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Abstract

Consider a locally determined positive measure space (Q,X,u) and a function
F : Q — X taking values in a Banach space. When F is locally (Pettis or Bochner)
integrable with respect to u, a vector measure vy with density F defined on a J-ring
is obtained. We study the vector measure vg and its properties. We present the
relation between the Banach spaces of integrable functions with respect to vy and
the spaces of Dunford, Pettis or Bochner integrable functions.

Keywords Locally determined measure - Locally (Pettis or Bochner)
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1 Introduction

Let us consider a Banach space X and a g-algebra X on Q. The integral of X-valued
functions with respect to a positive finite measure defined in X was introduced by B.
J. Pettis and S. Bochner in the thirties of the last century and then this theory has
been studied in depth by several authors for instance [5] and [7]. Later, the theory of
integration of scalar valued functions with respect to X-valued measures defined in
%, which are called vector measures, begins to be developed. As one might expect
the Pettis and the Bochner integrals define vector measures, these ones were studied
among other by J. Diestel and J. J. Uhl in [5]. Otherwise in [6] N. Dinculeanu and J.
J. Uhl considered a locally o-finite measure defined on a d-ring R of subset of € and
they introduced the concept of R-locally Pettis or Bochner integrable function,
namely a weakly (strongly) u-measurable function F : Q — X such that the function
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yF 1s Pettis (Bochner) integrable, for all B € R. It turns out that these integrals
define vector measures now on the -ring R. At the same time D. R. Lewis begins to
develop the theory of integration with respect to vector measures defined on d-rings
in [8]. Subsequently, other authors study in depth these kind of measures and their
inherent spaces of integrable functions; for the concepts and notations used in this
note one should look [3].

Given any positive measure u on X we can define the Dunford, Pettis and
Bochner integrals of functions with values in X in analogous way to the case in
which p is finite. Also, we can obtain the spaces consisting of the Dunford and Pettis
integrable functions which turn out to be normed spaces and the space of the
Bochner integrable functions is a Banach space. On the other hand, the collection &/
consisting of those subsets in £ which have p finite measure is a d-ring. When the
measure p is locally determined, it turns out that if u is restricted to > a locally o-
finite measure is obtained; so makes sense to consider vector functions which are
¥/ -locally Pettis or Bochner integrable, these functions will be simply called locally
Pettis and locally Bochner integrable and the vector spaces obtained will be
denoted by P(u, X)" and B(u, X)", respectively .

We begin this note recalling the basic concepts relative to the Dunford, the Pettis
and the Bochner integrals with respect to a positive measure and also the main
results about vector measures defined on J-rings, in Sect. 2. In Sect. 3 we study
briefly the vector measure vy defined on ¥/ by the integral of a locally Pettis
integrable function F:Q — X over each B€ Y and a description of its
corresponding semivariation is given. If additionally the function F is locally
Bochner integrable we provide a characterization of the variation of the measure vg.
Finally, in Sect. 4, we present the existing connection between the integrable
functions with respect to vy and the Dunford, Pettis or Bochner integrable functions
as well as their corresponding integrals. In this way Theorems 8 and 13 established
by G.F. Stefansson in [11] are generalized in two directions, namely the positive
measure is no longer necessarily finite but locally determined and the function F is
now locally integrable. Besides we obtain some conditions to determine whether a
locally Pettis integrable function is in fact Pettis integrable.

2 Preliminary results
2.1 Bochner and Pettis integrals

Throughout the paper Q will be a non empty set and X stands for a Banach space
over K (R or C). We denote by X* and By its dual space and its unit ball
respectively. Let us consider a o¢-algebra £ on Q and a positive measure
t: X — [0,00]. The set ¥/ consists of the subsets B € X such that u(B) <oo and
No(p) is the collection of u-null sets. Recall that the measure p is said to be semi-
finite if for each set A € ¥ such that u(A) >0, there exists a subset B € ¥/
satisfying that B C A and 0<u(B). The measure u is locally determined if it is
semi-finite and T = {A CQ |ANBE€ X, VBec Y}
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We denote by St(u,X) the vector space of X-valued simple functions whose
support has finite measure. An X-valued function F : Q — X is said to be strongly u
-measurable if there exists a sequence {S,} C Sr(u, X), which converges pointwise
to F p-a.e. and to be weakly u -measurable if (F,x*) : Q — R is yu-measurable for
any x* € X*. Clearly each strongly u-measurable function is a weakly p-measurable
function. We say that two functions F,G:Q — X are weakly equal p-a.e. if
(F,x*) = (G,x*) p-a.e. for all x* € X*. We will denote by L°(u, X) the vector space
that consists of the equivalence classes that are obtained by identifying strongly p-
measurable functions if they are equal u- a.e. and La( u, X) the vector spaces formed
by the equivalence classes that are obtained when we identified weakly pu-
measurable functions if they are weakly equal p-a.e. We write B(u, X) to indicate
the Banach space of the Bochner integrable functions, namely the functions F €
L%(u, X) such that ||F||, € L'(u), with the norm defined by ||F||, = [, ||F|lydu. On
the other hand a function F € L (u, X) is Dunford integrable when (F,x*) € L'(u),
V x* € X*, if additionally for each A € X there exists a vector x4 € X such that
Sy (F.x*)dp = (x4,x*); V x* € X*, the function F is Pettis integrable and the vector
x4 is called the Pettis integral of F over A and it is denoted by P — [ A Fdu. We
write D(u, X) and P(u, X) for the vector spaces consisting of the Dunford and Pettis
integrable functions respectively.

Lemma 1 The space D(u, X) is a normed space with the norm given by

IFllp = sup / \(F,x*)|dps, ¥ F € D(j1, X).

X*EBy*

Proof Observe that to obtain the conclusion it only remains to establish that
|F|lp <00,V F € D(i, X). So, let us fix F € D(u, X) and define T : X* — L' (u) by
T(x*) = (F,x*), V x* € X*. Clearly T is a well defined linear operator. Now take
{x!} C X* and x* € X* such that x* — x. Let us assume that there exists g € L' ()
satisfying that Tx* — g in L' (u). Proceeding as in [4, p.46] we get a subsequence
{x,} C{x;} such that (F,x;)=7Tx; — g p-ae. On the other hand
(F(t),x:) — (F(1),x*), ¥ t € Q. Thus, T(x*) = (F(t),x*) = g, p-a.e. By the Closed

Graph Theorem we get that T is bounded. Therefore
IFlo = sup [ (P de = sup 73 gy <71
xX*€Byx+x JQ X*EByx

O

Since P(u, X) C D(u,X) it turns out that P(u, X) is also a normed space with the
same norm || - || which will be denoted by || - || in this case. It is well know that
B(u,X) C P(u,X) with ||F|lp<||F|, and B- [,Fdu=P— [, Fdy,
Y F € B(uX).
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2.2 Integration with respect to measures defined on J-rings

A family R of subsets of Q is a § -ring if R is a ring which is closed under
countable intersections. From now on in this paper R will be a é-ring. We denote by
RI¢ the g-algebra of all sets A C Q suchthat ANB € R,V B € R. Given A € R
we indicate by R, the d-ring {B C A: B € R} and by m4 the collection of finite
families of pairwise disjoint sets in R4. Note that if Q € R, then R is a g-algebra,
and in this case we have that R? = R. Moreover, for each B € R it turns out that
Rp is a o-algebra.

A scalar measure is a function 4: R — K satisfying that if {B,} C R, is a
family ~of pairwise disjoint sets such that |J2,B, €R, then
Sty A(By) = (U,21 Bu). The variation of 7 is the countably additive measure

4] : R — [0, oc] defined by |2](A) := sup{z;;1 1(A))] : {4} € nA}. A function

f € LO°(R"%) is A -integrable if f € L'(]A]). We denote by L'(1) the vector space
consisting of the equivalence classes of A-integrable functions when we identify two
functions if they are equal |A|-a.e.

Let X be a Banach space. A set function v : R — X is a vector measure if for any
collection {B,} C R of pairwise disjoint sets satisfying that | J,~, B, € R, we have
that Y7 v(B,) = v(U,—; Bx). A vector measure v is called strongly additive if
v(B,) — 0 whenever {B,} is a disjoint sequence in R. The variation of v is the
positive measure |v| defined in R by |v|(A) := sup{zj Iv(Aj)llx : {A;} € nA}.
The semivariation of v is the function |[|v||:R" — [0,00] given by
[IVII(A) := sup{|(v,x*)|(A) : x* € Bx-}, where |(v,x*)| is the variation of the scalar
measure (v,x*) : R — K, defined by (v,x*)(B) = (v(B),x*), V B € R. The semi-
variation of v is finite in R and ||v(B)|| <||v||(B) if B € R, moreover for any
A€ R is satisfied ||v||(A) <|v|[(A). A set A€ R is said to be v-null if
[IVI[(A) = 0. We will denote by No(v) the collection of v-null sets. It turns out that
No(v) = No(|v]). Moreover A € Ny(v) if and only if v(B) =0,V B € R4. We say
that two functions f, g € L°(R'°) are equal v-a.e. if they are equal outside of a set in
N()(V).

We define L°(v) as the space of equivalence classes of functions in L°(R"),
where two functions are identified when they are equal v-a.e.

A function f € LO(R"¢) is weakly v -integrable, if f € L'({v,x*)), for each
x* € X*. We will denote by L! (v) the subspace of L°(v) of all weakly v-integrable
functions. With the norm given by

11, = sup [ irdltv) v < B

1
A

Ll (v) is a Banach space.
A function f € L} (v) is v -integrable, if for each A € R" there exists a vector
xs € X, such that
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(x4, x") z/Afd(v,x*>, VXt e X" (1)

In this case the vector x is denoted by [, fdv. With the norm || - ||, the subset of all
v-integrable functions is a closed subspace of L! (v) and it will be denoted by L'(v).
Therefore L!(v) is also a Banach space. We indicate by S(R) the collection of
simple functions in L°(R'*°) which have support in R. It turns out that S(R) is a

dense subspace of L!(v). Finally the integral operator I, : L'(v) — X defined by
I,(f) = [qfdv, is linear and bounded.

3 Vector valued indefinite integral

Recall that (Q,Z, i) is a positive measure space and X a Banach space. Given a
vector valued function F € P(y, X) let us define the set function 7 : £ — X by

TrA) =P — /A Fdu, VAES. (2)

In the case when p is finite it is well known that Vg is a vector measure [5, Thm. II.
3.5]. The next result generalizes this fact, it can be established in the similar way,
using the Orlicz-Pettis Theorem [5, Cor. 1.4.4].

Theorem 1 The set function Vi defined on (2) is a vector measure with
semivariation

15601(4) = sup / |(F\x")ldy, YA € 5. (3)

X*EBy=

Proof Let us fix x* € X* and take a pairwise disjoint countable collection
{A,} € Z, then

<p_ /UA d>

o an
nzo_c:l/A"<F,x*>du = §;<P - /An Fd,u,x*>.

So, vp is weakly o-additive, by the Orlicz-Pettis Theorem [5, Cor. 1.4.4] v is a
vector measure. On the other hand since (Vp,x*)(A) = [ (F,x*), VA €X, uisa
positive measure and (F,x*) € L'(u) from [10, Thm. 6.13] we get that

|5, 7)) (4) = / |(F. ) ld

It is follows (3). (I
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Since B(u, X) C P(u,X) we have the following consequence. In order to get (4)
we can proceed as in [5, Thm. I1.2.4 iv)].

Corollary 1 Let F € B(u,X). Then V¢ defined on (2) is a vector measure with
bounded variation such that

7 1(A) = / |Fllydi, ¥ A € 5. )

Hereafter we will consider a locally determined positive measure ¢ on X. Then

¥/ is a d-ring such that (Zf)loC = . Let us denote the restriction of u to ¥/ by .
Since p is a semi-finite and locally determined positive measure, it turns out that A is
a scalar measure such that |A| = p ([1, Lemma 4.3]).

Now we will study a kind of vector functions that include vector measures having
Pettis or Bochner functions as density functions.

Definition 1 Let F : Q — X be a vector function.

a) The function F is locally Pettis integrable if F is weakly u-measurable
function and yzF € P(u,X), V B € /. The collection of equivalence classes
obtained by identifying locally Pettis integrable functions if they are weakly
equal p-a.e. will be denoted by P(u, X)"°.

b) Analogously F is locally Bochner integrable if F is strongly u-measurable
function and yzF € B(u,X), V B € /. The collection of equivalence classes
obtained by identifying locally Bochner integrable functions if they are equal

p-a.e. will be denoted by B(u, X)".

Remark 1 Observe that P(u, X)' and B(u,X)" are vector spaces. Additionally
we have that

B(u, X) C B(1, X)"™ C P(u, X)".

The following examples show that the containment B(u,X) C B(u, X)) and
P(u,X) C P(u,X)" can be proper.

Example 1 Let us fix x € X and assume that f : Q — R is such that ypf € L'(u),
V B e Y (cf. [9, Def. 2.14 ¢)]). Now define F : Q — X by

F(1) :=f(1)x. (5)

Let us see that y,F € B(u,X),V B € ¥/ Since fyp € L°(), for all B € ¥, it turns
out that f € L°(X). Take {s,} C S(X) such that s, — f and |s,| < |f], V n € N. Fix
B € Y. Foreachn € N, define S, : Q — X by S,(r) = yps,(t)x. Since yzf € L' (),
we have that yps, € L'(x). And so S, € St(u,X) and S, (1) — ypf(t)x = ygF (1), ¥

W Birkhauser
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t € Q indicating that y,F is strongly u-measurable.

Further
Jiesan= [ st = ( [ iran) sl
B B B

Since ygf € L'(u), it follows that / IF||ydu<oo, and so ygF € B(u,X). Thus
B
F € B(u,X)". Finally observe that F € B(u,X) if and only if f € L' ().

Example 2 Let us consider (N,2V p,), where y, is the counting measure and
X = co. Clearly B(, o)™ = L°(pg, o), 50 Py, o) = B(pg, co)'”°. Now let us
consider the functions F,G:N — ¢y defined by F(n):=>, 2% and
G(n) :=1le,. Then F,G € L°(yy, co). However, if we take x* = {} € ¢! = cj we
have that (F,x*) : N — R is the sequence {n} which is not integrable with respect
to 1y, so F is not Pettis integrable. On the other hand, if x* = {a,} € ¢! we have that
(G,x*) = {2}, thus G € P(uy,co) but |G|, = {1}, thereby G is not Bochner
integrable. Hence

B(MO? CO)QP(,“O’ CO)QP(ﬂm CO)loc = B(Hw CO)IOC'

As a consequence of Theorem 1 we obtain the following result.

Proposition 1 Let F € P(u, X)". Then the set function vy : ¥ — X defined by

vr(B) := P — / Fdp, (6)
B
is a vector measure such that
Iorll(4) = swp [ |(Fx)dm, v A € X -
x*€Bxx JA

Proof Let us show that vy is a vector measure. Let {B,} C ¥ be a disjoint
collection such than B := %, B, € ¥'. Since yzF € P(u,X), by Theorem 1 we
have

vr(B) P —/Fd,u =P _/XBFd#
B B

[o¢] o0
= P—/;{Fd,uz [P’—/Fd,u:v B,).
> Z > . F(Bn)

n=1 n=1

Thus vg is a vector measure. Now fix x* € X*. Since F € IP’(,u,X)l”C we have
(F,x*) € L},.(4). From [9, Thm. 2.31] we have that the variation of the scalar

loc

measure flip . : ¥/ — KK defined by tp oy (B) = [5(F,x")du, ¥ B € >/ is given by

T Birkhauser
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|p | (A) = /A [(F,x*)|du, V A € X.

On the other hand notice that for each B € ¥/, we have

ory®) = (P [ qu,x*> - [ =@ ®)

Therefore

\(vp,x /| (F,x)|dp. )

From this we get (7). O

Observe that from (7) we have that if A € No(u), then ||ve||(B) =0,V B € ¥,.

So No(u) € No(vr). Also observe that ||ve||(B) = ||xzF||p» ¥V B € &'. Moreover,
from the Dunford integrability definition we get our next result.

Corollary 2 Let F € P(u,X)"°. Then F is Dunford integrable if and only if vg has
bounded semivariation. In particular if F € P(u,X), then ||ve||(A) = ||xaF|lp-

In the case that F is locally Bochner integrable the variation of vz has the same
characterization that when F is Bochner integrable, as we can see in what follow.

Proposition 2 If F € B(u,X)", then |vp|(A / IF||ydu ¥V A € Z.

Proof Take B € X/. Notice that vp(ANB) =v,r(A), V A€ Z. Since yzF €
B(u,X) we have that

9¢1(8) = Ivorl(B) = [ 1y

Hence
v l(A) = sup [vF|(B)
Ber
(10)
— sup / 1Fllxdp = / |Fllydi, ¥ A € 5.
BEZ
[

Remark 2 Let us note that if F: Q — X is a strong u-measurable function, by the
previous result we obtain that:

F € B(u,X) if and only if F € B(x,X)" and vy has bounded variation.

Example 3 Let us return to the Example 1. It was shown there that F defined in (5)
is locally Bochner integrable. In particular F is locally Pettis integrable. Let us

W Birkhauser
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obtain now the vector measure v, its variation and its semivariation. See that for

each Be ¥/
vF(B):[B—/qu: (/fd,u)x, VBeY.
B B

Now take A € X, from (7) and (10)

Ivell4) = sup / [(F,xdu = sup / 11, 2%

X*EByx X*EByx«

(/[ trian) s 1ot = ([ i)

- / 1Fllydie = [vF|(A).
A

Therefore ||vp|| = |vp| in this case.

4 The space of vq-integrable functions

When F is a locally Pettis or Bochner integrable function we have constructed the
vector measure vy defined on the d-ring 3. In the present section we will study the
spaces L°(vp), L. (vr), L'(vr) and L'(|vp)|) associated to this vector measure
through the operator My which to each measurable function g assigns the function
gF. The following lemmas allow us to conclude that Mr : L°(vp) — L% (u, X) or
LO(u, X) is well defined. Clearly My is a linear operator.

Lemma 2 Let F : Q — X be a function and g € L°(X).

i) If F is strongly u-measurable, then gF is strongly u-measurable.
i) If F is weakly u-measurable, then gF is weakly pu-measurable.

Proof

(i) Observe that if ¢ € S(X) and S € St(u,X), then ¢S € St(u,X). Let us
assume that F is strongly p-measurable. Take {¢,} C S(X) and {S,} C
St(u, %) such that ¢, — g and S, — F, p-a.e. Thus ¢,S, € St(u, X),V n €
N and ¢,S, — gF, u-a.e. It follows that gF is strongly pu-measurable.

(i) By definition if F is weakly u-measurable, we have that for each x* € X*, the
function (F,x*) is strongly p-measurable. Using (i) we obtain that
(gF,x*) = g(F,x*) € L°(u1,X) V x* € X*.

Lemma 3 Let F € P(u,X)'™, {g,} C L°(2) and g, h € L°(%).

(i) If g=h, vg-ae., then gF = hF, weakly p-a.e.
(i) If g, — g vr-ae., then (g,F,x*) — (gF,x*), p-ae., Vx* € X*.

T Birkhauser
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Proof

(i) Choose N € Ny(vr) such that g(r) = h(t), V t € N°. Then gyy.F = hyy.F;
Moreover, yyF = 0 weakly p -a.e. implies that gyyF = hyyF = 0, weakly
u-a.e. Thus gF = hF, weakly p-a.e.

(i) Let N € Ny(vr) such that g,(r) — g(¢), V £ € N°. So guyy- — gxn-F and
gnynF = gyyF = 0, weakly p-a.e. Then for each x* € X*, (g,yn.F,x*) —
(gyneF,x*) and  (guyyF,x*) = (gynF,x*) =0, p-ae. Therefore
(gnF,x*) — (gF,x"), p-ae., V x* € X*.

O

Proposition [11, Prop.8] established by G. F. Stefansson for the case that F €
P(u,X) and p is a finite positive measure defined on a g-algebra is generalized in
the next theorem.

Theorem 2 For F € P(u,X)" and g € L°(X), we have that

(i) g€ Ll (vp)if, and only if, gF € D(u, X). Moreover, the restriction to L. (vr)
of the operator Mr is a linear isometry from L! (vr) into D(g, X).

(i) g€ L'(vp)if, and only if, gF € P(u, X). Moreover, Mr : L' (vp) — P (1, X),
the restriction of the operator Mp, is a linear isometry such that
I,, = Ip o Mp.

Proof Fix x*€X* and consider s= Zaijj € S(X). By hypothesis
=1
15F € P(u,X),V B € ¥ 1t follows that sF € P(u, X). From (9) we obtain

P jil|a,-||<vF7x*><Aj>=jia,-| /Af(F7X*>du

[l )i = [ 1057
Q45 Q

Thus s € L! (vr) if and only if sF € D(g, X).
Proceeding in the same way, it follows from (8) that

/Q sd(vp,x) = /Q (sF,x")d . (12)

Now take g € L(vg)™ and {s,} C S(R"°) such that 0<s, | g, vr-ae. From
Lemma 3 we obtain (s,F,x*) — (gF,x*), p-a.e. Then, |{s,F,x*)| T |(gF,x*)|, p-a.e.
By the Monotone Convergence Theorem and (11) it turns out that

(11)

W Birkhauser
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/|<gF,x*>|du: lim ($pF,X")|du
Q

n—o0 Q

(13)

lim [ sud)(ve,x")| = / lgld|(vr )]
Q Q

n—oo

showing that g € L! (v¢) if and only if gF € D(u, X).

w

By the Dominate Convergence Theorem and (8)

/(ng*)d,u = lim [ (s,F,x")du= lim | s,d(vp,x") :/gd(vF,x*).
Q Q

n—od Q n—o0 0

We conclude from here that g € L!(vr) if and only if gF € P(g, X) and

/gdvF =P —/ngu. (14)
Q Q

Since the involved sets are vector spaces and each g € L°(vr) is a linear combi-
nation of non negative functions, we obtain the first part in (i) and (ii).

Finally take g € L! (vf), since |g| >0 we obtain equality (13) with a sequence
{sx} C S(X) such that 0<s, T |g|, vr-a.e. Taking the supremum over x* € Bx- it
turns out that [|g||,, = ||gF||. That is, M restricted to L}, (vr) is a linear isometry.
Since L'(vr) and P(u,X) are subspaces of L! (vs) and D(u,X), respectively, we
conclude that My restricted to L!(vr) is also an isometry. Moreover, from (14) it
follows that I,, = Ip o Mp. U

Corollary 3 Let F € L%(u,X). Then F € P(u,X) if and only if F € P(u,X)" and
vr is strongly additive.

Proof Let assume that F € P(u, X). Consider the vector measure vy : R'° — X
defined in (2). Since X is a g-algebra, it turns out that vy is strongly additive.
Observe that v is the restriction of 7 to 3/, so it follows that it is strongly additive.

Now assume that F € P(u,X)" and that v is strongly additive. From [3, Cor.

3.2] we obtain that yo € L'(vr). So, by the previous theorem F = yoF € P(u, X).
O

Corollary 4 Let F € P(u, X)". If X does not contain any subspace isomorphic to ¢
and v is bounded, then F € P(u,X).

Proof Since X does not contain any subspace isomorphic to ¢y and vg is bounded it
turns out that v is strongly additive [4, p. 36]. Then by the previous corollary
FeP(uX). O

The following result gives us the connection between the spaces L!(|vx|) and
B(u, X) through the operator M in case that F € B(u, X)". We will show that, as
it occurs when F € [P’(,u,X)l”C, Mp is a linear isometry in this case.
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Proposition 3 Consider F € B(u,X)" and g € L°(|vg|). Then g € L'(|vg|) if and
only if gF € B(u,X). Moreover, Mg : L'(|vi|) — B(u, X) is a linear isometry such
that 1,,(g) = Is © Mr(g). ¥ g € L' (|vr]).

Proof Clearly My is a linear operator, we will see that its image is a subset of
B(u,X). By Lemma 3 we have that the restriction My : L'(|vg|) — B(u, X) is well
defined.

Since the norms in L'(|vg|) and B(u, X) are different from those in L'(vx) and
P(u,X), respectively, we need to establish that, under these norms, M is also an
isometry.

By hypothesis F € B(u,X), then from (10) it follows that |vg|(B)<oo,
VB e¥. So, S(¥) C L'(|ve|). Further for each s = 77| a;z,, € S(T) we have
that

)Ioc

/ sldve| = / Z|a,||vf| Z|a,| / I Fllydi
- / Sl | Fllyds = / s lxdp.
Q5 Q

Therefore s € L' (|v¢|) if and only if sF € B(, X). Now consider g € L°(|vr|) and
take {s,} C S(X) such that 0 <s, T |g|, ve-a.e. Then ||s,F||x T ||gF ||y, u-a.e. By the
Monotone Convergence Theorem

/ gFllyd = fim / lIsuFllydpt = lim / Isald]ve] = / 1gld]ve .
Q n—oo Q n—oo Q Q

Thus we have that gF € B(u,X) if and only if g€ L!'(|ve|). Moreover,

1811}y, = llgF1];-
The equality between the operators follows from Proposition 2. [

Example 4 Consider again the function F defined in (5). As we see in Example 1
F e B(uX)".
Take g € L' (v¢), from Proposition 2

/gdvp =P —/ng,u = (/ gfdu)x,
Q Q Q
then gf € L'(u). And so,

J sl = [ lafllele<oc. (15)
Q Q
By Lemma 2 gF is strongly pu-measurable. Thus we have that gF' € B(u, X) and by

Proposition 3, g € L'(|vr|). We conclude that L'(|v¢|) = L'(vr). And from [2,
Prop. 5.4] it follows that L!(|vr|) = L' (vr) = L} (vr) .
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