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Abstract
Consider a locally determined positive measure space ðX;R; lÞ and a function

F : X ! X taking values in a Banach space. When F is locally (Pettis or Bochner)

integrable with respect to l, a vector measure mF with density F defined on a d-ring
is obtained. We study the vector measure mF and its properties. We present the

relation between the Banach spaces of integrable functions with respect to mF and

the spaces of Dunford, Pettis or Bochner integrable functions.

Keywords Locally determined measure � Locally (Pettis or Bochner)

integrability � Vector measure on d-rings � L1-spaces

Mathematics Subject Classification 46G10 � 28B05

1 Introduction

Let us consider a Banach space X and a r-algebra R on X. The integral of X-valued
functions with respect to a positive finite measure defined in R was introduced by B.

J. Pettis and S. Bochner in the thirties of the last century and then this theory has

been studied in depth by several authors for instance [5] and [7]. Later, the theory of

integration of scalar valued functions with respect to X-valued measures defined in

R, which are called vector measures, begins to be developed. As one might expect

the Pettis and the Bochner integrals define vector measures, these ones were studied

among other by J. Diestel and J. J. Uhl in [5]. Otherwise in [6] N. Dinculeanu and J.

J. Uhl considered a locally r-finite measure defined on a d-ringR of subset of X and

they introduced the concept of R-locally Pettis or Bochner integrable function,

namely a weakly (strongly) l-measurable function F : X ! X such that the function
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vBF is Pettis (Bochner) integrable, for all B 2 R. It turns out that these integrals

define vector measures now on the d-ringR. At the same time D. R. Lewis begins to

develop the theory of integration with respect to vector measures defined on d-rings
in [8]. Subsequently, other authors study in depth these kind of measures and their

inherent spaces of integrable functions; for the concepts and notations used in this

note one should look [3].

Given any positive measure l on R we can define the Dunford, Pettis and

Bochner integrals of functions with values in X in analogous way to the case in

which l is finite. Also, we can obtain the spaces consisting of the Dunford and Pettis

integrable functions which turn out to be normed spaces and the space of the

Bochner integrable functions is a Banach space. On the other hand, the collection Rf

consisting of those subsets in R which have l finite measure is a d-ring. When the

measure l is locally determined, it turns out that if l is restricted to Rf , a locally r-
finite measure is obtained; so makes sense to consider vector functions which are

Rf -locally Pettis or Bochner integrable, these functions will be simply called locally
Pettis and locally Bochner integrable and the vector spaces obtained will be

denoted by Pðl;XÞloc and Bðl;XÞloc, respectively .

We begin this note recalling the basic concepts relative to the Dunford, the Pettis

and the Bochner integrals with respect to a positive measure and also the main

results about vector measures defined on d-rings, in Sect. 2. In Sect. 3 we study

briefly the vector measure mF defined on Rf by the integral of a locally Pettis

integrable function F : X ! X over each B 2 Rf and a description of its

corresponding semivariation is given. If additionally the function F is locally

Bochner integrable we provide a characterization of the variation of the measure mF .
Finally, in Sect. 4, we present the existing connection between the integrable

functions with respect to mF and the Dunford, Pettis or Bochner integrable functions

as well as their corresponding integrals. In this way Theorems 8 and 13 established

by G.F. Stefansson in [11] are generalized in two directions, namely the positive

measure is no longer necessarily finite but locally determined and the function F is

now locally integrable. Besides we obtain some conditions to determine whether a

locally Pettis integrable function is in fact Pettis integrable.

2 Preliminary results

2.1 Bochner and Pettis integrals

Throughout the paper X will be a non empty set and X stands for a Banach space

over K (R or C). We denote by X� and BX its dual space and its unit ball

respectively. Let us consider a r-algebra R on X and a positive measure

l : R ! ½0;1�. The set Rf consists of the subsets B 2 R such that lðBÞ\1 and

N 0ðlÞ is the collection of l-null sets. Recall that the measure l is said to be semi-

finite if for each set A 2 R such that lðAÞ[ 0, there exists a subset B 2 Rf

satisfying that B � A and 0\lðBÞ. The measure l is locally determined if it is

semi-finite and R ¼ fA � X j A \ B 2 R; 8 B 2 Rf g.
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We denote by Stðl;XÞ the vector space of X-valued simple functions whose

support has finite measure. An X-valued function F : X ! X is said to be strongly l
-measurable if there exists a sequence fSng � Stðl;XÞ, which converges pointwise

to F l-a.e. and to be weakly l -measurable if hF; x�i : X ! R is l-measurable for

any x� 2 X�. Clearly each strongly l-measurable function is a weakly l-measurable

function. We say that two functions F;G : X ! X are weakly equal l-a.e. if

hF; x�i ¼ hG; x�i l-a.e. for all x� 2 X�. We will denote by L0ðl;XÞ the vector space
that consists of the equivalence classes that are obtained by identifying strongly l-
measurable functions if they are equal l- a.e. and L0wðl;XÞ the vector spaces formed

by the equivalence classes that are obtained when we identified weakly l-
measurable functions if they are weakly equal l-a.e. We write Bðl;XÞ to indicate

the Banach space of the Bochner integrable functions, namely the functions F 2
L0ðl;XÞ such that kFkX 2 L1ðlÞ, with the norm defined by kFk1 ¼

R
X kFkXdl. On

the other hand a function F 2 L0wðl;XÞ is Dunford integrable when hF; x�i 2 L1ðlÞ,
8 x� 2 X�, if additionally for each A 2 R there exists a vector xA 2 X such thatR
AhF; x�idl ¼ hxA; x�i; 8 x� 2 X�, the function F is Pettis integrable and the vector

xA is called the Pettis integral of F over A and it is denoted by P�
R
A Fdl. We

write Dðl;XÞ and Pðl;XÞ for the vector spaces consisting of the Dunford and Pettis

integrable functions respectively.

Lemma 1 The space Dðl;XÞ is a normed space with the norm given by

kFkD ¼ sup
x�2BX�

Z

X
jhF; x�ijdl; 8 F 2 Dðl;XÞ:

Proof Observe that to obtain the conclusion it only remains to establish that

kFkD\1, 8 F 2 Dðl;XÞ. So, let us fix F 2 Dðl;XÞ and define T : X� ! L1ðlÞ by
Tðx�Þ ¼ hF; x�i; 8 x� 2 X�. Clearly T is a well defined linear operator. Now take

fx�ng � X� and x� 2 X� such that x�n ! x. Let us assume that there exists g 2 L1ðlÞ
satisfying that Tx�n ! g in L1ðlÞ. Proceeding as in [4, p.46] we get a subsequence

fx�nkg � fx�ng such that hF; x�nki ¼ Tx�nk ! g l-a.e. On the other hand

hFðtÞ; x�ni ! hFðtÞ; x�i, 8 t 2 X. Thus, Tðx�Þ ¼ hFðtÞ; x�i ¼ g, l-a.e. By the Closed

Graph Theorem we get that T is bounded. Therefore

kFkD ¼ sup
x�2BX�

Z

X
jhF; x�ijdl ¼ sup

x�2BX�
kTx�kL1ðlÞ � kTk:

h

Since Pðl;XÞ � Dðl;XÞ it turns out that Pðl;XÞ is also a normed space with the

same norm k � kD which will be denoted by k � kP in this case. It is well know that

Bðl;XÞ � Pðl;XÞ with kFkP �kFk1 and B�
R
A Fdl ¼ P�

R
A Fdl,

8 F 2 Bðl;XÞ.
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2.2 Integration with respect to measures defined on d-rings

A family R of subsets of X is a d -ring if R is a ring which is closed under

countable intersections. From now on in this paper R will be a d-ring. We denote by

Rloc the r-algebra of all sets A � X such that A \ B 2 R, 8 B 2 R. Given A 2 Rloc

we indicate by RA the d-ring fB � A : B 2 Rg and by pA the collection of finite

families of pairwise disjoint sets in RA. Note that if X 2 R, then R is a r-algebra,
and in this case we have that Rloc ¼ R. Moreover, for each B 2 R it turns out that

RB is a r-algebra.
A scalar measure is a function k : R ! K satisfying that if fBng � R, is a

family of pairwise disjoint sets such that
S1

n¼1 Bn 2 R, then
P1

n¼1 kðBnÞ ¼ k
S1

n¼1 Bn

� �
. The variation of k is the countably additive measure

jkj : Rloc ! ½0;1� defined by jkjðAÞ :¼ sup
Pn

j¼1 jkðAjÞj : fAjg 2 pA
n o

. A function

f 2 L0ðRlocÞ is k -integrable if f 2 L1ðjkjÞ. We denote by L1ðkÞ the vector space

consisting of the equivalence classes of k-integrable functions when we identify two

functions if they are equal jkj-a.e.
Let X be a Banach space. A set function m : R ! X is a vector measure if for any

collection fBng � R of pairwise disjoint sets satisfying that
S1

n¼1 Bn 2 R, we have

that
P1

n¼1 mðBnÞ ¼ mð
S1

n¼1 BnÞ. A vector measure m is called strongly additive if

mðBnÞ ! 0 whenever fBng is a disjoint sequence in R. The variation of m is the

positive measure jmj defined in Rloc by jmjðAÞ :¼ sup
P

j kmðAjÞkX : fAjg 2 pA
n o

.

The semivariation of m is the function kmk : Rloc ! ½0;1� given by

kmkðAÞ :¼ supfjhm; x�ijðAÞ : x� 2 BX�g, where jhm; x�ij is the variation of the scalar

measure hm; x�i : R ! K, defined by hm; x�iðBÞ ¼ hmðBÞ; x�i; 8 B 2 R. The semi-

variation of m is finite in R and kmðBÞk� kmkðBÞ if B 2 R, moreover for any

A 2 Rloc is satisfied kmkðAÞ� jmjðAÞ. A set A 2 Rloc is said to be m-null if

kmkðAÞ ¼ 0. We will denote by N 0ðmÞ the collection of m-null sets. It turns out that
N 0ðmÞ ¼ N 0ðjmjÞ. Moreover A 2 N 0ðmÞ if and only if mðBÞ ¼ 0, 8 B 2 RA. We say

that two functions f ; g 2 L0ðRlocÞ are equal m-a.e. if they are equal outside of a set in
N 0ðmÞ.

We define L0ðmÞ as the space of equivalence classes of functions in L0ðRlocÞ,
where two functions are identified when they are equal m-a.e.

A function f 2 L0ðRlocÞ is weakly m -integrable, if f 2 L1ðhm; x�iÞ, for each

x� 2 X�. We will denote by L1wðmÞ the subspace of L0ðmÞ of all weakly m-integrable
functions. With the norm given by

kfkm :¼ sup

Z

X
jf jdjhm; x�ij : x� 2 BX�

� �

;

L1wðmÞ is a Banach space.

A function f 2 L1wðmÞ is m -integrable, if for each A 2 Rloc there exists a vector

xA 2 X, such that
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hxA; x�i ¼
Z

A

fdhm; x�i; 8 x� 2 X�: ð1Þ

In this case the vector xA is denoted by
R
A fdm. With the norm k � km the subset of all

m-integrable functions is a closed subspace of L1wðmÞ and it will be denoted by L1ðmÞ.
Therefore L1ðmÞ is also a Banach space. We indicate by SðRÞ the collection of

simple functions in L0ðRlocÞ which have support in R. It turns out that SðRÞ is a
dense subspace of L1ðmÞ. Finally the integral operator Im : L

1ðmÞ ! X defined by

Imðf Þ ¼
R
X fdm, is linear and bounded.

3 Vector valued indefinite integral

Recall that ðX;R; lÞ is a positive measure space and X a Banach space. Given a

vector valued function F 2 Pðl;XÞ let us define the set function ~mF : R ! X by

~mFðAÞ ¼ P�
Z

A

Fdl; 8 A 2 R: ð2Þ

In the case when l is finite it is well known that ~mF is a vector measure [5, Thm. II.

3.5]. The next result generalizes this fact, it can be established in the similar way,

using the Orlicz-Pettis Theorem [5, Cor. I.4.4].

Theorem 1 The set function ~mF defined on (2) is a vector measure with
semivariation

k~mFkðAÞ ¼ sup
x�2BX�

Z

A

jhF; x�ijdl; 8 A 2 R: ð3Þ

Proof Let us fix x� 2 X� and take a pairwise disjoint countable collection

fAng 2 R, then

P�
Z

S
n
An

Fdl; x�
* +

¼
Z

S
n
An

hF; x�idl

¼
X1

n¼1

Z

An

hF; x�idl ¼
X1

n¼1

P�
Z

An

Fdl; x�
� �

:

So, ~mF is weakly r-additive, by the Orlicz-Pettis Theorem [5, Cor. I.4.4] ~mF is a

vector measure. On the other hand since h~mF; x�iðAÞ ¼
R
AhF; x�i, 8 A 2 R, l is a

positive measure and hF; x�i 2 L1ðlÞ from [10, Thm. 6.13] we get that

jh~mF; x�ijðAÞ ¼
Z

A

jhF; x�ijdl:

It is follows (3). h
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Since Bðl;XÞ � Pðl;XÞ we have the following consequence. In order to get (4)

we can proceed as in [5, Thm. II.2.4 iv)].

Corollary 1 Let F 2 Bðl;XÞ. Then ~mF defined on (2) is a vector measure with
bounded variation such that

j~mFjðAÞ ¼
Z

A

kFkXdl; 8 A 2 R: ð4Þ

Hereafter we will consider a locally determined positive measure l on R. Then

Rf is a d-ring such that ðRf Þloc ¼ R. Let us denote the restriction of l to Rf by k.
Since l is a semi-finite and locally determined positive measure, it turns out that k is
a scalar measure such that jkj ¼ l ([1, Lemma 4.3]).

Now we will study a kind of vector functions that include vector measures having

Pettis or Bochner functions as density functions.

Definition 1 Let F : X ! X be a vector function.

a) The function F is locally Pettis integrable if F is weakly l-measurable

function and vBF 2 Pðl;XÞ, 8 B 2 Rf . The collection of equivalence classes

obtained by identifying locally Pettis integrable functions if they are weakly

equal l-a.e. will be denoted by Pðl;XÞloc.
b) Analogously F is locally Bochner integrable if F is strongly l-measurable

function and vBF 2 Bðl;XÞ, 8 B 2 Rf . The collection of equivalence classes

obtained by identifying locally Bochner integrable functions if they are equal

l-a.e. will be denoted by Bðl;XÞloc.

Remark 1 Observe that Pðl;XÞloc and Bðl;XÞloc are vector spaces. Additionally

we have that

Bðl;XÞ � Bðl;XÞloc � Pðl;XÞloc:

The following examples show that the containment Bðl;XÞ � Bðl;XÞloc and

Pðl;XÞ � Pðl;XÞloc can be proper.

Example 1 Let us fix x 2 X and assume that f : X ! R is such that vBf 2 L1ðlÞ,
8 B 2 Rf (c.f. [9, Def. 2.14 c)]). Now define F : X ! X by

FðtÞ :¼ f ðtÞx: ð5Þ

Let us see that vBF 2 Bðl;XÞ, 8 B 2 Rf . Since fvB 2 L0ðRÞ, for all B 2 Rf , it turns

out that f 2 L0ðRÞ. Take fsng � SðRÞ such that sn ! f and jsnj � jf j, 8 n 2 N. Fix

B 2 Rf . For each n 2 N, define Sn : X ! X by SnðtÞ ¼ vBsnðtÞx. Since vBf 2 L1ðlÞ,
we have that vBsn 2 L1ðlÞ. And so Sn 2 Stðl;XÞ and SnðtÞ ! vBf ðtÞx ¼ vBFðtÞ, 8
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t 2 X indicating that vBF is strongly l-measurable.

Further
Z

B

kFkXdl ¼
Z

B

jf jkxkXdl ¼
Z

B

jf jdl
� 	

kxkX :

Since vBf 2 L1ðlÞ, it follows that

Z

B

kFkXdl\1, and so vBF 2 Bðl;XÞ. Thus

F 2 Bðl;XÞloc. Finally observe that F 2 Bðl;XÞ if and only if f 2 L1ðlÞ.

Example 2 Let us consider ðN; 2N ; l0Þ, where l0 is the counting measure and

X ¼ c0. Clearly Bðl0; c0Þloc ¼ L0ðl0; c0Þ, so Pðl0; c0Þloc ¼ Bðl0; c0Þloc. Now let us

consider the functions F;G : N ! c0 defined by FðnÞ :¼
Pn

k¼1 2
kek and

GðnÞ :¼ 1
n en. Then F;G 2 L0ðl0; c0Þ. However, if we take x� ¼ f 1

2n
g 2 ‘1 ¼ c�0 we

have that hF; x�i : N ! R is the sequence fng which is not integrable with respect

to l0, so F is not Pettis integrable. On the other hand, if x� ¼ fang 2 ‘1 we have that

hG; x�i ¼ fann g, thus G 2 Pðl0; c0Þ but kGk1 ¼ f1ng, thereby G is not Bochner

integrable. Hence

Bðl0; c0Þ(Pðl0; c0Þ(Pðl0; c0Þloc ¼ Bðl0; c0Þloc:

As a consequence of Theorem 1 we obtain the following result.

Proposition 1 Let F 2 Pðl;XÞloc. Then the set function mF : Rf ! X defined by

mFðBÞ :¼ P�
Z

B

Fdl; ð6Þ

is a vector measure such that

kmFkðAÞ ¼ sup
x�2BX�

Z

A

jhF; x�ijdl; 8 A 2 R: ð7Þ

Proof Let us show that mF is a vector measure. Let fBng � Rf be a disjoint

collection such than B :¼
S1

n¼1 Bn 2 Rf . Since vBF 2 Pðl;XÞ, by Theorem 1 we

have

mFðBÞ ¼ P�
Z

B

Fdl ¼ P�
Z

B

vBFdl

¼
X1

n¼1

P�
Z

Bn

vBFdl ¼
X1

n¼1

P�
Z

Bn

Fdl ¼ mFðBnÞ:

Thus mF is a vector measure. Now fix x� 2 X�. Since F 2 Pðl;XÞloc we have

hF; x�i 2 L1locðkÞ. From [9, Thm. 2.31] we have that the variation of the scalar

measure lhF;x�i : R
f ! K defined by lhF;x�iðBÞ ¼

R
BhF; x�idl, 8 B 2 Rf is given by
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jlhF;x�ijðAÞ ¼
Z

A

jhF; x�ijdl; 8 A 2 R:

On the other hand notice that for each B 2 Rf , we have

hmF ; x�iðBÞ ¼ P�
Z

B

Fdl; x�
� �

¼
Z

B

hF; x�idl ¼ lhF;x�iðBÞ: ð8Þ

Therefore

jhmF; x�ijðAÞ ¼
Z

A

jhF; x�ijdl: ð9Þ

From this we get (7). h

Observe that from (7) we have that if A 2 N 0ðlÞ, then kmFkðBÞ ¼ 0, 8 B 2 Rf
A.

So N 0ðlÞ � N 0ðmFÞ. Also observe that kmFkðBÞ ¼ kvBFkP, 8 B 2 Rf . Moreover,

from the Dunford integrability definition we get our next result.

Corollary 2 Let F 2 Pðl;XÞloc. Then F is Dunford integrable if and only if mF has
bounded semivariation. In particular if F 2 Pðl;XÞ, then kmFkðAÞ ¼ kvAFkP.

In the case that F is locally Bochner integrable the variation of mF has the same

characterization that when F is Bochner integrable, as we can see in what follow.

Proposition 2 If F 2 Bðl;XÞloc, then jmFjðAÞ ¼
Z

A

kFkXdl, 8 A 2 R.

Proof Take B 2 Rf . Notice that mFðA \ BÞ ¼ mvBFðAÞ, 8 A 2 R. Since vBF 2
Bðl;XÞ we have that

jmF jðBÞ ¼ jmvBFjðBÞ ¼
Z

B

kFkXdl:

Hence

jmF jðAÞ ¼ sup
B2Rf

A

jmF jðBÞ

¼ sup
B2Rf

A

Z

B

kFkXdl ¼
Z

A

kFkXdl; 8 A 2 R:
ð10Þ

h

Remark 2 Let us note that if F : X ! X is a strong l-measurable function, by the

previous result we obtain that:

F 2 Bðl;XÞ if and only if F 2 Bðl;XÞloc and mF has bounded variation.

Example 3 Let us return to the Example 1. It was shown there that F defined in (5)

is locally Bochner integrable. In particular F is locally Pettis integrable. Let us
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obtain now the vector measure mF , its variation and its semivariation. See that for

each B 2 Rf

mFðBÞ ¼ B�
Z

B

Fdl ¼
Z

B

fdl

� 	

x; 8 B 2 Rf :

Now take A 2 R, from (7) and (10)

kmFkðAÞ ¼ sup
x�2BX�

Z

A

jhF; x�ijdl ¼ sup
x�2BX�

Z

A

jf jjhx; x�ijdl

¼
Z

A

jf jdl
� 	

sup
x�2BX�

jhx; x�ij ¼
Z

A

jf jdl
� 	

kxkX

¼
Z

A

kFkXdl ¼ jmF jðAÞ:

Therefore kmFk ¼ jmF j in this case.

4 The space of mF-integrable functions

When F is a locally Pettis or Bochner integrable function we have constructed the

vector measure mF defined on the d-ring Rf . In the present section we will study the

spaces L0ðmFÞ, L1wðmFÞ, L1ðmFÞ and L1ðjmFÞjÞ associated to this vector measure

through the operator MF which to each measurable function g assigns the function

gF. The following lemmas allow us to conclude that MF : L0ðmFÞ ! L0wðl;XÞ or

L0ðl;XÞ is well defined. Clearly MF is a linear operator.

Lemma 2 Let F : X ! X be a function and g 2 L0ðRÞ.
i) If F is strongly l-measurable, then gF is strongly l-measurable.

ii) If F is weakly l-measurable, then gF is weakly l-measurable.

Proof

(i) Observe that if u 2 SðRÞ and S 2 Stðl;XÞ, then uS 2 Stðl;XÞ. Let us

assume that F is strongly l-measurable. Take fung � SðRÞ and fSng �
Stðl;RÞ such that un ! g and Sn ! F, l-a.e. Thus unSn 2 Stðl;XÞ, 8 n 2
N and unSn ! gF, l-a.e. It follows that gF is strongly l-measurable.

(ii) By definition if F is weakly l-measurable, we have that for each x� 2 X�, the
function hF; x�i is strongly l-measurable. Using (i) we obtain that

hgF; x�i ¼ ghF; x�i 2 L0ðl;XÞ 8 x� 2 X�.

Lemma 3 Let F 2 Pðl;XÞloc, fgng � L0ðRÞ and g; h 2 L0ðRÞ.
(i) If g ¼ h, mF-a.e., then gF ¼ hF, weakly l-a.e.
(ii) If gn ! g, mF-a.e., then hgnF; x�i ! hgF; x�i, l-a.e., 8 x� 2 X�.
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Proof

(i) Choose N 2 N 0ðmFÞ such that gðtÞ ¼ hðtÞ, 8 t 2 Nc. Then gvNcF ¼ hvNcF;
Moreover, vNF ¼ 0 weakly l -a.e. implies that gvNF ¼ hvNF ¼ 0, weakly

l-a.e. Thus gF ¼ hF, weakly l-a.e.
(ii) Let N 2 N 0ðmFÞ such that gnðtÞ ! gðtÞ, 8 t 2 Nc. So gnvNc ! gvNcF and

gnvNF ¼ gvNF ¼ 0, weakly l-a.e. Then for each x� 2 X�, hgnvNcF; x�i !
hgvNcF; x�i and hgnvNF; x�i ¼ hgvNF; x�i ¼ 0, l-a.e. Therefore

hgnF; x�i ! hgF; x�i, l-a.e., 8 x� 2 X�.

h

Proposition [11, Prop.8] established by G. F. Stefansson for the case that F 2
Pðl;XÞ and l is a finite positive measure defined on a r-algebra is generalized in

the next theorem.

Theorem 2 For F 2 Pðl;XÞloc and g 2 L0ðRÞ, we have that

(i) g 2 L1wðmFÞ if, and only if, gF 2 Dðl;XÞ. Moreover, the restriction to L1wðmFÞ
of the operator MF is a linear isometry from L1wðmFÞ into Dðl;XÞ.

(ii) g 2 L1ðmFÞ if, and only if, gF 2 Pðl;XÞ. Moreover,MF : L1ðmFÞ ! Pðl;XÞ,
the restriction of the operator MF , is a linear isometry such that

ImF ¼ IP �MF .

Proof Fix x� 2 X� and consider s ¼
Xn

j¼1

ajvAj
2 SðRÞ. By hypothesis

vBF 2 Pðl;XÞ, 8 B 2 Rf . It follows that sF 2 Pðl;XÞ. From (9) we obtain

Z

X
jsjdjhmF; x�ij ¼

Xn

j¼1

jajjjhmF ; x�ijðAjÞ ¼
Xn

j¼1

jajj
Z

Aj

jhF; x�ijdl

¼
Z

X

Xn

j¼1

jajjvAj
jhF; x�ijdl ¼

Z

X
jhsF; x�ijdl:

ð11Þ

Thus s 2 L1wðmFÞ if and only if sF 2 Dðl;XÞ.
Proceeding in the same way, it follows from (8) that

Z

X
sdhmF; x�i ¼

Z

X
hsF; x�idl: ð12Þ

Now take g 2 L0ðmFÞþ and fsng � SðRlocÞ such that 0� sn " g, mF-a.e. From

Lemma 3 we obtain hsnF; x�i ! hgF; x�i, l-a.e. Then, jhsnF; x�ij " jhgF; x�ij, l-a.e.
By the Monotone Convergence Theorem and (11) it turns out that
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Z

X
jhgF; x�ijdl ¼ lim

n!1

Z

X
jhsnF; x�ijdl

¼ lim
n!1

Z

X
sndjhmF; x�ij ¼

Z

X
jgjdjhmF ; x�ij;

ð13Þ

showing that g 2 L1wðmFÞ if and only if gF 2 Dðl;XÞ.
By the Dominate Convergence Theorem and (8)
Z

X
hgF; x�idl ¼ lim

n!1

Z

X
hsnF; x�idl ¼ lim

n!1

Z

X
sndhmF ; x�i ¼

Z

X
gdhmF ; x�i:

We conclude from here that g 2 L1ðmFÞ if and only if gF 2 Pðl;XÞ and
Z

X
gdmF ¼ P�

Z

X
gFdl: ð14Þ

Since the involved sets are vector spaces and each g 2 L0ðmFÞ is a linear combi-

nation of non negative functions, we obtain the first part in (i) and (ii).

Finally take g 2 L1wðmFÞ, since jgj 	 0 we obtain equality (13) with a sequence

fsng � SðRÞ such that 0� sn " jgj, mF-a.e. Taking the supremum over x� 2 BX� it

turns out that kgkmF ¼ kgFkD. That is, MF restricted to L1wðmFÞ is a linear isometry.

Since L1ðmFÞ and Pðl;XÞ are subspaces of L1wðmFÞ and Dðl;XÞ, respectively, we
conclude that MF restricted to L1ðmFÞ is also an isometry. Moreover, from (14) it

follows that ImF ¼ IP �MF . h

Corollary 3 Let F 2 L0wðl;XÞ. Then F 2 Pðl;XÞ if and only if F 2 Pðl;XÞloc and
mF is strongly additive.

Proof Let assume that F 2 Pðl;XÞ. Consider the vector measure ~mF : Rloc ! X
defined in (2). Since R is a r-algebra, it turns out that ~mF is strongly additive.

Observe that mF is the restriction of ~mF to Rf , so it follows that it is strongly additive.

Now assume that F 2 Pðl;XÞloc and that mF is strongly additive. From [3, Cor.

3.2] we obtain that vX 2 L1ðmFÞ. So, by the previous theorem F ¼ vXF 2 Pðl;XÞ.
h

Corollary 4 Let F 2 Pðl;XÞloc. If X does not contain any subspace isomorphic to c0
and mF is bounded, then F 2 Pðl;XÞ.

Proof Since X does not contain any subspace isomorphic to c0 and mF is bounded it

turns out that mF is strongly additive [4, p. 36]. Then by the previous corollary

F 2 Pðl;XÞ. h

The following result gives us the connection between the spaces L1ðjmF jÞ and

Bðl;XÞ through the operator MF in case that F 2 Bðl;XÞloc. We will show that, as

it occurs when F 2 Pðl;XÞloc, MF is a linear isometry in this case.
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Proposition 3 Consider F 2 Bðl;XÞloc and g 2 L0ðjmFjÞ. Then g 2 L1ðjmFjÞ if and
only if gF 2 Bðl;XÞ. Moreover, MF : L1ðjmFjÞ ! Bðl;XÞ is a linear isometry such

that ImF ðgÞ ¼ IB �MFðgÞ, 8 g 2 L1ðjmFjÞ.

Proof Clearly MF is a linear operator, we will see that its image is a subset of

Bðl;XÞ. By Lemma 3 we have that the restriction MF : L1ðjmFjÞ ! Bðl;XÞ is well
defined.

Since the norms in L1ðjmF jÞ and Bðl;XÞ are different from those in L1ðmFÞ and
Pðl;XÞ, respectively, we need to establish that, under these norms, MF is also an

isometry.

By hypothesis F 2 Bðl;XÞloc, then from (10) it follows that jmFjðBÞ\1,

8 B 2 Rf . So, SðRf Þ � L1ðjmF jÞ. Further for each s ¼
Pn

j¼1 ajvAj
2 SðRÞ we have

that

Z

X
jsjdjmFj ¼

Z

X

Xn

j¼1

jajjjmFjðAjÞ ¼
Xn

j¼1

jajj
Z

Aj

kFkXdl

¼
Z

X

Xn

j¼1

jajjvAj
kFkXdl ¼

Z

X
ksFkXdl:

Therefore s 2 L1ðjmF jÞ if and only if sF 2 Bðl;XÞ. Now consider g 2 L0ðjmF jÞ and
take fsng � SðRÞ such that 0� sn " jgj, mF-a.e. Then ksnFkX " kgFkX , l-a.e. By the

Monotone Convergence Theorem

Z

X
kgFkXdl ¼ lim

n!1

Z

X
ksnFkXdl ¼ lim

n!1

Z

X
jsnjdjmFj ¼

Z

X
jgjdjmF j:

Thus we have that gF 2 Bðl;XÞ if and only if g 2 L1ðjmFjÞ. Moreover,

kgkjmF j ¼ kgFk1.
The equality between the operators follows from Proposition 2. h

Example 4 Consider again the function F defined in (5). As we see in Example 1

F 2 Bðl;XÞloc.
Take g 2 L1ðmFÞ, from Proposition 2

Z

X
gdmF ¼ P�

Z

X
gFdl ¼

Z

X
gfdl

� 	

x;

then gf 2 L1ðlÞ. And so,

Z

X
kgFkXdl ¼

Z

X
jgf jkxkXdl\1: ð15Þ

By Lemma 2 gF is strongly l-measurable. Thus we have that gF 2 Bðl;XÞ and by

Proposition 3, g 2 L1ðjmF jÞ. We conclude that L1ðjmFjÞ ¼ L1ðmFÞ. And from [2,

Prop. 5.4] it follows that L1ðjmFjÞ ¼ L1ðmFÞ ¼ L1wðmFÞ .
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