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Abstract
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1 Introduction

Variational inequality problems were formulated in 1967 by Lions and Stampaccia
[23]. These problems have been studied extensively by several authors [2, 13, 15].
In many models for solving real-life problems arising in areas such as image
processing, machine learning and signal processing, the constraints are expressed as
variational inequality problems and as fixed point problems. Consequently, this
problem has attracted the attention of many researchers working on nonlinear
operator theory (see, for example, [2, 3, 26] and the references therein).

Throughout this paper, we shall assume E to be a real reflexive Banach space
with dual E*, C a nonempty, closed and convex subset of E andf : E — (—00, +00]
to be a proper, lower semi-continuous and convex function. We denote by
domf := {x € E: f(x) < + oo}, the domain of f. Let x € int(domy); the subdiffer-
ential of f at x is the convex set defined by

Of(x) ={x" € E" : f(x) + (x",y = x) <f(v), Vy € E}.
Let A: C — E be a map. Then A is said to be
1. k—Lipschitz continuous if 3 k >0, such that

[lAx — Ay[| <k[lx —yl[, Vx,yeC

2. Monotone, if the following inequality holds:
(Ax — Ay,x —y) >0, Vx,y € C;
3. a-inverse strongly monotone if 3 & > 0, such that
(Ax — Ay, x — y) > of|Ax —Ay||2, Vx,y € C;

4. Maximal monotone if the graph of A is not properly contained in the graph of
any other monotone map.

The convex feasibility problem is to find a point z € C := N’_,C;, where C; is a
convex set for each i.
The variational inequality problem is to find a point z € C, such that

(v—2z,A2)>0, WweC.

The solution set of the variational inequality problem is denoted by VI(C, A).
For any x € int(domf) and y € E, the right-hand derivative of f at x in the
direction of y is defined by

fo(x7y) — hmf(x + ty) _f(x) )
t—0+t t
The function f'is said to be Gateaux differentiable at x if limHo"M exists for

any y. In this case, the gradient of f at x is the function Vf(x) : E — (—o00, +0o0]
defined by (Vf(x),y) =f°(x,y) for any y € E. The function f is said to be Gateaux
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differentiable if it is Gateaux differentiable for any x € int(domf). The function fis
said to be Fréchet differentiable at x if this limit is attained uniformly in y with
ly]l = 1. Also fis said to be uniformly Fréchet differentiable on a subset C of E if
the limit is attained uniformly for x € C and ||y|| = 1. It is well known that if f is
Gateaux differentiable (resp. Fréchet differentiable) on int(domy), then f is contin-
uous and its Gateaux derivative Vf is norm-to-weak* continuous (resp. norm-to-
norm continuous) on int(dom(f)) (see [6, 9]).

A function f on E is coercive [18] if the sublevel sets are bounded; equivalently

lim f(x) = +oo.

[|x]| =400

A function f on E is said to be strongly coercive [33] if

m JE =400
Ix[|—+oc HX”

Definition 1.1 [8] The function f is said to be:

(1) Essentially smooth, if 0f is both locally bounded and single-valued on its
domain;

(i)  Essentially strictly convex, if (Of )71 is locally bounded on its domain and

fis strictly convex on every subset of domf;

(iii)) Legendre, if it is both essentially smooth and essentially strictly convex.

The Fenchel conjugate of f is the function f* : E* — (—o00, +00] defined by
() = sup{ (', x) — f(x) : x € E}.

Remark 1.2 If E is a reflexive Banach space, then we have the following results:

(1) fis essentially smooth if and only if /* is essentially strictly convex (see
[8], Theorem 5.4).
() (o) = o (see [9]).
(iii) f1is Legendre if and only if f* is Legendre (see [8], Corollary 5.5).
(iv) If fis Legendre, then Vf is a bijection satisfying Vf = (Vf*)_l, ranVf =
domV (f*) = int(domf™) and ran Vf* = domf = int(domf) (see [8], The-
orem 5.10 ), where ran stands for the range.

Examples of Legendre function were given in [7, 8]. One important and
interesting Legendre function is % || - I” (1<p<oo) when E is a smooth and strictly
convex Banach space; in particular Hilbert spaces.

In the rest of this paper, we always assume that f : E — (—o0, +00] is Legendre.

Let f : E — (—00,400] be a convex and Géteaux differentiable function. The
function

Dy : domf x int(domf) — (—o0, 4+00], defined as follows:
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Df(x7y) :f(x) —f(y)—(Vf(y),x—y>, (11)

is called the Bregman distance with respect to f (see [14] ). It is obvious from the
definition of Dy that

Dy(z,x) := Dy(z,y) + Ds(y,x) + (Vf () — Vf(x),2—y). (1.2)

Let T: C — E be amap and let F(T) = {x : Tx = x} denote the set of fixed points
of T.

A point p € C is said to be asymptotic fixed point of map 7, if there exists a
sequence {x,} in C which converges weakly to p such that
lim,, o ||x, — Tx,|| = 0. We denote by F(T) the set of asymptotic fixed points
of T. A point p € C is said to be a strong asymptotic fixed point of map 7, if there
exists a sequence {x,} in C which converges strongly to p such that
lim, . s ||, — Tx,|| = 0. We denote by F(T) the set of strong asymptotic fixed
points of 7. T is said to be quasi-Bregman relatively nonexpansive if F(T) # 0,
F(T) = F(T) and Dy(Tx,p) < Dy(x,p) for all x € C and p € F(T).

If E is a smooth Banach space, the Lyapunov functional ¢ : E X E — R is
defined by

$(x,y) = [Ix|* =20r,0y) + DIIP, Vx,y € E.

where J denotes the normalized duality mapping.

Let 1 and s be real numbers with € (—oo, 1) and s € [0, 00), respectively. Then
the map T : C — E with F(T) # () is called (#,s)—demigeneralized, if for any
x€ Cand g€ F(T),

(x —q,Jx —JTx) > (1 — n)d(x, Tx) + s¢p(Tx, x). (1.3)
In particular, if s = 0 in (1.3), then
(x —q,Jx —JTx) > (1 — n)¢p(x, Tx),

holds for any x € C and g € F(T), and in this case T is (,0)—demigeneralized
map.

Remark 1.3 1If E is smooth and strictly convex Banach space and f(x) = ||x||* for
all x € E, then we have Vf(x) = 2Jx, for all x € E and hence the function Dy(x,y)
reduces to ¢(x,y).

Definition 1.4 [5] Let E be a reflexive Banach space, C a nonempty closed and
convex subset of E, and 1 be a real number with 5 € (—o0o, 1). Then the map
T : C — E with F(T) # () is called (1, 0)-Bregman demigeneralized map, if for any
x€CandgeF(T),

(x = q,Vf(x) = Vf(Tx)) = (1 =)Dy (x, Tx).
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The following facts illustrate that the class of Bregman demigeneralized maps is
very important.

(i) [31] Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. Let k be real number in (0, 1), the map T : C — E is called quasi-
Bregman strictly pseudocontractive map if F(T) # (), x € C and p € F(T),
then we have

Dy (p, Tx) < Dy(p, x) + kDy(x, Tx). (1.4)
From (1.4), we have
D;(p, Tx) < Dy (p, x) + Ds(x, Tx) — Dy (x, Tx) + kDy(x, Tx),
which by (1.2), implies
(1 — k)Ds(x, Tx) < Dy(p,x) + Ds(x, Tx) — Dy(p, Tx)
= (x = p, Vf(x) = Vf(Tx)).

This shows that T is (k, 0)-Bregman demigeneralized map.

(ii) Let E be a reflexive Banach space, let f: E — R be strongly coercive
function and let A be a maximal monotone operator with A~'(0) # () . Let
ResfM be the resolvent of A, 2 > 0 for any x € E and z € A~(0), then we
have

(Res!,(x) — z, VF(x) — Vf(Res),(x))) >0,
which implies
(Resly (x) — x 4 x — 2, Vf (x) — Vf (Resl, (x))) >0,
hence
(x — 2, Vf(x) — Vf(Resl,(x))) > (x — Resl,, (x), Vf(x) — Vf(Res), (x)))

= Dy(x,Res), (x)) + Ds(Res/,, (x),x)
> Dy (x, Res!, (x)).

This shows that Res’; 4 18 (0, 0)-Bregman demigeneralized mapping.

(iii)) Let E be a reflexive Banach space and C a nonempty, closed and convex
subset of E and let f : E — R be a Fréchet differentiable convex function.

A map T : C — E is called quasi-Bregman nonexpansive map if F(T) # ()
and for all x € C, p € F(T),

Df(pa Tx) < Df(pvx)v

which gives by (1.2)
Dy(p,x) + Dy(x, Tx) + {p — x, Vf (x) = Vf(Tx)) < Ds(p, x)

and hence
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Dy (x,Tx) < (x — p, VF(x) — VF(T)).

This implies that T is (0, 0)-Bregman demigeneralized map.

Example 1.5 Let E =R, C = [~1,0] and define T,f : [~1,0] — R by f(x) = x*
and Tx = 2x, for all x € [—1,0]. Then T'is (1, 0)-Bregman demigeneralized map but
not (n,0)-demigeneralized map.

Bregman [10] introduced an effective technique through Bregman distance
function Dy for designing and analyzing feasibility and optimization algorithms.
This opened a new area of research in which Bregman’s technique is applied in
various ways to iterative algorithm for solving not only feasibility and optimization
pro blems, but also algorithms for solving fixed point problems for nonlinear
mappings (see, e.g., [11, 22, 31] and the references therein).

Many researchers have proposed and analyzed different iterative algorithms for
solving variational inequality problems, approximating fixed points of nonexpansive
mappings and their generalizations. Initially, in most of the algorithms for
approximating solutions of variational inequality problems, the operator A was often
assumed to be inverse strongly monotone (see, e.g, [4, 12, 15] and the references in
them). In order to relax the inverse strong monotonicity of the operator A,
Korpelevic [21] introduced the following extragradient method in the finite
dimensional Euclidean space R":

Xop = X1 € C; (1 5)
Xnp1 = Pe(xy — 2A[Pc(x, — AAx,)]), VreN '

where the operator A is monotone and Lipschitz and Pc denotes the metric
projection.

However, in the extragradient method, two projections onto a closed and convex
subset C of H at each step of the iteration process need to be computed.

Censor et al. [16] observed that this may affect the efficiency of the method if the
set C is not simple enough. They introduced and studied the following modified
extragradient method by replacing the second projection onto a closed and convex
subset C with a projection onto a specific constructable half-space T),:

X0 :H;

Yu = Pc(x, — 1Ax,);

Ty =A{w € H: (5 = A%, — Yo, w = yu <0};
Xnt+1 = PTn (xn - ‘EAyn),Vn € N.

(1.6)

and they proved that the sequence generated by (1.6) converges weakly to the
solution of a variational inequality problem in real Hilbert spaces under some mild
assumptions. Since the set 7}, is a Half-space; therefore, algorithm (1.6) is simpler to
implement than algorithm (1.5)

To get strong convergence, Kraikaew and Saejung [20] introduced the following
hybridization of the subgradient extragradient method (1.6) as a Halpern method:
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X0 :H;
Yu = Pc(x, — 1Ax,);
T,={weH: (x, — tAx, — y,,w — y, <0}; (1.7)

Zn = OpXo + (1 - o(n)PT,,(-xn - TAM);
Xn1 = Bpxa + (1 — B,)Sz,,Vn >0,

where f3, C [a,b] C (0,1), for some a,b € (0,1) and {a,} is a sequence in [0, 1]
satisfying lim, . o, =0 and )~ | o, = oo. They proved that the sequence gen-
erated by algorithm (1.7) converges strongly to a point p € VI(C,A) N F(S) in a real
Hilbert space.

In 2018, Chidume et al. [13] introduced the following Krasnoselskii-type
algorithm in a uniformly smooth and 2—uniformly convex real Banach space for
approximating common element of solutions of a variational inequality problem and
common fixed point of a countable family of relatively nonexpansive maps, under
some mild assumptions:

Xo=x€E,

Vo = e Y (JIx, — A,AX,);

T, ={z€E:(z—y,Jx, — AAx, — Jy,) <0};
t, = g, (Jx, — A4Axy,);

20 = J o Ixo + (1 — o) Jt,);

Xup1 =J (A, + (1= 2)JISTz,), n>0.

Polyak [28] was first to propose an acceleration process called inertial-type algo-
rithm for solving a smooth convex minimization problem. Incorporating an inertial
term in an algorithm accelerates the rate of convergence of the sequence generated
by the algorithm. Consequently, many researchers are applying inertial-type algo-
rithms in their investigations (see [1, 17, 24] and references contained therein).

Khan et al. [19] introduced a modified inertial subgradient extragradient
algorithm in a 2-uniformly convex and uniformly smooth real Banach space and
proved a strong convergence theorem for approximating common solution of fixed
point of a (k, 0)-demigeneralized mapping and solution of variational inequality
problem, under some appropriate conditions:

Xo,Xx1 € E,

W, = J’I(an + 00 (Jxn—1 — Jxn))

yo = Hed 1 (Jw, — tAw,);
T,={z€E:{(z—yuJw, — tAw, — Jy,) <0}; (1.9)
2 = Mg, (Jw, — tAyn);

Vo =J (1 = 2)20 + 2 T2,);

Xntl = J_l(an]xn + Budvn + 9 Ju), n>1

Motivated and inspired by the above-mentioned results, we proposed and studied a
modified inertial subgradient extragradient algorithm in a reflexive Banach space
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and proved a strong convergence theorem for approximating common element of
solutions of a variational inequality problem and a common fixed point of Bregman
demigeneralized mappings. Our work extends and generalizes the result of Khan
et al. [19] and many other related results announced recently.

2 Preliminaries

Recall that the Bregman projection [10] of x € int(domf) onto nonempty, closed and
convex set C C domyf is the unique vector P’;(x) € C satisfying

Dy(P(x),x) = inf{Dy(y,x) : y € C}.

The function f is called totally convex at x if ve(x,7) =inf{Ds(y,x):y €
Domyf, ||x — y|| =t} > 0 whenever ¢ > 0. The function f is called convex if it is
totally convex at any point x € int(domf) and is said to be totally convex on bounded
set if v¢(B,) > 0 for any nonempty bounded subset B of E and ¢ > 0, where the
modulus of total convexity of the function f on the set B is the function vy : int(-
domyf) x [0,4+00) — [0,400) defined by

vr(B,t) := inf{vy(x,1) : x € BN domf}.

Concerning the Bregman projection, the following facts are well-known.

Lemma 2.1 [11] Let C be a nonempty, closed and convex subset of a reflexive
Banach space E. Let f : E — R be a Gdteaux differentiable and totally convex
function. Then

(@ 7= PfC(x) if and only if (Vf(x) — Vf(z),y —2) <0, Vx€Eandy € C;
(B)  Dy(y, PL(x)) + Dp(Pc(x),x) <Dy(y,x), Vx€E,yeC.

Lemma 2.2 [25] Let E be a Banach space and f:E — R be a Gdteaux
differentiable function which is uniformly convex on bounded subsets of E. Let
{%n}nen and {yn},cn be bounded sequences in E. Then

lim Dy (x,,y,) =0 if and only if  lim ||x, — ya|| = 0.

Lemma 2.3 [29] Let f: E — R be Gdteaux differentiable and totally convex
function. If xo € E and the sequence {Dy(x,,x0)} is bounded, then sequence {x,} is
bounded too.

Recall that the function f is called sequentially consistent if for bounded
sequences {u,} and {y,} in E

lim Dy (yn,u,) =0 implies

n—-+00 nEIJPoo ||yn N Mn|| =0

The following two results are well-known; see ([33])
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Theorem 2.4 Let E be a reflexive Banach space and let f : E — R be a convex
Sfunction which is bounded on bounded subsets of E. Then, the following assertions
are equivalent:

(1) fis strongly coercive and uniformly convex on bounded subsets of E;
(2) domf* = E*, f* is bounded on bounded subsets and uniformly smooth on
bounded subsets of E*;

(3) domf* = E* f* is Frechet differentiable and Vf* is norm-to-norm uniformly
continuous on bounded subsets of E*.

Theorem 2.5 Let E be a reflexive Banach space and let f : E — R be a continuous
convex function which is strongly coercive. Then the following assertions are
equivalent:

(1) fis bounded on bounded subsets and uniformly smooth on bounded subsets of
E;

(2) f* is Frechet differentiable and f* is uniformly norm-to-norm continuous on
bounded subsets of E*;

(3) domf* = E*,f* is strongly coercive and uniformly convex on bounded subsets
of E*.

The following result was first proved in [11].

Lemma 2.6 Let E be a reflexive Banach space, f : E — R be a strongly coercive
Bregman function. V is the function defined by

V(x,x*) =f(x) — (x,x") + f*(x"),x € E,x" € E".
Then, the following assertions hold:

() Dy(x,Vf(x*)) = V(x,x*) for all x € E and x* € E*.
(2) V(x,x*)+ (Vf*(x*) —x,y") <V(x,x" +y*) for all x € E and x*,y* € E*.

Lemma 2.7 [25] Let E be a Banach space and f : E — R be a convex function
which is uniformly convex on bounded subsets of E. Let r > 0 be a constant and p,
be the gauge of uniform convexity of f. Then

(i) Foranyx,y€ B, ={x¢€:|x]|<1} and o € (0,1),
flox+ (1 = a)y) <of (x) + (1 = o)f (v) — (1 —2)p,([lx = yl]).

(iiy For any x,y € B,

pr([le = ¥lI) <Dy (x, y)-
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(iii)  If, in addition, g is bounded on bounded subsets and uniformly convex on
bounded subsets of E then, for any x € E,y*,z* € B, and o € (0,1)

Vi oy™ + (1 = 2)z") <aVp(x,y) + (1 = o) Vi(x, 27)
— (1 = o)y (|ly" = x7[]).

Lemma 2.8 [30] Let C be a nonempty closed and convex subset of a reflexive
Banach space E and A : C — E* be a monotone and hemicontinuous map. Let
T : E — 2% be an operator defined by

{ Au+Nc(u), uecC,
Tu =

0, uégC,
where Nc(u) is defined as follows:

Nc(u) ={w* € E* : (u—z,w*) >0, Vz € C}.
Then, T is maximal monotone and T~'0 = VI(C,A).

(2.1)

Lemma 2.9 [32] Let {a,}, {7,}, {0n} and {1,} be sequences of nonnegative real
numbers satisfying the following relation:

api1 S (1 - tn - Vn)an + ynnan—l + Z‘nsn + 511’ n Z Oa

where Z‘nx:no t, = +00; Zflino 0, < + o0; for each n>ng (where ny is a positive
integer) and {y,} C [0,3], limsup,_. . s, <O. Then, the sequence {a,} converges to

Zero.

Lemma 2.10 [27] Let I, be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {I'y,}, - of {I',} which satisfies

[, <Tyq1 for all j> 0. Also consider a sequence of integers {t(n)} defined by

n>ngy
t(n) =max{k<n| T, <TI,}

Then {t(n)}, ., is a nondecreasing sequence satisfying lim, ., t(n) = oc.
If it holds that Uy,) <T' ()41 for all n>ny then we have

I, < rr(n)H .

3 Main Results

Lemma 3.1 Let E be a reflexive Banach space and C a nonempty, closed and
convex subset of E and let f : E — R be a Frechet differentiable convex function.
Let 1 be a real number with n € (—00,0] and let T : C — E be (1,0)-Bregman
demigeneralized map with F(T) # (. Let a be a real number in [0, 1) and let
S=Vr((1 —a)Vf 4+ aVf(T)). Then S : C — E is a quasi-Bregman nonexpansive
map.
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Proof 1t is obvious that F(T) = F(S). Since S is (#,0)-Bregman demigeneralized
map, for any x € C, we obtain

Dy (x,8x) = Dy (x, Vf*((1 — 0) Vf(x) + aVf(Tx)))
<(1 — o)Dy(x,x) + aDys(x, Tx) (3.1)
= O(Df(xv Tx)7

and letting p € F(S), we get

(x=p, Vf(x) = Vf(8x)) = (x = p, Vf(x) = (1 = ) Vf (x) — aVf(Tx))
— alx— p, VF(x) — VF(Tx) (32)
> “(1 - W)Df(xv Tx)>

from (3.1), (3.2) and the fact that € (—o0, 0],we have
(x = p, Vf(x) = Vf(8x)) Z (1 =)Dy (x, Tx) > oDy (x, Tx) (3.3)
from (1.2) and (3.3), we have
Dy (p,x) — Dy(p, Sx) + Dy(x, Sx) > aDy(x, Tx);
this and (3.1) imply

Dy (p,x) — Ds(p, Sx) > oDy(x, Tx) — Dy (x, Sx)
oDy (x, Tx) — oDg(x, Tx).

v

Hence
Df‘([),SX) SDf(pvx)'
O

Lemma 3.2 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on E with L > 0 and let T : C —
E  be a (k,0)—Bregman demigeneralized mapping. Suppose that Q = F(T)N
V(C,A) # (. Define a sequence {x,},-, generated by arbitrarily chosen x,x, € E
and any fixed u € E :

T Birkhauser



30 Page 12 of 26 B. Ali et al.

Wi = Vf*(Vf(xn) + 02(Vf(x0-1) — Vf(x0))

Yn = PCvf*(vf(Wn) - Mwn);

T, ={z € E: (z—yu, Vf(Wn) — 2Aw,, — Vf(ya)) <0};
in = PTnvf*(vf(Wn) - )AYn);

Vn = Vf*((l - O(n)Vf(Zn) + O‘nvf(TZn))§

xn+l = Vf*(éan(xn) + ﬁan(Vn) + yan(u)), n Z 0
where 4 € (0,%), {o,} C [0, ], {ot}, {00}, {B,}, {7} are sequences in (0, 1) such
that o, + B, + v, = 1 and the following conditions are satisfied:

(Cl) 0<a<o,<P,<3,Vn>1,

(C2) lim,noy, =0and > 02,7, = 0o,
(C3) O<liminf,_ 6, < d, < limsup,_,,, 6, <1.

(3.4)

Then, the sequence {x,} is bounded.

Proof For this, we first show that

L2
Dy(p. ) < Dy(pown) = (1= ) (Dy (o wi) + Dy i) ).
Let p € Q. Then using Lemma 2.6, Lemma 2.1 (b) and (1.2), we have

Dy (p,z0) < Dyp(p, Vf*(Vf(Wa) — 4Ayn)) — Dy(zn, VI (Vf (Wn) — 2Ayn))

= Vi(p, Vf(wn) = 2Ayn) = Vi (tu, Vf (Wn) — AAyn)

= Df(p, Wp) — Df(men) + AP — Zn, AYn)

= Dy(p,wn) = Dy(zn; Xn) + Ap = Yn, AVn) + 2(yn = Zn; A¥n)

= D¢(p,wn) = D (2, Yn) = D (¥ Wn) — (Vf(n) = Vf(Wn), 20 — Yn)
+ 2 = 2, Ayn)

= Dy(p,Wn) — Dy(zn,Yn) = Dy(yn, Wn)
+ (@2n = Yy V(W) = 2Ayn — Vf (yn))-

Using the fact that A is Lipschitz continuous, we estimate
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(2 = Yns Vf(Wn) = 2Ayn — NVf(¥0)) = (20 = Yus Vf(Wa) — 2AW, — Vif (yn))
+ Azn — yn, AWy — Ayy)
< Mzn = Yn, AWy — Ayy)
< Alzn = yallllAwn — Aya||
<kA|zn = yulll[Wn = yull

La 2 2
< = (llew = all® + Iy = wall?)
LA
S ? (Df(znayn) +Df()’n7Wn)

It follows that

D¢(p,z0) < Df(p,wyn) — Df (20, Yn) — D (Y, Wn)
L.

+ o (Df(znayn) + Dt (Yn, Wn)

= Dy(p,wn) — (Df(zn,yn) + Dy (yn, Wn) (3.5)
- % (Df(zn,yn) + Dy (yn, W))

= Dy(pwn) — (1= 22 (Dylan ) + Dy

Also from (3.4), we have

Df(P: Wy) = Df(Pv VI (Vf (xn) + 02(Vf (xn-1) = Vf(x0)))
< (1 - O-n)Df(P7xn) + O'an(P,xn—l)~
Since T is (k,0)—Bregman demigeneralized mapping, S, = Vf*((1 — «,)Vf(I) +

o, Vf(T)) is relatively nonexpansive mapping and F(S,) = F(T). Hence, from
(3.4), we have

(3.6)

D¢(p,va) = Dy(p, Vf* (1 — ) VS (zn) + 2 VS (T20)))
= Dy(p; Suzn) (3.7)
SDf(pazn)~

Let p;: E — R be the gauge function of uniform convexity of the conjugate
function f*. By (3.4), (3.5),(3.6),(3.7) and Lemma 2.7, we obtain
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Df(vanH) < Df(P» Vf* (0uVf (x) + B, NVf (Vi) + 7,V (u)))

= Vf(pv 5,1Vf(x,,) + ﬁ”Vf(V") + “,',,Vf(u))

=1(p) = (P, 6uVf (xa) + B,Vf (va) + 7,V (u))
+ 1 (0uVf (%n) + B,V (Vi) + 7,V ()

<0uf(p) + Buf (P) + 1uf (P) — 0ulp; Vf (x)) — Bulp, VI (va))
= 7u{p, VI (W) + 8uf " (VF (xa)) + Buf " (VF (va)) + 0uf ™ (VS ()
= SuBupr(IVf (xn) = VF W)ll) = 0nvnpr (IIVSf () = VF ()]])
= Buynp i (1N (vi) = VF@)I])

<0u(f(p) = (p, Vf (xn)) +17(Vf (xa))) + Buf(P) — (P, Vf (va))
(V) + 0 (F () — (o, Vf () + 7 (VF ()
= 0uPup; (|IVf (x) = YV (va)l])

= 0V (p, Vf () + BuVr (0, Vf (vn)) + 7. Ve (P, VS ()
= OBy (IIVf (xn) = Vf (va)])

= 0uDs (P, %a) + BuDy (P, va) + 7D (P, u)
= SuBpr (I1VF (%n) — Vf (va)[])

< 5an(p,x,,) + ﬁan(Pv Zn) + Van(Pv u)
= 0uPup; (|IVf (x) = YV (va)l])

)

< 0,0y (p.0) + B, [ Dy o)

A
- (1 - %) (Df(zmyn) + Df(ym Wn))]
+7uDr (P, 1) — SuBp; ([IVf (xn) — VF (va)l])
< 5an(P,xn) + ﬁn(l - U'I)Df(P:xn) + ﬁnGan(van—l)
- B, (1 - %) (Df(znvyn) + Df(ymwn))
+ 72Dy (P u) — SuBp; ([IVf (xa) — VF (v)l])
< (San(van) + ﬁan(pﬂxn) - :Bna'”Df(p7xn) + :Bno-'lDf(pvxnfl)
- B, (1 - %) (Df(zm)’n) + Df(ymwn))

+ 92Ds (P ) = SuBop ([IVf (k) — VF (v)l])
< (1 —Tn— [i’,,an)Df(p,xn) + ﬂno'an(vanfl)

+ 7.Ds(p,u) — B, (1 - %) (Df(zn,yn) + Df(yn,wn)>

= 0uPup; (IIVf (x) = Vf (wa)l])
< (1 —Tn— ﬁno'n)Df(van) + ff,zaan@,xn,O + “/,sz(p, u)

< max {Df(van)-,Df(van—l)7Df(17~,”)} Vn>1.

By induction, we get

Dy (p,) < max {Dy(p. 1), Dy (p.0), Dy(p.) .

Hence, {Df(p,x,)} is bounded which by Lemma 2.3 implies that {x,} is bounded.
Furthermore, {y,}, {z.}, {vi}, {wn} and {Tz,} are bounded. O

Now, we prove the following strong convergence theorem.

Theorem 3.3 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
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uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on E with L >0 and let T : C —
E  be a (k,0)—Bregman demigeneralized mapping. Suppose that Q = F(T) N
V(C,A) #0 . Let {x,},2, be the sequence generated by (3.4) where J. €

(0,%), {6,} € [0,3], {ow},{n},{Bu}, {7n} are sequences in (0, 1) such that 6, +
B, + v, =1 and the following conditions are satisfied:

(Cl) 0<a<o,<f,< %, Vn>1,

(C2) limy—oy, =0and > 0", 7, = 0o,
(C3) O< liminf,— o 6, <0, < limsup,_,, 0, <1.

Then, the sequence {x,} generated by (3.4) converges strongly to the point

p= P’;u
Proof Let p € Q. From (3.8), we have

. L)
a9 (50) = V)l + (1~ 2 (Dy (e )
+ Df()’nvwn)) < (Df(P7xn) - Df(van+l>>
+ ﬁnaﬂDf((pﬂCn*l) - Df(pvxn)) + Van(pv u)
We consider two cases.

Case 1. Assume Dy(p,x,41) < Df(p,x,), such that Dy(p,x,) <M, for all n>1,
where M := max{Ds(p,x1),Ds(p,x0),Df(p,u)}. Then {Ds(p,x,)},-, is conver-
gent. Therefore,
lim,,—, o (Df(P7xn) - Df(p7xn+{)) = lim, oo (Df(p, Xu—1) — Df(p,Xa)) = 0.

Since B,0, > 0 and (1 — %) > 0, therefore, by (3.9), we get

lim Df(Zmyn) = lim Df(ymwn) = lim pj(va(xn) - vf(vn)”) =0.
n—o00 Nn—o00 n—00

Thus, it follows by Lemma 2.2 and the property of p; that

0, N = ul] = g, I = wl] = 0 (3.10)
and
lim (|9 () = V7 ()| = 0. (3.11)

Since Vf is norm to norm uniformly continuous on bounded subsets of E*, (3.10)
becomes

Tim (19 (z) — 90l = lim [[VF () — V()] = 0. (3.12)

From (4.3), we have
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[IVf (1) = V)l + Bl Vf () = V@I + 7l [V (%) = VF()]] = 0.

(3.13)
Using (C2) and (3.11) in (3.13), we have
lim [|Vf (xn41) — Vif ()| = 0. (3.14)

Since Vf is norm to norm uniformly continuous on bounded subsets of E*, we have
Jim [l 1 — x| = 0. (3.15)
Also from (3.4) we have

[INVf(wa) = V()| = 0al [Vf (xn-1) = V()]
which by (3.14) implies

Tim [[VF () — V()] = 0. (3.16)
From (3.12), we have
Jim [[Vf(z2) = Vf (wa)|[ = 0. (3.17)

In addition, from (3.11) and (3.16), we have
Jim [[Vf (wn) = Vf (va)[[ = 0. (3.18)
Now, (3.17) and (3.19), give that
sim [V (zr) — VF(v)]| = 0. (3.19)
Again, from (3.11) and (3.19), we have
Jim [[Vf () — V()] = 0. (3.20)
Since Vf is norm to norm uniformly continuous on bounded subsets of E*, we have
lim ||, — z,[| = 0. (3.21)
In addition, from (3.10) and (3.21), we have
nlirro10 [|X: — yul| = 0. (3.22)

Since T'is (k,0)—Bregman demigeneralized and p € F(T), therefore from (4.3) and
the definition of Bregman demigeneralized mapping, we have
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<Zn _pvvf(zn) - vf(vn)> = O‘n<zn - P, Vf(Zn) - vf(TZn»
> o, (1 — k) Dy (2, Tzn)-

As 2,(1 — k) > 0, so we obtain
1
Di(2,. T2,) < ———— ||z, — _ :
7 (2n, Z)_)vn(l—k)”Z" PV () = Vf(va)ll

from (3.19) and the fact that {z,} is bounded, we have

Jim Dy(z,, Tza) = 0 (3.23)
Using Lemma 2.2, we get

lim ||z, — Tz,|| =0 (3.24)

n—oo

Since {x,} is bounded, there exists a subsequence {x,, } C {x,}, such that x,, — z,
which implies that z,, — z as k — co. Using (3.24), it follows that z € F(T).

Next, we show that z € VI(C,A). Let

T { Av+ Nc(v), ifveC,
V=
0 i éC,

where N¢(v) is as defined in Lemma 2.8. Then, T is maximal monotone and 0 € Tv
if and only if v € VI(C,A). If T is maximal monotone, then (x,x*) € X x X* and if
(x —y,x* —y*) >0,¥(y,y*) € G(T), then x* € Tx.

Let (v,q) € G(T); it suffices to show that (v — z,¢q) >0.

Now (v,q) € G(T) = q € Tv = Av+ N¢(v) = g — Av € N¢(v). Then

(v—y,q—Av)>0,Yy € C.
Since y, = PéVf*(Vf(xn) — JAw,) and v € C, we have by Lemma 2.1 that
(¥n = v, Vif (xa) — AAxy — Vf () = 0.
Thus
(v =y, Lo2) =T 0)

+Awn> >0.
A

As g —Av € N¢(v) and y, € C, so we have

<v_y”k7Q>2<v_ynk7Av>
V() — Vf(wp,
2<v—ynk,Av>—<v—ynk, f () : f (W)

= <v = Ynes Av _Aynk> + (V = Vs AV, _Awnk>
v n, _v Wy,
7<V7yn“ flom) — VI k)>

A

+ Awnk>

vf(ynk) — vf(wnk) >

2 <V - ynkaAynk _Awnk> - <V - ynk7 /1

Using Lipschitz continuity of A, (3.10) and (3.12), we get
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<V_qu>20'

Therefore, z € VI(C,A). Hence z € Q.

Next, we show that {x,} converges strongly to p = P{)u.
Now

lizllsogp<xn —p,Vf(u) — Vf(p)) = klirlolo<xrzk —p, Vf(u) = Vf(p))
(z—p. Vf(u) — Vf(p)).

Using Lemma 2.1, we have

(z=p,Vf(u) = Vf(p)) <0,

and hence
limsup(x, —p, Vf (u) = Vf(p)) = (e = p, VI (u) = Vf(p)) <0. (3.25)
It follows from (3.15) and (3.25) that
fim sup(x, 1 = p, Vi (u) = Vf(p)) <0. (3.26)

From (3.31), (3.5), (3.6), (3.7) and Lemma 2.6, we have

Dy (p; Xn11) < Dy (p, Vf“ (0,Vf (x0) + B,V (va) + 7,V (u)))
= Vi(p, 0aVf (xn) + B,V (va) + 7, Vf ()
= Vi(p, 0aVf (xn) + BNV (vn) + 2, Vf () — 9,(Vf () — Vf(p)))
+ VulXnt1 — p, Vf(u) = V£(p))
= 6,D¢(p,xn) + B,Ds (D, V) + vy (Xns1 — p, Vf (1) — V£ (p))
< 6,Ds(psxn) + BuDs(Ps20) + 7, (X1 — p, Vf (1) — Vf(p))
< 5an(P7xn + ﬁan(Pa Wn) + 7n<xn+l - P, vf(”) - Vf(p»
<0,D5(p,%n) + B, ((1 = 62)Ds(p, %) + 0D (p, 1))
+ VX1 — p, Vf (1) = Vf(p))
< (1 =9, = Bu0n)Dr(p, xn) + Bu0uDy (P, Xn-1)
+ VX1 — p, VI (u) = V£ (p)).

e —

(3.27)

Now, by (3.26), Lemmas 2.9 and 2.2, we have x,, — p.
Case 2. Assume {Dy(p,x,)} is non-decreasing. Set I', of Lemma 2.10, as I, =

Dy (p,x,) and let 7 : N — N be a mapping for all n > ng (for some ng large enough),
defined by

7(n) :=max{k € N : k<n, [ <T'ii1}.

Then 7 is non-decreasing sequence such that t(n) — oo as n — oco. Thus
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0< Fr(n) < F‘t(n)+17 Vn> no;
this implies
Df(paxr(n)) SDf(var(n)H), n2np.

Since {Df(p,x.(,))} is bounded, therefore lim, . Df(p,x;(,)) exists. Then the fol-
lowing estimates can be obtained, using same arguments as in Case 1 above

1.

nlggj ||yr(n) - Wr(n)” =0, r}Lnolo ||Zr(n) - yr(n)H =0
2.
nlgrolo ||xr(n) - yr(n)” =0, ’ZILHDIO ||xr(n)+l - xr(n)” =0
3.
nlLHOIO ||Vr(n) - xr(n)” =0, nli—>nolc ||ZT(”)+1 - TZT(")H =0
4.

From (3.27) and TI';(,) < T'y(;)41, We have

Df(paxr(n)) <(1- Ye(n) — ﬁr(n)o'r(n))Df(p>xr(n)) + ﬁr(n)O'an(p,xT(n),l)
+ yr(n) <'x‘t(n)+1 - D, Vf(u) - Vf(p)>
< (1 — Vi(n) )Df(prx‘t(n)Jrl) + V1(n) <x‘r(n)+1 - D Vf(lft) - Vf(p)>
Hence, we obtain
Df(paxt(n)) SDf(pvxr(n)Jrl) < <x‘c(n)+1 - D Vf(u) - Vf(P)> (329)

which gives by (3.28)

nanolo Df(paxr(n)) =0.
Therefore

nILIEO Df(pa xr(n)+l) =0

and therefore
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lim I, = lim Ty, = 0. (3.30)

n—oo n—oo

For all n>ny, we have that I';,,) <T';(,);1, if n # t(n) (that is, 7(n) <n), because
Iy <Ty for 1(n) <k <n. This gives for all n>ny

0<TI,< max{rr(n)y Fr(n)+l} = Fr(n)+l

This implies lim, ., I', = 0 which gives that lim,_., Df(p,x,) = 0. Hence x, —

p= P’éu as n — o0. O
As an important special case of Theorem 3.3, we obtain the following result:

Corollary 3.4 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on Ewith L >0and T : C — E
be a quasi Bregman nonexpansive mapping. Suppose that Q = F(T) N V(C,A) # (.
Define a sequence {x,},- | generated by arbitrarily chosen xo,x, € E and any fixed
uck:

wy = VI (Vf (%) + 02(Vf (xa1) — Vf(x))
yn = LV (Vf (W) — 2Awy);
Ty ={z€ E: (z2—yn, Vf(Wa) — 2Aw, — Vf(yx)) <0}
2o = g, Vf(Vf (W) — 2Ay,);
va = V(1 = 0)Vf () + 0V (T20));
X1 = VI (0, Vf(%2) + B,V (va) + 7, Vf (), n>0

where J. € (0,%), {6,} C [0,3], {otn},{0x},{B,}, {7} are sequences in (0, 1) such
that 6, + B, + v, = 1 and the following conditions are satisfied:

(3.31)

(CI) O<a<an<ﬁn_ , Vn>1,
(C2) lim,_.sy,=0 and > T = 00,
(C3) O< liminf,—q 6, <0, < limsup,_,, 0, <1.

Then, the sequence {x,} generated by (3.31) converges strongly to the point
p = Ilqu.

4 Applications

In this section, using Theorem 3.3, we obtain important and new theorems that are
associated with the inertial subgradient extragradient method in reflexive Banach
spaces.

Theorem 4.1 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on E with L > 0 and let T : C —
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E  be a quasi-Bregman strictly pseudocontractive mapping with F(T) # ().
Suppose that Q = F(T) N V(C,A) # 0 . Define a sequence {x,},., generated by
arbitrarily chosen xy,x; € E and any fixed u € E :
wn, = VA (V) + 6,(Vf(x—1) — Vf(xa))
Yu = PcNf (Vf(wn) — 7Aw,);
Ty ={z € E: (2= yn, Vf(Wa) = 2Aw, — Vf(ya)) <0}
20 = Pr,Nf* (NVf (W) — AAyn);
v = V(1 = o) Vf (zn) + 0,V (T20));
Xnt1 = Vf (0, Vf (xn) + B,V (vn) +7,Vf (), n>0

where i € (0,%), {6,} C [0,3], {otu},{0x},{B,}, {7} are sequences in (0, 1) such
that 6, + B, + v, = 1 and the following conditions are satisfied:

(4.1)

(Cl) 0<a<o,<P,<3,Yn>1,
(C2) lim,_.ny, =0and > "7, = 0o,
(C3) O<liminf,_ 6, <d, < limsup,_,,, 6, <1.

Then, the sequence {x,} generated by (4.3) converges strongly to the point
pP = Pou.

Proof Since T is quasi-Bregman strictly pseudocontractive mapping with
F(T) # 0, then T is (k, 0)-Bregman demigeneralized mapping. Therefore the result
follows from Theorem 3.3. O

Theorem 4.2 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on E with L > 0 and let U be

maximal monotone operators of E into E*. Let ResﬁU be the resolvent of U for A > 0.
Suppose that Q = U~'(0) N V(C,A) # 0 . Define a sequence {x,}.-, generated by
arbitrarily chosen xy,x, € E and any fixed u € E :
wy = Vf* (Vf(xn) + 00(Vf (xn1) — Vf(x2))
Yn = PcNf*(Vf (wn) — 2Awy);
Ty ={z € E: (2= yn, Vf(Wa) = 2Aw, — Vf(ya)) <0}
2w = Pr,Nf* (Vf(wn) — 2Ayn);
Vi = V(1 = )V (2) + 2 Vf (Res,z0));
Xnp1 = V(0N () + B, Vf (va) +7,Vf (), n=0

where J. € (0,%), {o,} C [0,3], {an},{n}, {B.}.{7.} are sequences in (0, 1) such
that 6, + B, + 7, = 1 and the following conditions are satisfied:

(4.2)
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(Cl) 0<a<o,<p, <3, Vn>1,
(C2) lim,ny, =0and > 02,7, = 0o,
(C3) O<liminf,_ 6, < d, < limsup,_,, 0, <1.

Then, the sequence {x,} generated by (4.3) converges strongly to the point
p = Pau.

Proof Since Res’;U is the resolvent of U on E, then Res’;:U is (0, 0)-Bregman
demigeneralized mapping. Therefore, the result follows from Theorem 3.3. [J

Theorem 4.3 Let C be a nonempty closed and convex subset of a reflexive Banach
space E and f : E — R a strongly coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subsets of E. Let
A : C — E be a monotone map and L—Lipschitz on E with L > 0 and let T : C —
E  be a quasi-Bregman nonexpansive mapping with F(T) # (). Suppose that Q =
F(T)NV(C,A) # 0 . Define a sequence {x,}.., generated by arbitrarily chosen
Xo,X1 € E and any fixed u € E :

wy, = VI (VF(x) + 0,(Vf (xu—1) — Vf(xn))
Yo = PN (Vf(wa) — AAwy);
Ty ={z € E: (2= yn, Vf (W) — 2Aw, — Vf(yx)) < 0};
zn = P, Vf*(Vf (Wn) — 2Ayn);
v = V(1 — 0,)Vf(z0) + 0.V (T2));
Xnp1 = V(0. Vf (x0) + B,V (va) +7,Vf(w)), n>0

where 4 € (0,%), {o,} C[0,3], {an}, {0u},{B,}, {1} are sequences in (0, 1) such
that 6, + B, + 7y, = 1 and the following conditions are satisfied:

(4.3)

(Cl) 0<a<o,<f, <3, Vn>1,
(C2) limy.xy, =0and > "7, = 0o,
(C3) O<liminf,_ 6, < d, < limsup,_,, 0, <1.
Then, the sequence {x,} generated by (4.3) converges strongly to the point
pP = Pou.

Proof Since T is quasi-Bregman nonexpansive mappings, then T is (0, 0)-Bregman
demigeneralized mappings. Therefore the result follows from Theorem 3.3. [

Remark 4.4 Every nonexpansive mapping is strictly pseudocontractive mapping
and every strictly pseudocontractive is (17,0)— Bregman demigeneralized mapping.
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5 Numerical example

Let E = R* be a four-dimensional Euclidean space with the usual inner product:
(X, y) = x1y1 + X2y2 + X3y3 + X4y4

where x = (x1,%2,%3,%1), ¥ = (V1,¥2,73,y4) € R* and let f(x) = x} +x3 + 13 +
xj for all x = (x1,x,x3,%4) € R* and Vf(x) =3(x? +x3 + 23 +x3). Let Tx =
2x,  f(Tx) = 8(x} +x3 + x5 +x3) and Vf(Tx) = 24(x? + x3 + x3 + x3).

Given a half space C = {z € R* : (4,7 — wy) <0} of R* where u # 0 and wy are
two fixed element of R* then for any xp € R*, we have

X0 — Mu, (u, x9 — wo) > 0;
Pcxo = [uul
Xo (uy x0 — wo) <O0.

Then 7T is (§,0)— Bregman demigeneralized mapping and Ax = (—2x3 + xp, x4 —
x1,2x1 — 2x4, —X3 + 2x3) is monotone and 2\/§—Lipschitz operator. Let o, =

el g, =l g =2l —-Lando, =1 Vn>1.Now A€ (0,%) = (O,ﬁ),

foraz € (0,1), put o = % so that we take A = % All conditions of Theorem 3.3 are
satisfied.

1
Wp = Z(3xn +xn—l)
1
Yn = Pc(w, — Vf*(gAWn))

éAwn — V() <0}

1
ln = PTn(Wn - vf*(gAWn))

8n —1
6n

3n+1 +2n—1 Jr1 >1
6n n 4n Y 12n =t

The following cases are considered for a numerical experiment of our algorithm.

T, = {x € R*: (x =y, Vf(wy) —

Vn = Zn

X+l =

Case 11 Take x; = (1,—1,2,-2)" and xo = (2,1, —1,-2)".
Case 21 Take x; = (2,1,—1,-2)" and xo = (1,—1,2,-2)".
Case 3: Take x; = (—1,0.3,10,—5)" and xo = (2,—-0.10, -2, —4)".

The following tables show results of our numerical experiment based on
MATLAB software (Tables 1, 2, 3; Fig. 1).
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Table 1 Numerical results for CASE 1

No. of iterations Xp = (xl(ll)’xl(lzhng),xﬁf)) Erros = ||x, — x,—1],
0 (2.0000, 1.0000, —1.0000, —2.0000)

1 (1.0000, —1.0000, 2.0000, —2.0000)

2 (0.6399, —0.8106, 1.8967, —1.4325) 0.7059

3 (0.3642, —0.6138,1.6102, —0.9046) 0.6896

4 (0.1575,—-0.4506,1.3132, —0.5126) 0.5579

5 (0.0180,—0.3168,1.0397, —0.2427) 0.4301

37 (0.0142, 0.0175, 0.0128, 0.0175) 0.0011

38 (0.0137, 0.0169, 0.0124, 0.0170) 0.0010

Table 2 Numerical results for CASE 2

No. of iterations Xn = (x’(ll),xl(lz),x’(l3)7xﬁl4)) Erros = ||x, — x,—1]|,
0 (1.0000, —1.0000, 2.0000, —2.0000)

1 (2.0000, 1.0000, —1.0000, —2.0000)

2 (1.8576,0.9277, —0.7201, —1.6180) 0.4993

3 (1.5452,0.6826, —0.2960, —1.2379) 0.6943

4 (1.2295,0.4690,0.0153, —0.9124) 0.5900

5 (0.9502,0.3127,0.2064, —0.6457) 4584

37 (0.0138, 0.0170, 0.0124, 0.0170) 0.0011

38 (0.0134, 0.0165, 0.0121, 0.0165) 0.0000

Table 3 Numerical results for CASE 3

No. of iterations Xp = (xf,”,xf),xff),x,(f)) Erros = ||x, — x,-1],
0 (2.0000, —0.1000, —2.0000, —4.0000)

1 (—1.0000, 0.3000, 10.0000, —5.0000)

2 (—1.5181,0.6458,8.7928, —3.6983) 1.8779

3 (—1.7270,0.6852,6.9403, —2.3634) 2.2932

4 (—1.7931,0.6948,5.2870, —1.3628) 1.9337

5 (—1.7355,0.7015,3.9317, —0.6919) 1.5136

37 (0.0133, 0.0177, 0.0129, 0.0166) 0.0010

38 (0.0129, 0.0170, 0.0124, 0.0162) 0.0010
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Fig. 1 Errors vs number of iterations: Case 1. (up left); Case 2. (up right); Case 3. (down)
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