This finishes the proof. h

Remark 2.19 Let us recall that the mean curvature vector field H of our

nondegenerate surface M in a three dimensional semi-Riemannian manifold N is

given by

2H ¼ �TaðT; TÞ þ �WaðW ;WÞ;

where T is as before and T, W are orthonormal vector fields on M. This implies that

2hH; ni ¼ �ThaðT; TÞ; ni þ �WhaðW ;WÞ; ni
¼ �ThAnðTÞ; Ti þ �WhAnðWÞ;Wi:

When hH; ni is a constant function, we say that M has constant mean curvature

(CMC).

The next Theorem 2.20, is an extension into the semi-Riemannian context of

Lemma 3.4 and part of Theorem 3.6 in [4].

Theorem 2.20 Let M be a nondegenerate surface of the three dimensional either
Riemannian or Lorentzian space form N without umbilical points. Let us assume
that M has a canonical principal direction with respect to Z. If M has constant mean

curvature (CMC) then 1ffiffiffiffiffiffiffiffiffiffiffi
jj1�j2j

p T is closed and conformal vector field and 1ffiffiffiffiffiffiffiffiffiffiffi
jj1�j2

p
j
W

is a Killing vector field on M, where j1 and j2 are the principal curvatures in the
orthogonal directions T and W, respectively. We also have that
W � j1 ¼ W � j2 ¼ 0.

Proof The case when N is a Riemannian space form was considered in Lemma 3.4

and Theorem 3.6 of [4]. So, let us assume that N is a Lorentzian space form. And the

proof in the following lines is an adaptation of Lemma 3.4 of [4].

By Theorem 2.14, T is a principal direction of M and rTT ¼ 0. This latter

condition implies that rTW ¼ 0. Since M is nondegenerate, W is also a principal

direction.

We will prove that the function f :¼ 1ffiffiffiffiffiffiffiffiffiffiffi
jj1�j2

p
j
, U :¼ T and V :¼ W satisfy

condition (1) in Lemma 2.18. We proceed as follows.

Let us apply the Codazzi equation in space forms:

rTðAnWÞ � AnðrTWÞ ¼ rWðAnTÞ � AnðrWTÞ:

So we obtain

rTðj2WÞ ¼ rWðj1TÞ � AnðrWTÞ
ðT � j2ÞW ¼ ðW � j1ÞT þ j1rWT � j2rWT

Now we apply the metric against T, in first place, and against W in second place:

Against T:
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0 ¼ �TðW � j1Þ;

where �T ¼ hT ; Ti. Since M is CMC, Remark 2.19 implies that there is a constant a
such that �ThAnðTÞ; Ti þ �WhAnðWÞ;Wi ¼ a. In our case we have that T and W are

principal directions, so j1 þ j2 ¼ a. Therefore, we also have that 0 ¼ W � j2.
Against W:

�WðT � j2Þ ¼ ðj1 � j2ÞhrWT;Wi;

where �W ¼ hW ;Wi. Once again, the CMC condition on M implies that

��WT � j1 ¼ ðj1 � j2ÞhrWT ;Wi

and so

T � ðj1 � j2Þ ¼ �2�Wðj1 � j2ÞhrWT;Wi :

Since M does not have umbilical points, we can write

jj1 � j2j ¼ rðj1 � j2Þ;

where r 2 f�1;þ1g. Finally, let us observe that

T � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj1 � j2

p
j
¼ T � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðj1 � j2
p

Þ
¼ � 1

2

rT � ðj1 � j2Þ
ðrðj1 � j2Þ3=2

¼ �W
hrWT;Wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj1 � j2

p
j
:

This proves that, 1ffiffiffiffiffiffiffiffiffiffiffi
jj1�j2

p
j
T is closed conformal and 1ffiffiffiffiffiffiffiffiffiffiffi

jj1�j2
p

j
W is a Killing vector

field on M. h

3 Semi-Riemannian submanifolds of constant angle

As we will see in this section, in a semi-Riemannian ambient manifold N, a constant
angle hypersurface with respect to a parallel vector field has a canonical principal

direction. Moreover, Proposition 3.5 of [10] says that, when the ambient is a semi-

Riemannian space form, a constant angle hypersurface with respect to a closed

conformal vector field has a canonical principal direction.

Definition 3.1 Let M be a nondegenerate submanifold of N. Let us assume that N
admits nowhere degenerate a parallel vector field Z. We say that M is a helix

submanifold or that has constant angle with respect to Z if we have that jZT j ¼ k 6
¼ 0 is constant, where Z ¼ ZT þ Z?.

Remark 3.2 Let X 2 XðMÞ. Since Z is parallel, X � hZ; Zi ¼ 2hDXZ; Zi ¼ 0, i. e.

hZ; Zi is constant. Moreover, the relation

hZ; Zi ¼ hZ>; Z>i þ hZ?;Z?i

implies that l :¼ jZ?j is also a constant. If we assume that k; l 6¼ 0 and using the

equality
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T ¼ ZT

jhZT ;ZTij1=2
n ¼ Z?

jhZ?; Z?ij1=2

we obtain that Z admits the following decomposition:

Z ¼ kT þ ln:

Finally, When M is a hypersurface, we have that ZT ; ZTh i is constant if and only if

hZ=jZj; mi is constant, where m is any unitary vector field orthogonal to M.

Notation 3.3 In this section, we will assume the next conventions:

• Z is a parallel vector field on N.
• We have the decomposition Z ¼ kT þ ln.
• M has constant angle with respect to Z.
• k and l are non zero constants.

Proposition 3.4 Let W in XðMÞ. Let us denote q ¼ k=l. Let us observe that l 6¼ 0.
Then

(1) AnT ¼ 0, i.e. T is a principal direction of An.

(2) AnW ¼ q � rWT .

(3) q � aðT;WÞ ¼ �r?
Wn.

(4) q � aðT; TÞ ¼ �r?
T n.

(5) rTT ¼ 0, i.e. the integral curves of T are geodesics of M.

(6) haðW ; TÞ; ni ¼ 0.

Proof Let X 2 XðMÞ. Since DXZ ¼ 0, then

0 ¼ kDXT þ lDXn

¼ kðrXT þ aðX; TÞÞ þ lð�AnX þr?
X nÞ:

We can take the tangent and normal parts to obtain

0 ¼ krXT � lAnX

0 ¼ kaðX; TÞ þ lr?
X n

�

The items (2) and (3) are direct consequences of the latter two equations. To get

case (4), we have to take W ¼ T in (3).

Now, we can assume that X ¼ T in the first equation above to get

0 ¼ krTT � lAnT:

Let W in XðMÞ, we have that
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hrTT ;Wi ¼ ðl=kÞhAnT ;Wi ¼ ðl=kÞhn; aðT;WÞi

¼ ðl=kÞhn;�ðl=kÞr?
Wni ¼ �ðl=kÞ2 hn;r?

Wni

¼ �ð1=2Þðl=kÞ2 W � hn; ni ¼ 0:

Thus, rTT ¼ 0, which implies that AnT ¼ 0. So, (1) and (5) are valid. It follows

from (1), that haðW ; TÞ; ni ¼ hAnT ;Xi ¼ 0. This proves (6). h

Definition 3.5 We say that a hypersurface of N is ruled, if the hypersurface has a

non singular foliation by geodesics of N.

Corollary 3.6 If M is a hypersurface then for every vector field W in XðMÞ we have
that:

(a) aðW ; TÞ ¼ 0

(b) r?
Wn ¼ 0

(c) DTT ¼ 0, i.e. the integral curves of T are also geodesics of N. Then M is a
ruled hypersurface of N.

Proof

(a) By Proposition 3.4 (6), we have that haðW ; TÞ; ni ¼ 0. Since M is a

hypersurface, n generates T?M. Therefore aðW ; TÞ ¼ 0.

(b) By (a) above, we have that aðW ; TÞ ¼ 0 for every vector field W in XðMÞ. By
Proposition 3.4 (3), we obtain that

r?
Wn ¼ �q � aðT ;WÞ ¼ 0

(c) By (a), we know that aðW ; TÞ ¼ 0 for every vector field W in XðMÞ. In
particular, aðT ; TÞ ¼ 0. By proposition 3.4 (5), rTT ¼ 0. So, by Gauss

formula for DTT we have that

DTT ¼ rTT þ aðT; TÞ ¼ 0:

h

The next result is a generalization of part of Theorem 3.1 and Theorem 3.2 in

[15], which are in a Riemannian context.

Theorem 3.7 Let us assume that N is a Lorentzian manifold with dimðNÞ
 3 and

that M2 is a surface with zero mean curvature.

(a) Then M is flat. Moreover, if dimðNÞ ¼ 3, then M is totally geodesic.
(b) If M is timelike and N has non positive curvature then M is totally geodesic.
(c) If M is spacelike and N has non negative curvature then M is totally geodesic.

Proof Let us take X in XðMÞ unitary and orthogonal to T. Let us recall that, sinceM
has zero mean curvature, we have that �XaðX;XÞ þ �TaðT ; TÞ ¼ 0, where �X ¼
hX;Xi and �T ¼ hT ; Ti.
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(a) To prove that M is flat, we have to verify that

rTT ¼ rXT ¼ rTX ¼ rXX ¼ 0:

(i) rTT ¼ 0: By Proposition 3.4 (5) we have that rTT ¼ 0.

(ii) rXT ¼ 0: Let us observe that

hrXT ; Ti ¼ ð1=2Þ XhT ; Ti ¼ 0:

Moreover, By Proposition 3.4 (2),

hrXT ;Xi ¼ ð1=qÞ hAnX;Xi ¼ ð1=qÞ haðX;XÞ; ni ¼ ��X�ThaðT ;TÞ; ni ¼ 0:

This implies that rXT ¼ 0.

(iii) rXX ¼ 0: Since X and T are orthogonal then

0 ¼ XhX; Ti ¼ hrXX; Ti þ hX;rXTi:

In consequence,

hrXX; Ti ¼ �hX;rXTi ¼ 0:

Since X is unitary, hrXX;Xi ¼ ð1=2Þ XhX;Xi ¼ 0.

Therefore rXX ¼ 0.

(iv) rTX ¼ 0: We have the following equalities

hrTX;Xi ¼ ð1=2Þ ThX;Xi ¼ 0;

hrTX; Ti ¼ ThX; Ti � hX;rTTi ¼ 0:

Thus rTX ¼ 0.

Now, let us consider the case when dimðNÞ ¼ 3. Let us assume that fX; Tg is an

orthonormal frame in XðMÞ. By hypothesis, M is a hypersurface of N. By

Corollary 3.6 (a), aðX; TÞ ¼ 0 and aðT ; TÞ ¼ 0. So, aðX;XÞ ¼ ��X�TaðT; TÞ ¼ 0.

Thus a � 0, i.e. M is totally geodesic.

(b) Let X be in XðMÞ which is unitary and orthogonal to T. Thus we have an

orthonormal frame on M. By (a) above, we have that M is flat and therefore

RM
TXT ¼ 0.

We now apply Gauss equation:

0 ¼ hRM
TXT ;Xi

¼ hRN
TXT ;Xi � haðT;XÞ; aðX; TÞi þ haðT ; TÞ; aðX;XÞi:

We obtain the equality
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hRN
TXT;Xi ¼ haðT;XÞ; aðX; TÞi � haðT; TÞ; aðX;XÞi:

Since M has zero mean curvature, we have the condition

aðX;XÞ þ aðT; TÞ ¼ 0, equivalently aðX;XÞ ¼ �aðT ; TÞ. Thus

hRN
TXT;Xi ¼ haðT ;XÞ; aðX; TÞi þ haðT ; TÞ; aðT ; TÞi:

Let us recall that M is a timelike surface, which means that the orthogonal

subspace TM? is spacelike. So,

haðT;XÞ; aðX; TÞi þ haðT; TÞ; aðT; TÞi
 0:

The other hypothesis says that N has non positive curvature, i.e.

hRN
TXT ;Xi� 0. Therefore

kaðT;XÞk2 þ kaðT ; TÞk2 ¼ 0:

This implies that aðT;XÞ ¼ 0 and aðT ; TÞ ¼ �aðX;XÞ ¼ 0. This finishes the

proof of (a).

(c) The proof is analogous to that of (b), by just reversing the above inequalities.

h
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