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Abstract
For a nice topological space X, working at the prime p ¼ 2, we consider the ‘un-

stable Boardman map’ (homomorphism if k[ 0)

b : pmþkRkX ’ ½X;XkSmþk� �! HomZ=2ðH�XkSmþk ;H�XÞ

defined by bðf Þ ¼ f � where k� 0 and m� 0. We use classic maps, such as the

Kahn–Priddy map, to provide examples of X so that b is nonzero in many dimen-

sions. We also consider the case of X ¼ XlSnþl, with particular interest in the cases

with 0� k\l� þ1, and consider the problem of computing the image of

b : pmXlSnþl ’ ½XlSnþl; Sm� �! HomZ=2ðH�Sm;H�XlSnþlÞ:

Our results concern with the extreme values of k given by k ¼ 0; l. For k ¼ l, a

simple interpretation of well known facts about James-Hopf maps shows that the

image of b when m ¼ 2n is always nontrivial; we have not completely determined

the image of b in this case. For k ¼ 0 we completely determine the image of b in the

following cases: (1) m ¼ n and l[ 0 arbitrary; (2) m[ n and l ¼ 1. We observe

that in most of the cases the image is trivial with the exceptions corresponding to the

cases when either there is a (commutative) H-space structure on Sn or there is a

Hopf invariant one element.
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1 Introduction and statement of results

Throughout the paper, we work 2-locally and all notation is to be understood

accordingly unless otherwise specified. In particular, H� (resp. H�) denotes

H�ð�;Z=2Þ (resp. H�ð�;Z=2Þ). We shall write P (resp. CP) for the infinite

dimensional real (resp. complex) projective space, and Pn for its n-skeleton (resp.

2n-skeleton). For a pointed space X, we write QX ¼ colim XiRiX. For a map f :

X ! XnY we shall write adiðf Þ : RiX ! Xn�iY for its i-th adjoint where i� n.

Recall that a cospherical class in H�X is determined by a map f : X ! Sm such

that f � 6¼ 0 (see for example [42]). A generalised cospherical class is obtained if we

replace Sm with a loop space on a sphere.

Definition 1.1 A generalised cospherical class in H�X is determined by a map

f : X ! XkSmþk, k� 0, so that f� 6¼ 0. A reduced generalised cospherical class is

determined by a map f : X ! XkSmþk with k[ 0 so that f� : HiX ! HiX
kSmþk is

nontrivial for some i[m.

Note that over Z=2, H�X and H�X are dual vector spaces and the dual of f � is f�.
The above definition then would be a reasonable definition. Note that one may

replace H�ð�;Z=2Þ with any other homology theory E and study cospherical classes

in E�X (see [32] for an example with E ¼ KO). Obviously 0 2 H�X is cospherical.

Hence, we shall focus on nonzero cospherical classes.

Remark 1.2 Recall that x 2 HmX is called spherical if there exists f : Sm ! X such

that f�xm ¼ x where xm 2 eHmS
m is a generator. It should be noted that there exist

spaces which contain classes which are not spherical, neither cospherical. We call

these non-spherical classes. For example, note that H2P contains no spherical classes

as the generator a2 2 H2P is notA-annihilated. Moreover, if f : P ! S2 is given with f�
nonzero, then f � 6¼ 0. The naturality of the cup-squaring operation shows that x2

2 6¼ 0

in H�S2 which is a contradiction. So, a2 2 H2P is a non-spherical class.

Often, we do not put much restrictions on X. However, in the case of applications

to bordism theory as we will discuss in a sequel, it is useful to assume that X is a

finite dimensional CW-complex. In this case we have the following.

Proposition 1.3 Suppose X is a finite dimensional CW-complex. Then a generalised
cospherical class in H�X is determined by, and determines, an element f 2 pms X
viewed as a map X ! QSm with f� 6¼ 0.

Proof In one direction, suppose f : X ! XkSmþk determines a cospherical class in

H�X. Recall that the stabilisation map E : XkSmþk ! QSm ¼ colim XiSmþi induces

a monomorphism in homology [44, Proposition 3.1]. Therefore, ðE � f Þ� 6¼ 0 and

the image of E � f is a nontrivial element in ½X;QSm� ’ pms X. Conversely, suppose

g : X ! QSm is given with g� 6¼ 0. Since X is finite dimensional then there exists k
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and f : X ! XkSmþk so that g ¼ E � f . In particular, f� 6¼ 0. This completes the

proof. h

Note that the problem of computing generalised cospherical classes in H�X also

contributes to the study of the unstable Boardman homomorphism (see Sect. 2 for

explanations on the terminology)

b : pmþkRkX ’ ½X;XkSmþk� �! HomZ=2ðH�XkSmþk ;H�XÞ

defined by hðf Þ ¼ f �. Therefore, we may interpret our results in terms of image of b
as well. We record results in two opposite directions. In one direction, we provide

example of cases where nonzero generalised cospherical classes do exist. On the

opposite direction, we provide examples of spaces X where H�X consists of no

nonzero (generalised) cospherical classes. First, we wish to record the following

existence result which would follow from classic computations of Kahn and Priddy

[26] as well as well known facts on various transfer maps [33].

Theorem 1.4 Suppose G ¼ Z=2; S1; S3 and BG½n� is the n-skeleton of BG. There

exists a map kGn : Rdim gBG½n� ! Xmþ1Smþ1 which is nontrivial in homology. In

particular, for any n[ 0 there exists a map Pn ! Xnþ1Snþ1 which is nontrivial in
homology in every dimension 0\i� n.

There are possible way of extending the above list of groups. For instance, by

Kahn–Priddy theorem [26] (see also [11, Lemma 2.3]), for a connected CW-

complex X, a map f : X ! Q0S
0 factors through the Kahn–Priddy map

k : QP ! Q0S
0. If f : X ! Q0S

0 satisfies f� 6¼ 0 then any pull back ef : X ! QP

satisfies ef � 6¼ 0. If ef further pulls back to P, hence corresponding to a nontrivial

element in H1ðX;Z=2Þ, then we might expect k � ef to be nonzero in homology. As

another example, one may consider the Segal type decomposition [36, Corollary]

QP ¼ BO	 F and look for generators of KO(X), represented by a map X ! BO,

and see if they are nonzero in homology or not. For X ¼ BG, these seem to provide

ways of extending the above list further.

Corollary 1.5 For i\nþ 1, there exist maps RiPn ! Xðnþ1Þ�iSnþ1 which are
nontrivial in Z=2-homology in dimensions less than nþ i and greater that 2i� 1.

Let’s note that adnþ1ðknÞ : Rnþ1Pn ! Snþ1 is trivial for obvious dimensional

reasons as Rnþ1P has its bottom cell in dimension nþ 2. So, we may ask whether for

i� 0 and n[ 1, there exists m and f : RiPn ! Sm which is nontrivial in homology.

Note that once we find g : Pn ! Sm�i with g� 6¼ 0 then f ¼ Rigwould have the desired

property. So, we may ask whether if there exists f : Pn ! Sm so that f� 6¼ 0? For

dimensional reason, we need 1�m� n. Moreover, the projection onto the top cell

Pn ! Sn is nontrivial in homology. Hence, we may restrict to the cases 1�m� n� 1.

We have the following.

Lemma 1.6 Suppose f : Pn ! Sm is a map of spaces/suspension spectra and
1�m\n� þ1.
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(i) If m is odd then f� ¼ 0.

(ii) For n ¼ mþ 1 and m even, there exists a map f : Pmþ1 ! Sm with f� 6¼ 0.

Moreover, for any such map the restriction f jPm is homotopic to the
projection onto the top cell.

(iii) If n�mþ 2 and m 
 2 mod 4 then f� ¼ 0.

(iv) If m 
 0 mod 4 then for i\4 there exists a map f : Pmþi ! Sm with f� 6¼ 0.

(v) If m 
 0 mod 8 then for i\7 there exists a map f : Pmþi ! Sm with f� 6¼ 0.

We have some comments in order. First, the above lemma does not offer a

complete solution to the problem of determining those element of pmPn which are

nontrivial in homology. Second, the problem seems very much related to the famous

vector field problem, but this relation is not clear to the author. Thirdly, if we knew

that a secondary operation corresponding to the Adem relation for Sq4Sq4 acts

trivially on H8P then the assertion of part (v) would be valid for all i\8. Finally,

notice that, in the case of m ¼ 1, since H1ðPn;ZÞ ’ Z=2 then choosing a generator

of this group represented as a map Pm ! S1 we obtain a map which is nontrivial in

Z-homology. Part (i) of the above lemma then implies that any map P ! S1 which

is nontrivial in Z-homology must be of even degree. Note that the case of n ¼ 1 is

well known as it forces m ¼ 1, hence f 2 p1S
1.

Remark 1.7 Notice that the validity of Lemma 1.6 for stable maps, allows us to

decide about the existence of maps of spaces f : RiPn ! Sm with nontrivial

homology. For any map as such, one gets a (stable) map Pn ! Sm�i which then

allows to apply Lemma 1.6. We leave it to the reader to investigate this case further.

Next, we return to the case when X is a loop space on sphere and consider

b : ½XlSnþl;XkSmþk� ! HomZ=2ðH�XkSmþk ;H�XlSnþlÞ

with a particular interest in the case of k\l. Note that for k[ 0 the source of b is the

‘unstable’ group ½XlSnþl;XkSmþk� whose complete computation needs a suitable un-

stable Adams spectral sequence (ASS). However, we do not attempt working with any

unstable ASS and instead we try to use available geometric techniques as well as

unstable invariants to study the image of this homomorphism. Our main observations

in this paper are about the ‘extreme’ values of k with k ¼ 0; l. In the case of k ¼ l there

exist examples where the image of b is nontrivial. We have the following.

Theorem 1.8 For n[ 0 and 1� i� n there are maps fi : X
iSnþ1 ! XiS2nþ1 such

that f �i 6¼ 0. Consequently, the image of

b : ½XlSðnþ1�lÞþl;XlSð2nþ1�lÞþl� ! HomZ=2ðH�XlSð2nþ1�lÞþl;H�XlSðnþ1�lÞþlÞ

is nontrivial.

The proof is immediate once we choose fi ¼ Xi�1H with H : XSnþ1 ! XS2nþ1

being the second James-Hopf map. It is also possible to use odd primary James–

Hopf map to produce examples at odd primes.
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The following provides a partial answer when k ¼ 0.

Theorem 1.9 Suppose all spaces are localised at the prime 2 and let k ¼ 0. The
following statements hold.

(i) If m ¼ n ¼ 0 then for any l[ 0 the image of b is isomorphic to Z=2fig
where i 2 H1QS1 is the fundamental class.

(ii) If m ¼ n[ 0 and l ¼ 1 then the image of b is nontrivial if and only if
n 2 f1; 3; 7g and in this case the image is isomorphic to Z=2fog where

o : XSnþ1 ! Sn is the boundary map in the Barratt–Puppe sequence for
one of the Hopf maps g; m; r.

(iii) If m ¼ n[ 1 and l[ 1 then the image of b is trivial.
(iv) If m ¼ n ¼ 1 and any l[ 1 then the image of b is isomorphic to Z=2fhS1g

where hS1 : QS1 ! S1 corresponds to the structure map of S1 as an infinite
loop space.

Next we consider the cases with f : XlSnþ1 ! Sm. In this case, we have only

results for l ¼ 1. Note that by James splitting [41, Chapter VII] if f : XSnþ1 ! Sm

satisfies f� 6¼ 0 then m ¼ tn for some t. We have the following.

Theorem 1.10 Suppose f : XSnþ1 ! Sm with m ¼ tn[ n.

(i) For m[ n with m ¼ tn if nþ 1 is odd or both of nþ 1 and t are even then
the image of b is trivial.

(ii) For m[ n with m ¼ tn if nþ 1 is even, t is odd, and tn 62 f3; 7g then the
image of b is trivial.

(iii) For tn 2 f3; 7g there exists a map f : XS2 ! St with Htðf Þ 6¼ 0.

We have excluded the case with tn ¼ 1 as it implies that t ¼ n ¼ 1. In this case, it

is impossible to have 1 ¼ m[ n ¼ 1. In this case, we have f : XS1þ1 ! S1 is one of

the cases studied by the previous theorem.

Remark on the integral results Some of the tools and results that we use such as

the existence of Hopf bundles g; m; r or James’ splitting RXRX ’
Wþ1

r¼1 RX
^r, for

X path connected, are integral results. Therefore, one might expect that some of our

results, at least the existence results, also have integral counterparts. On the other

hand, some of obstructions that we have used to prove nonexistence results are

local, so we do not know whether the integral results hold. We have tried to

highlight the integral results when it is possible.

2 Motivation

The main motivation for this work is to study the image of the Hurewicz

homomorphism h : p�X ! H�X for certain cases X, and in particular the

homomorphisms
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h : p�X
lSnþl ! H�X

lSnþl; h : p�QS
n ! H�QS

n;

where n� 0 and l� 0. The problem of determining spherical classes in H�X is not

always an easy problem, e.g. in the case of X ¼ QS0 ¼ colim XiSi it is open

problem (see for example [13, 39, 43]). The problem of determining spherical

classes in finite loop spaces XlSnþl is also open, although some progress for small

values of l has been made where we have achieved complete classification of these

classes (see [44] and [45]). We follow the philosophy that, at least on the level of

algebra, the Hurewicz and Boardman homomorphisms are dual (see Sect. 3 for

further discussions) and sometimes the dual problem might be easier to tackle.

Following this philosophy, we are interested in looking at the dual problem and

studying the image of Boardman homomorphisms

b : ½XlSnþl;XkSmþk� ! HomðH�X
lSnþl;H�X

kSmþkÞ;

where k�1 with the convention X1R1X ¼ QX. To set up a more general

framework, let’s recall that for a spaces X with base point, we have isomorphisms of

groups

psnX ’ pnQX ’ ½Sn;QX�; pnsX ’ ½X;QSn�

provided by the adjointness between X1 and R1 functors where

QX ¼ colim XiRiX. The evaluation map R1QX ! R1X induces the stable ho-

mology suspension r1� : H�QX ! H�X and the stable cohomology suspension r�1 :
H�X ! H�QX which fit into commutative diagrams as

Next, notice that we have inclusion maps XiRiX ! QX which in the case of

h provides commutative diagram as

Also note that working at a prime p, the duality HnX ’ HomZ=pðHnX;Z=pÞ between

homology and cohomology provided by the Universal Coefficient Theorem, allows

to consider bs and b as homomorphisms

bs : pnsX �! HomðHnX;HnS
nÞ; b : pnsX �! HomðHnX;HnQS

nÞ;

which send f to f�. For b, this provides a commutative diagram as
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These observations motivate one to study the unstable Boardman homomorphisms

b : ½X;XiSnþi� �! HomðHnX;HnX
iSnþiÞ;

where i� 0.

3 Some generalities

Suppose E is a nice ring spectrum with the identity. Write AE ¼ E�E for the algebra

of E-cohomology operations and A
op
E for its opposite algebra. Furthermore, suppose

for any space X there is a Kronecker pairing EnX � EnX ! E0 reflecting a duality

between the vector spaces EnX and EnX. Also modules in this section are left

modules. For any space X, E�X is a left AE-module whereas E�X is a left Aop
E -module

where the existence of this structure comes from the existence of the Kronecker

pairing.

For spaces X and Y, one may consider Hurewicz and Boardman maps

h : ½X; Y � �! HomA
op

E � mod ðE�X;E�YÞ; b : ½X; Y� �! HomAE� mod ðE�Y ;E�XÞ

which are defined by hðf Þ ¼ f� and bðf Þ ¼ f �, respectively. If we fix X (resp. Y) then

upon being provided with a choice of a fixed element xE 2 E�X (resp. yE 2 E�YÞ the

composition with the evaluation maps yields the usual Hurewicz and Boardman

maps

h : ½X; Y� �! E�Y ; b : ½X; Y� �! E�X:

The main examples of such homomorphisms are the classic Hurewicz and Board-

man homomorphisms with X or Y being a sphere. One may replace [X, Y] with the

group of stable maps R1X ! R1Y , denoted by fX; Yg, which provides

stable Hurewicz and Boardman homomorphisms (instead of maps)

hs : fX; Yg �! HomAop

E � mod ðE�X;E�YÞ;
bs : fX;Yg �! HomAE� mod ðE�Y ;E�XÞ:

Choosing either X or Y to be a sphere, we have the stable Hurewicz and Boardman

homomorphisms, respectively. The first one is the stable Hurewicz homomorphism

hsE : psnY ! EnY :

Taking X ¼ Sn we have hs : fX; Yg ¼ psnY ! H�Y . which sends f to ðE�f Þxn where

xEn 2 EnðSnÞ is a generator provided by the unit S0 ! E. This homomorphism has
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been studied extensively for many important spectra such as E ¼
HFp;MU,BP;K;KO,tmf as there exists complete description of the stable Hurewicz

homomorphism hsE : ps�S
0 ! E�S

0 for these spectra [3, 20, 35, 19]. In fact com-

puting the image of this homomorphism is so important that one tends to find a

spectrum E so that hsE : ps�S
0 ! E�S

0 is much closer to becoming an isomorphism

and detects more and more elements in ps�S
0. From this point of view, there is an

attempt to find bounds on the dimension/exponents of kernel and cokernel of this

homomorphism (see [5, 34]). The second homomorphism is the stable Boardman

homomorphism

bsE : pnsX ! EnX

which is defined by bsðf Þ ¼ ðE�f ÞxnE where xnE 2 EnX is a generator provided by the

unit S0 ! E. This homomorphism also has been studied in detail [22, 6].

These two homomorphisms are dual, possibly up to some degree shift, over p�E
in a suitable sense (see [38, Chapter 13] for a detailed discussion). However, up to

our knowledge, despite existence of some explicit relation among hsE and bsE, there is

no dictionary of the results about hsE and bsE. We also note that this duality is not one

that is induced by means of the S-duality in the stable homotopy category in the

sense that for a given f : Sn ! X then D(f) is not necessarily, up to finite number of

suspensions, a map X ! Sn. However, knowing that these homomorphisms are dual

in a suitable sense and the philosophy that sometimes solving a ‘dual’ problem

could be easier tempts one to study one of these homomorphisms to justify some of

claims about the other one. This duality could be used to obtain some information

on the algebra. For instance, one may try to relate the rank of the image of hsE to the

rank of the kernel of bsE, etc.

The aim of this work is to apply and explore this idea in the presence of the

destabilisation functor Q :¼ X1R1. Note that there are commutative diagrams of

groups and their homomorphisms

and

where r1� and r�1 are induced by the evaluation map e : R1QY ! Y in E-

homology and E-cohomology, respectively. Here, we refer to h and b as

unstable Hurewicz and Boardman homomorphisms, respectively, in order to

distinguish them from their stable counterparts.
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4 Examples arising from the Kahn–Priddy type maps

The aim of this section is to prove Theorem 1.4 and Corollary 1.5. We show that the

Becker–Schultz–Mann–Miller–Miller transfer maps give rise to maps satisfying

Theorem 1.4 and Corollary 1.5. In particular, we observe that maps such as the

Kahn–Priddy map offer a geometric constructions for such transfer maps with

explicitly known homology [26, Theorem 3.1] (see also [33, Theorem A and its

Corollary]).

Recall that for a compact Lie group G, an embedding of a closed subgroup

i : K ! G, and a twisting (virtual) vector bundle a ! BG there exists a transfer

map, twisted by a, which is a map of Thom spectra

BGadG�a ! BKadKþajBK ;

where adG is the vector bundle EG 	G g ! BG with g being the Lie algebra of G on

which G acts through the adjoint representation and ajBK ¼ ðBiÞ�a is the pull back

of a by the induced map between classifying spaces Bi [9] (see also [33] as well as

[27, Section 2.3]). In general, for any Lie group G if we choose a ¼ �adG then

corresponding to the embedding of the trivial group 1 ! G we have a transfer map

Rdim gBGþ ! S0:

Finally, notice that for any space the Becker–Gottlieb transfer map [8] associated

with the trivial bundle X ! � provides us with a stable splitting (in fact just after

one suspension) Xþ ’ X _ S0. Consequently, we may consider reduced transfer

maps

Rdim gBG ! Rdim gBGþ ! S0:

The composition with the inclusion of BG½n�, the n-skeleton of BG, in BG yields a

stable map

Rdim gBG½n� ! S0:

The stable adjoint of this map is a map of spaces

Rdim gBG½n� ! QS0:

By Freudenthal’s theorem, noting that the source has top cell in dimension

dim gþ n, this map factors through Xmþ1Smþ1 with m ¼ dim gþ n.

Proof (Proof of Theorem 1.4) We begin with the specific example of G ¼ Z=2. In

this case, a geometrically constructed representation for the reduced transfer map

P ! S0 is provided by the Kahn–Priddy map [26]. It is known that this map induces

an epimorphism on 2ps�, the 2-component of the stable homotopy. The stable adjoint

of this map provides a map k : QP ! Q0S
0 where Q0S

0 is the base point component

of QS0 corresponding to 0 2 p0QS
0 ’ ps0. In fact, Kahn–Priddy theorem provides a

composition
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Q0S
0 ! QP ! Q0S

0

which is a 2-local equivalence [30, Corollaery 2.14]. Consequently, k induces an

epimorphism in H�ð�;Z=2Þ. On the other hand, notice that for a path connected

space X, the inclusion X ! QX induces a monomorphism in homology. Therefore,

the composition

BZ=2 ¼ P ! QP ! Q0S
0

induces an epimorphism in Z=2-homology. Finally, notice that the inclusion of the

n-skeleton Pn ! P induces a monomorphism in homology in every positive

dimension less than nþ 1. Hence, the composition Pn ! P ! Q0S
0 induces an

epimorphism in positive dimensions less than nþ 1. Finally, either by construction

of the unstable Kahn–Priddy map (see Proof of Corollary 1.5) or by Freudenthal’s

theorem, this latter map factors through Xnþ1Snþ1 which induces an epimorphism in

homology in positive dimensions less than nþ 1. Since HiP
n is nonzero for

0\i� n, therefore our claim about the map kn being nonzero follows automatically.

Next, consider the case of G ¼ S1. In this case, we have the complex transfer map

kS
1

: RCPþ ! S0:

It is known that the map of spaces QRCPþ ! QS0 yields an epimorphism when

restricted to the submodule of primitive elements [16, Theorem 7.8]. Note that in

homology of RCP, because of the existence of a suspension, every nontrivial class

would be primitive. Consequently, the composition

RCP ! QRCPþ ! Q0S
0

induces an epimorphism in Z=2 homology which is nontrivial in every odd degree.

As above, one can show that the composition RCPn ! Q0S
0 factors through

X2nþ2S2nþ2 and the map RCPn ! X2nþ2S2nþ2 is nonzero in homology in every odd

degree less than 2nþ 2.

Similarly, for the case of G ¼ S3 one can show that the reduced twisted transfer

map R3HP ! S0 gives rise to maps

R3HPn ! X4nþ4S4nþ4

are nonzero (at least at some positive dimensions). We leave the details to the

reader. h

Next, we wish to offer a proof of Corollary 1.5. We do this by choosing a

geometrically constructed representative for the transfer RP ! S0 and use the

computations of [26].

Proof of Corollary 1.5 The proof of Corollary 1.5 immediately follows from the

above theorem if we give more details on homology. As there is a more geometric

way of proving this Corollary using the Kahn and Priddy map [26] (see also [14,

Section 4]) we begin with recalling this map and computations regarding its
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homology. For n[ 1, given L 2 Pn determines a hyperplane L? and reflection with

respect to L? gives a linear map rL? : Rnþ1 ! Rnþ1 of determinant �1. After one

point compactification one obtains a map Snþ1 ! Snþ1 of degree �1. The loop sum

with a map of degree one (class of the identity) gives a map Snþ1 ! Snþ1 of degree

0. This defines the unstable Kahn–Priddy map kn : Pn ! Xnþ1
0 Snþ1 where the

subindex 0 denotes the path component of Xnþ1Snþ1 corresponding to 0 2
p0X

nþ1Snþ1 ’ Z which is the basepoint component of Xnþ1Snþ1. The maps are

compatible as n varies and we have commutative diagrams such as

for any n. Here, the downward arrows are inclusions. These give rise to a map

k : P ! Q0S
0 where Q0S

0 denotes the base component of QS0 corresponding to

0 2 p0QS
0 ’ ps0 so that the following diagram commutes

We note that taking the component of QS0 in which k lands is important in writing

the homological computations. The homology of the space Q0S
0 is known to be a

polynomial algebra [15, Page 86. Corollary 2] (see also [12, Part I. Lemma 4.10])

given by

H�Q0S
0 ’ Z=2½QI ½1� � ½�2lðIÞ� : I admissible ; i1 � i2 þ � � � þ ir�:

Here, I ¼ ði1; . . .; irÞ is called admissible if it is a sequence of positive integers and

ij � 2ijþ1 for all j 2 f1; . . .; r � 1g. Also, QI ¼ Qi1 � � �Qir is the iterated Kudo-Araki

operation first defined in [28] and [29] (see also [15] and [12]). If ai 2 HiP is a

generator then the relation

k�ðaiÞ ¼ Qi½1� � ½�2�

describes homology of k [26, Theorem 3.1](see also [37, Chapter 1, Proof of

Theorem 5.6]). Moreover, recall that H�X
nþ1Snþ1 sits monomorphically inside
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H�Q0S
0 as a subalgebra [44, Proposition] and is described by [12, Part III] (see also

[39])

H�X
nþ1Snþ1 ’ Z=2½QI ½1� � ½�2lðIÞ� : I admissible ; i1 � i2 þ � � � þ ir; ir\nþ 1�:

The commutative diagram above, relating kn and k, then implies that in homology

ðknÞ�ðaiÞ ¼ Qi½1� � ½�2�

for all i\nþ 1. Moreover, by [12, Part I, Theorem 1.1(7)] as well as [12, Page 47,

First Line], the iterated homology suspension rk� : H�QS
0 ! H�þkQS

k satisfies

rk�ðQi½1� � ½�2�Þ ¼ Qixk where xk 2 HkS
k is a generator. Also, by properties of

Kudo-Araki operations [12, Part I. Theorem 1.1] we have Qkxk ¼ x2
k and Qixk ¼ 0 if

i\k. Moreover, the definition of QX and the fact that X and colim functors com-

mute show that XkQRkX ¼ QX for any k� 0. In particular, this allows to consider

adjoints k : P ! QS0. Consequently, for the k-adjoint of k as adkðkÞ : RkP ! QSk

we have

ðadkðkÞÞ�ðRkaiÞ ¼
Qixk 6¼ 0 if i� k

0 otherwise.

�

Again, by the commutativity of the above square, noting that Xnþ1
0 Snþ1 ! QS0 is an

ðnþ 1Þ-fold loop map, it is easily verified that we have similar relations in place for

the k-th adjoint maps adkðknÞ : RkPn ! Xn�kSn which is defined as far as k� n
which proves the Corollary. h

Remark 4.1 It is easy to show that kn does not lift to a map Pn ! XnSn. To see this

consider the EHP-sequence Sn!E XSnþ1!H XS2nþ1 and loop it n-times. It is easy to

show that the composition ðXnHÞ � kn : Pn ! Xnþ1Snþ1 ! Xnþ1S2nþ1 satisfies

ððXnHÞ � knÞ�an ¼ xn where xn 2 HnX
nþ1S2nþ1 is a generator corresponding to

the bottom cell. Hence, ðXnHÞ � kn is essential, consequently kn does not lift to

XnSn.

We can use the maps kn to provide further examples of generalised cospherical

classes. Note that by universal property of iterated loop spaces, the map kn extends

to an ðnþ 1Þ-fold loop map Xnþ1Rnþ1Pn ! Xnþ1Snþ1 which we keep denoting by

kn. Likewise, the mapping k extends to an infinite loop map QP ! QS0. By the

construction of these extension maps, with the convention k1 ¼ k, we have the

following commutative diagrams
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which shows that kn : X
nþ1Rnþ1Pn ! Xnþ1Snþ1 is also nontrivial in homology in

many dimensions.

5 Proof of Lemma 1.6

We proof Lemma 1.6 in a few steps. Notice that we are dealing with the case n[m.

We first eliminate the cases with m being odd.

Lemma 5.1 Suppose m is odd and n[m. Then, for any f : Pn ! Sm we have
f� ¼ 0.

Proof Since m is odd then

amþ1 ¼ Sq1am ¼ Sq1f �ðxmÞ ¼ f �ðSq1xmÞ ¼ 0

in H�Pn which is a contradiction. h

Hence, from now on we consider the cases of m being even. First, let n ¼ mþ 1.

Lemma 5.2 Suppose m� 1 is even. Then, the projection onto the top cell Pm ! Sm

extends to a map Pmþ1 ! Sm which is nontrivial in homology. Moreover, for any

map f : Pmþ1 ! Sm with f� 6¼ 0 the restriction f jPm : Pm ! Sm is homotopic to the
projection onto the top cell.

Proof For the quotient map qm : Sm ! Pm and the projection onto the top cell

pm : Pm ! Sm it is known that the composition pmqm : Sm ! Sm has degree 0 for m

even. Hence, pm admits an extension over the cofibre of qm which is Pmþ1, say

pm : Pmþ1 ! Sm which is nonzero in Hmð�;Z=2Þ. Finally, note that for any f :

Pmþ1 ! Sm with f� 6¼ 0 the restriction f jPm ¼ f � i where i : Pm ! Pmþ1 is the

inclusion. In particular, ðf � iÞ� 6¼ 0 shows that i�ðf Þ ¼ f � i 6¼ 0 in pmPm where

i� : pmPmþ1 ! pmPm. Note that for m� 2 even, pmPm ’ Z=2 is generated by the

projection onto the top cell Pm ! Sm [40, Theorem 4.1]. Since f � i 6¼ 0 hence f jPm

must be homotopic to the projection onto the top cell. This completes the proof. h

From now on, we consider the cases with n� m� 2 and n being even. Suppose

f : Pn ! Sm is given with f� 6¼ 0 in homology. Since we work over Z=2 then f� 6¼ 0

if and only if f � 6¼ 0. We abuse the notation to use the same symbols to denote

homology and cohomology generators.

Lemma 5.3 Suppose 2m� n. Then for any f : Pn ! Sm we have f� ¼ 0.

Proof In this case, f � 6¼ 0 implies that f �ðxmÞ ¼ am. This leads to the equation

a2m ¼ a2
m ¼ Sqmam ¼ Sqmf �ðxmÞ ¼ f �Sqmxm ¼ 0

in H�Pn which is a contradiction. This proves our claim. h

Hence, we need to deal with the case of n\2m. Note that we have resolved the

cases with n ¼ m;mþ 1. Hence, we may assume mþ 2� n\2m.
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Lemma 5.4 Suppose n� m� 2 and m even such that m 
 2t mod 2tþ1 and
mþ 2t � n. Then, for any map f : Pn ! Sm we have f� ¼ 0.

Proof If f� 6¼ 0 then f � 6¼ 0. Suppose m 
 2t mod 2tþ1. Then,

amþ2t ¼ Sq2t am ¼ Sq2t f �ðxmÞ ¼ f �ðSq2t xmÞ ¼ 0

which is a contradiction in H�Pn. Hence, f� ¼ 0. h

Note that we already have n� m� 2. By Lemma 5.4 if m 
 2 mod 4 then for

any f : Pn ! Sm we have f� ¼ 0. Hence, we only need to deal with the case of

m 
 0 mod 4. We show that in this case, there is some n such that there exist maps

f : Pn ! Sm with f� 6¼ 0. Note that for n�m, by pinching Pm�1 to a point, any map

f : Pn ! Sm extends to a map Pn
m ! Sm, and vice versa and map Pn

m ! Sm gives a

map Pn ! Sm by composition. Hence, it is enough to show that there exists a map

Pn
m ! Sm which is nonzero in homology. This latter is equivalent to saying that

there is a 2-local splitting

Pn
m ’ Sm _ Pn

mþ1:

The following would be well known to experts. But, we record a proof.

Lemma 5.5 Suppose m� 4 with m 
 0 mod 4. Then, there is a 2-local splitting of
spaces

Pmþ2
m ’ Sm _ Pmþ2

mþ1:

There is also a 2-local splitting of spaces

Pmþ3
m ’ Sm _ Pmþ3

mþ1:

Now, by taking the projection map onto the Sm summand the following is

immediate.

Corollary 5.6 Suppose m� 4 and m 
 0 mod 4. Then, there exists a map Pmþ2 !
Sm with f� 6¼ 0. There is exists also a map Pmþ3 ! Sm which is nontrivial in Z=2-
homology.

We shall use James periodicity to do proof Lemma 5.5. Recall that, by James

periodicity [4, Theorem 6] (see also [35, Page 31]), there is a homotopy equivalence

R2uðkÞPmþðk�1Þ
m ! P

mþðk�1Þþ2uðkÞ

mþ2uðkÞ
;

where

uðkÞ ¼ #fr : 0\r\k; r 
 0; 1; 2; 4 mod 8g:

Proof of Lemma 5.5 By James periodicity, Pmþ2
m 
 R4Pm�2

m�4 which by iterating

implies that Pmþ2
m is homeomorphic to Rm�4P6

4. So, it is enough to show P6
4 splits as
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S4 _ P6
5. To see this notice that for P5

4 the attaching map of the 5-cell is the

composition of the projection map S4 ! P4 and the pinch map P4 ! P4=P3 ¼ S4. It

is known that this composition is of degree 0, hence null. Hence, P5
4 ’ S4 _ S5. For

the attaching map of the 6-cell of P6
4, say S5 ! P5

4 one could process similarly,

noting that the component S5 ! S4 belongs to ps1 ’ Z=2fgg. If it is nontrivial, then

there must be a nontrivial action of Sq2 on H�P6
4 which there is none. Hence, this

component is trivial. The other is of degree 2, also seen by the nontrivial action of

Sq1. This shows that as spaces

P6
4 ’ S4 _ P6

5:

Regarding the splitting Pmþ3
m notice that by James periodicity Pmþ3

m ’ Rm�4P7
4 and

we need to prove the splitting for P7
4. For P7

4 ’ S4 _ P7
4 notice that the Adams Hopf

invariant one theorem (see Lemma 6.1) together with the existence of the Hopf

invariant one element r 2 ps7 imply that P7 stably splits as P6 _ S7. This implies that

stably P7
4 ’ P6

4 _ S7. On the other hand, notice that the attaching map of the 7-cell of

P7
4 is a map S6 ! P6

4 ’ S4 _ P6
5. To prove the claimed splitting of spaces, we need

to show that the component S6 ! S4 is null. However, this component belongs to

ps2 ’ Z=2fg2g. If this map is not null then, by naturality of the secondary opera-

tions, there must be a nontrivial secondary operation U in P7
4 with Uða4Þ ¼ a7. The

stability of the secondary operations then would not allow a stable splitting of P7
4

implied by the existence of the Hopf invariant one elements as demonstrated above.

This is a contradiction. Hence, the component S6 ! S4 is null and as spaces we have

P7
4 ’ S4 _ P7

5:

h

The above lemmata prove Theorem 1.6 in the case f : Pn ! Sm is a map of

spaces. But, notice that all the techniques we have used, are ‘stable’ and apply

stably, hence the result also holds for stable maps. In fact, in some specific

examples, the main point of Lemma 5.5 is to provide an unstable splitting.

As it seems the existence of Hopf invariant one elements plays a role here. We

have the following example as well.

Lemma 5.7 There is a 2-local splitting of spaces as

P14
8 ’ S8 _ P14

9 :

Consequently, whenever m 
 0 mod 8, for i\7, there is a map f : Pmþi ! Sm such
that f� 6¼ 0.

Proof By Lemma 6.1(iv) the existence of the Hopf invariant one element r 2 ps7
implies that there is a map er : S7 ! P7 which is nonzero in homology. If D denotes

the S-duality functor then DPn
q ¼ RP�q�1

�n�1 [7]. Since Sn and Pn are finite CW

complexes then their suspension spectra are finite spectra, consequently g� 6¼ 0 if

and only if DðgÞ� 6¼ 0 by [31, Lemma A.3]. Consequently, ðerÞ� 6¼ 0 if and only if
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DðerÞ : RP�2
�8 ! S�7 is nonzero in homology or equivalently R�1DðerÞ : P�2

�8 ! S�8

is nonzero in homology. Using James periodicity, let

f ¼ R15DðerÞ : P14
8 ! S8:

Obviously, f� 6¼ 0. However, the connectivity arguments shows that f can be realised

as a map of spaces. Moreover, the inclusion of the bottom cell S8 ! P14
8 is non-

trivial in homology. Hence, as spaces

P14
8 ’ S8 _ P14

9 :

By iterated application of the James periodicity, for any k[ 0, we obtain a map

P
8ðkþ1Þþ6

8ðkþ1Þ ! S8ðkþ1Þ

which is nonzero in homology. The composition of the pinching map and the above

map as

P8ðkþ1Þþ6 ! P
8ðkþ1Þþ6

8ðkþ1Þ ! S8ðkþ1Þ

is obviously nontrivial in homology. For i\7 the composition of the inclusion

P8ðkþ1Þþi ! P8ðkþ1Þþ6 with the above map yields a map

P8ðkþ1Þþi ! S8ðkþ1Þ

which is nonzero in homology. This completes the proof. h

6 Proof of Theorem 1.9: case of m=n> 0

6.1 Case of l = 1

For l ¼ 1 there are examples at hand which are provided by Hopf fibrations, namely

maps XSnþ1 ! Sn for n ¼ 1; 3; 7. The existence of these maps also provides a

decomposition

XSnþ1 ’ Sn 	 XS2nþ1:

We show these are the only possible cases (at least modulo 2). The following

formulation of Adams’ Hopf invariant one element result is well known and the

equivalence of the various statements are to be found in various papers of James and

Adams and others. For instance, the equivalence of (ii) and (iii) follows from [18,

Proposition 6.1.5] when interpreted modulo 2, or the result of James [24, Theo-

rem 1.5] can be seen as an unstable analogue of ðiiiÞ ) ðivÞ below (see also [25,

Theorem 1.2]. Similarly, splittings similar to, or leading to, splittings as in (iv) could

be found in [2, Theorem 1.2]. However, we record a proof for the sake of conve-

nience and future reference.
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Lemma 6.1 The following are equivalent.

(i) There is a map f : XSnþ1 ! Sn with f� 6¼ 0 (modulo 2).

(ii) There is a map g : S2n ! XSnþ1 with g� 6¼ 0 (modulo 2).

(iii) There is a map h : S2nþ1 ! Snþ1 of unstable Hopf invariant one, and
n 2 f1; 3; 7g.

(iv) There is a stable splitting Pn ’ Sn _ Pn�1 where Pn is the n-dimensional
real projective space.

Proof ðiÞ ) ðiiÞ : Let i : Sn ! XSnþ1 be the inclusion adjoint the to identity

Snþ1 ! Snþ1. Then ðf � iÞ� 6¼ 0, hence (at p ¼ 2) f � i is homotopic to the identity.

Together with James fibration Sn ! XSnþ1!H XS2nþ1 it follows that

ðf ;HÞ : XSnþ1 ! Sn 	 XS2nþ1

is a homotopy equivalence. The inclusion S2n ! XS2nþ1 gives rise to a spherical

class. Consequently, the composition

g : S2n ! XS2nþ1 ! XSnþ1

gives rise to a spherical class in H�ðXS2nþ1;Z=2Þ, so g� 6¼ 0.

ðiiÞ ) ðiiiÞ : If g� 6¼ 0 then from James’ description of H�XS2nþ1 we see that

g�ðx2nÞ ¼ x2
n. It is well known that the adjoint of g, say h : S2nþ1 ! Snþ1 has

unstable Hopf invariant one.

ðiiiÞ ) ðiÞ : As noted above, (ii) and (iii) are equivalent. It follows that the

adjoint of h, say g : S2n ! XSnþ1 maps nontrivially under

H# : p2nXSnþ1 ! p2nXS2nþ1. This implies that H � g is homotopic to the identity

map. The claimed decomposition follows immediately.

ðiiÞ ) ðivÞ: First recall that the projection on the top cell Pn ! Sn is an unsta-

ble map which is nontrivial in Z=2-homology. For g : S2n ! XSnþ1 being nontrivial

in homology, consider the composition S2n ! XSnþ1 ! QSn and write g for this

map as well. By Kahn-Priddy theorem, g lifts to QRnP, and yields a map S2n !
QRnP which is nontrivial in homology. By taking adjoint, we obtain a map eg :
Sn ! QP which is nontrivial in homology. For dimensional reasons, this implies

that hðegÞ ¼ an where h is the Hurewicz homomorphism p�QP ! H�QP. Moreover,

by cellular approximation, we may restrict to a map eg : Sn ! QPn which satisfies

hðegÞ ¼ an. This implies that the stable adjoint of this map as Sn ! Pn is nontrivial

in homology. Therefore the composition Sn ! Pn ! Sn is nontrivial in Z=2-ho-

mology. Noting that the cofibre of Pn ! Sn is RPn�1 gives the other stable piece, so

Pn ’ Sn _ Pn�1.

ðivÞ ) ðiiÞ: Choose a splitting map Sn ! Pn�1 _ Sn ’ Pn given by the inclusion

into the second summand. Then the adjoint Sn ! QPn is nontrivial in homology, so

the composition Sn ! QP. For dimensional reasons, the n-adjoint of this map S2n !
QRnP is nontrivial in homology. After composition with the Kahn-Priddy map

QRnP ! QSn we obtain a map S2n ! QSn which is nontrivial in homology. Also
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note that the inclusion XSnþ1 ! QSn is a 2n equivalence, so we obtain a map

S2n ! XSnþ1 which is nontrivial in homology. This completes the proof. h

This settles the case with l ¼ 1. The case of l[ 1 reduces to the case of l ¼ 1 in

the following sense.

6.2 Case of l > 1

Unlike the case of l ¼ 1, for l[ 1 the existence of maps f : XlSnþl ! Sn with f� 6¼ 0

is not so immediate. For n ¼ 1 we may choose f : XlSnþl ! S1 to be any

representative of the identity element of H1ðXlSnþl;ZÞ ’ Z. It is immediate that f is

nonzero in H�ð�; kÞ for k ¼ Z;Z=2. There is another way to see existence of such

maps. Since S1 is an infinite loop space, let h : QS1 ! S1 be the structure map which

has the property that the composition S1 ! QS1 ! S1 is identity. In particular,

h� 6¼ 0. Now, the composition

f : XlSlþ1 ! QS1 ! S1

satisfies f� 6¼ 0.

For the remaining cases, we have the following nonexistence result. Let’s note

that if f : XlSnþl ! Sn exists with f� 6¼ 0 then the composition XSnþ1 ! XlSnþl !
Sn also would be nontrivial in Hnð�; kÞ, hence by Lemma 6.1 we see that n must be

either 1, 3, or 7. As we considered the case of n ¼ 1 above then we only need to

resolve the cases n 2 f3; 7g.

Lemma 6.2

(i) Suppose n ¼ 3. Then, there exists no map f : X2S5 ! S3 with f� 6¼ 0.

Consequently, for 2� l� þ1 there exists no map f : XlSlþ3 ! S3 with
f� 6¼ 0.

(ii) Suppose n ¼ 7. Then, these exists no map f : X2S9 ! S7 with f� 6¼ 0.

Consequently, for 2� l� þ1 there exists no map f : XlSlþ7 ! S3 with
f� 6¼ 0.

Proof Proof of (i) and (ii) are similar. First note that the general case follows from

our claim for double loop spaces as follows. For instance, note that for l� 2, the

composition X2S5 ! XlSlþ3 is nonzero in H3ð�; kÞ with k ¼ Z;Z=2. Hence,

existence of any map f : XlSlþ3 ! S3 with f� 6¼ 0 would imply that the composition

X2S5 ! XlSlþ3 ! S3 is nonzero in homology, giving the desired contradiction.

Now we show there is no map f : X2Snþ2 ! Sn (with n ¼ 3; 7) so that f� 6¼ 0.

Given a map f : X2R2X ! X we may define l : X 	 X ! X by the following

composition

X 	 X ! �	R2
ðX 	 XÞ ! FðR2; 2Þ 	R2

ðX 	 XÞ ! X2R2X ! X;

where the first map on the left is projection, second and third maps are inclusion,

and the last map is f. This map is a commutative multiplication on X. Since the
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composition Sn ! X2R2Sn ! Sn is nonzero in homology (we may assume it is

multiplication of degree 1), hence it is homotopic to the identity. On the other hand,

by construction, for a based path connected space X, the inclusion X ! X2R2X can

be decomposed as a composition

X!a X 	 X ! X2R2X;

where a can be taken as either ð1; �Þ or ð�; 1Þ with � being the base point of X. This

implies that, for X ¼ S3; S7, ðX; l; �Þ is a commutative H space in the sense of [17].

But this is a contradiction as according to James [23, Theorem 1.1] it is known that

S3 and S7 do not admit any commutative H-space structure. This latter also can be

seen from general result of Hubbuck [21, Theorem 1.1] as S3 and S7 do not have

homotopy type of a torus. h

7 Case of m=n= 0

Lemma 7.1 For any l[ 0 there exists a map f : XlSl ! S0 with f� 6¼ 0. Moreover,

for any such f we have f ¼ Xi where i : Xl�1Sl ! P ¼ KðZ=2; 1Þ represents the
fundamental class.

Proof Let l[ 0, and take the fundamental class i 2 H1QS1 ’ Z=2 which can be

realised as a map i : QS1 ! P. Define f to be the composition

XlSl ! QS0!XiZ=2 ¼ S0:

Clearly, f� 6¼ 0. On the other hand, if f : XlSl ! S0 ¼ XP is given with f� 6¼ 0, then

the adjoint of f, say ef : RXlSl ! P is nontrivial in homology. Also, note we may

consider the composition

RXlSl!e Xl�1Sl!i P

which is nontrivial in homology where e is the evaluation map (adjoint to the

identity). Since ef ; i � e 2 ½RXlSl;P� ’ Z=2 and both elements are nontrivial,

therefore

ef ¼ i � e ) f ¼ Xi � ee ¼ Xi � 1 ¼ Xi:

This completes the proof. h

8 Proof of Theorem 1.10

8.1 The cases of m= tn with n+ 1 odd, or n+ 1 and t even

We begin with the case n ¼ 0. In this case, as XS1 ’ Z it is not possible to find

m[ 0 so that g : XS1 ! Sm is nontrivial in homology. Therefore, we consider the
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cases with n[ 0. If f : XSnþ1 ! Sm is given with f� 6¼ 0 then ðRf Þ� 6¼ 0. In the light

of James splitting, RXSnþl ’
W

t¼1 S
tnþ1, m ¼ tn for some t[ 1 are the only

possible choices for which ðRf Þ� 6¼ 0 and consequently f� 6¼ 0 can happen. That is

Proposition 8.1 For f : XSnþ1 ! Sm with m 6¼ tn for all t, we have f� ¼ 0.

Our main result in this section is the following.

Theorem 8.2

(i) Suppose nþ 1 is odd, n[ 0, and t[ 1. Then for any f : XSnþ1 ! Stn we
have f� ¼ 0 in H�ð�; kÞ with k ¼ Z;Z=2.

(ii) Suppose nþ 1, n� 1, and t[ 1 are even. Then for any f : XSnþ1 ! Stn we
have f� ¼ 0 in H�ð�; kÞ with k ¼ Z;Z=2.

Proof The proof in both cases is by contradiction. By abuse of notation, we write xi
for a generator of HiSi. Let’s recall that

H�ðXSnþ1;ZÞ ’ H�ðXSnþ1;ZÞ ’ C
ZðxnÞif nþ1 is oddCZðx2nÞ�ZE

ZðxnÞif nþ1 is even
:

��

where CZ and EZ denote divided power algebra and exterior algebra functors over Z

respectively. We first prove the integral result.

(i) Suppose m ¼ tn with t[ 1 and f : XSnþ1 ! Stn is given with f� 6¼ 0 in Z-

homology. For n[ 1 with nþ 1 odd, and t[ 1, for dimensional reasons, for

X ¼ XSnþ1; Stn there is a duality between homology and cohomology with

H�X ’ HomZðH�X;ZÞ. It follows that f � 6¼ 0. If nþ 1 is odd then having

f �ðxtnÞ 6¼ 0 we see that ðf �ðxtnÞÞ2 6¼ 0 in CZðxnÞ which implies that x2
tn 6¼ 0 in

H�Stn which is an obvious contradiction. Hence, f� ¼ 0.

(ii) First suppose n[ 1. Let’s note that for n[ 1, H�XSnþ1 has nontrivial

homology only in dimensions kn, with k[ 0, by James’ splitting. So, if

HiXSnþ1 6¼ 0 then Hiþ�XSnþ1 ’ 0 for � 2 f�1; 1g. This property is essential

while appealing to the Universal Coefficient Theorem. Obviously, H�XS2

does not have this property. We just note that choosing t even forces

f �ðxtnÞ 2 CZðx2nÞ. The rest of the proof goes exactly as part (i) and we leave

the details to the reader.

Next, suppose either nþ 1 is odd with n[ 0 and t[ 1 or nþ 1 and t both are even

with t; n[ 1. Assume f is given with f� 6¼ 0 in Z=2-homology. By the duality

between homology and cohomology over Z=2 we see that f � 6¼ 0 in Z=2-

cohomology. For dimensional reasons, implied by our choices of n and t, together
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with the naturality of the Universal Coefficient Theorem, we have a commutative

diagram

The Ext terms do vanish for dimensional reasons, hence yielding a commutative

diagram as

We then conclude that the non-vanishing of f � in Z=2-cohomology implies the non-

vanishing of Homðf�;Z=2Þ and consequently, non-vanishing of f� in Z-homology.

The result now follows by appealing to the integral case.

Finally, n ¼ 1 and t even, notice that by the Hopf invariant one result XS2 ’
XS3 	 S1 and the above decomposition of cohomology is becomes a result of this

splitting. The fact that t is even implies that the composition XS3!XgXS2 ! St is

nonzero in homology where t is even. But, this leads to a contradiction by part (i).

h

8.2 Attaching by whitehead products

The content of this subsection is probably well known, but we include an exposition

for further reference. The idea is that given a CW-complex which splits after finite

number of suspensions, or stably splits, certain attaching maps are obtained from

Whitehead products. The main purpose of this subsection is to make such

statements more precise. In the case of splitting after finite number of suspensions, it

is enough to deal with the case of splitting after one suspension. During this section

and afterwards, for a CW-complex X, write Xk for its k-skeleton. We write Xk ¼
X=Xk�1 and Xm

n ¼ Xm=Xn�1. We have the following.

Lemma 8.3 Suppose X is a CW-complex with finite number of cells in each

dimension. Suppose X has only one cell in dimensions n and 2n. Suppose RX2n ’
S2nþ1 _ RX2n�1 then the attaching map of the 2n-cell in X, resulting in the S2nþ1

summand of RX2n, is ‘‘obtained’’ by a Whitehead product on the n-cell. More

precisely, write a for the attaching map S2n�1 ! X2n�1, p : X2n�1 ! X2n�1
n for the

pinching map, and i : Sn ! X2n�1
n for the inclusion of the bottom cell. If p � a 6¼ 0

then up to multiplication by nonzero integer k

Cospherical classes in some iterated... Page 21 of 26 29



p � a ¼ i#½in; in�:

In particular, k could be chosen an odd number if the splitting is 2-local and
p � a 6¼ 0 holds 2-locally.

Note that the above lemma says that the attaching map after composition with a

suitable pinching map is image of a Whitehead product. In particular, it does not

claim that a is always a Whitehead product. Also, notice that the lemma does not

make any claim about the essentiality of a. If a is null then i#½in; in� ¼ p � a ¼ 0

which only says that ½in; in� 2 kerði#Þ. In fact such an equation is useful and

required in proving Theorem 8.4.

Proof Suppose a : S2n�1 ! X2n�1 is the attaching map of the desired 2n-cell. We

may compose a with the projection p : X2n�1 ! X2n�1
n . The fact that X2n ¼

X2n�1 [a e
2n after one suspension splits as RX2n ’ S2nþ1 _ RX2n�1 is the same as

saying that a belongs to the kernel of the suspension map

E : p2n�1X
2n�1 ! p2n�1XRX2n�1. The splitting of RX2n also implies that

RX2n
n ’ RX2n�1

n _ S2nþ1. Hence, Eðp � aÞ ¼ 0 for

E : p2n�1X
2n�1
n ! p2n�1XRX2n�1

n . The space X2n�1
n has its bottom cell in dimension

n, so we may use the EHP-sequence in the meta-stable range. In particular, consider

the following portion of the EHP-sequence

p2n�1X
2RðX2n�1

n ^ X2n�1
n Þ�!P p2n�1X

2n�1
n �!E p2n�1XRX

2n�1
n :

By exactness of the above sequence from Eðp � aÞ ¼ 0 we conclude that p � a ¼ Pb
for some b 2 p2n�1X

2RðX2n�1
n ^ X2n�1

n Þ and in particular b 6¼ 0 if a 6¼ 0. Writing

i : Sn ! X2n�1
n for the inclusion we have the following commutative diagram

Since X has only one cell in dimension n then the space RðX2n�1
n ^ X2n�1

n Þ has its

bottom cell in dimension 2nþ 1, and ðX2Rði ^ iÞÞ# is an epimorphism in the above

diagram. Hence, there exists a nonzero b0 2 p2n�1X
2S2nþ1 with

ðX2Rði ^ iÞÞ#b
0 ¼ b. Since p2n�1X

2S2nþ1 ’ Z then b0 ¼ ki2nþ1 where k 2 Z is

nonzero and i2nþ1 2 p2nþ1S
2nþ1 ’ p2n�1X

2S2nþ1 is the generator. It follows that

p � a ¼ i#Pðki2nþ1Þ ¼ ki#Pi2nþ1:

However, it is known that P : p2n�1X
2S2nþ1 ! p2n�1S

n is the Whitehead product,

that is Pði2nþ1Þ ¼ ½in; in�. Hence, up to a multiplication by a nonzero integer we

have
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p � a ¼ i#½in; in�:

In the case of 2-local splitting, choosing k to be even implies that p � a ¼ 0 which

contradicts the assumption. This completes the proof. h

It is possible to say more if we have more information on the attaching map of the

ðnþ 1Þ-cell of X. For instance, if X has no cell in dimension nþ 1 or the attaching

map is null then p2nþ1RðXn ^ XnÞ ’ p2nþ1S
2nþ1 induced by the inclusion of the

bottom cell. In this case, ðX2Rði ^ iÞÞ# would be an isomorphism and b0 must be a

unique element. On the other hand, writing a : Sn ! Xn for the attaching map of the

ðnþ 1Þ-cell, if p � a : Sn ! Xn
n ¼ Sn is essential then pnXn ’ HnðXn;ZÞ would be

the cyclic group Z=�ðp � aÞ, hence H2nðXn ^ Xn;ZÞ and consequently p2nþ1RðXn ^
XnÞ ’ H2nþ1ðRðXn ^ XnÞ;ZÞ would be cyclic groups too. In this case, up to

multiplication by an odd number, we may choose k ¼ 1.

8.3 The case of n+ 1 even and t odd

We localise at the prime 2.

Theorem 8.4 Suppose f : XSnþ1 ! Stn where t is odd and nþ 1 is even. If tn 62
f1; 3; 7g then f� ¼ 0.

Proof The proof is by contradiction, and we wish to apply Lemma 8.3 to prove the

Theorem. The space X ¼ XSnþ1 satisfies conditions of Lemma 8.3. Suppose tn 62
f1; 3; 7g and f� 6¼ 0. Let i : Stn ! X2tn�1

tn denote the inclusion of the bottom cell,

a : S2tn�1 ! X2tn�1 the attaching map of the 2tn-cell, and p : X2tn�1 ! X2tn�1
tn the

pinching map which collapses Xtn�1. Then, by Lemma 8.3 we have

i#½itn; itn� ¼ p � a:

Moreover, for dimensional reasons, the restriction of f to the ð2tn� 1Þ-cell of X, say

f j2tn�1 : X2tn�1 ! Stn extends to a map g : X2tn�1
tn ! Stn so that gp ¼ f j2tn�1. These

data yield a commutative diagram as follows

On the other hand f j2tn�1 has to extend over the 2tn-skeleton of X to a map f j2tn :
X2tn
tn ! Stn where the necessity being implied by the existence of f : X ! Stn. The

existence of f j2tn is the same as saying that f j2tn�1 � a ¼ 0. On the other hand i and g
are both nonzero in Htnð�;Z=2Þ and working at the prime 2 this implies that we

may take g � i is the identity (over Z this implies that g � i is an odd multiple of the

identity). It follows that
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½itn; itn� ¼ g# � i#½itn; itn� ¼ f j2tn�1 � a ¼ 0:

It is known that for m odd the Whitehead product ½im; im� 2 p2m�1S
m vanishes if and

only if there is a Hopf invariant one element in p2m�1S
m [10, Corollary 1.3, Remark

1.4] which together with Adams Hopf invariant one result means that m 2 f1; 3; 7g
[1]. This shows that if f extends over the 2tn-skeleton then tn 2 f1; 3; 7g. This gives

the desired contradiction. Hence, f� ¼ 0. h

It remains to decide about the cases with tn 2 f1; 3; 7g with t odd and nþ 1 even

with n[ 0. However, note that we have required t[ 1, so t� 3. Also, n has to be

odd. This leave us with the cases where n ¼ 1 and t ¼ 3; 7. That is we have to

decide about the existence of maps XS2 ! St with t 2 f3; 7g such that f� 6¼ 0. We

have the following existence result and we note that its proof is also valid for the

case of XS2 ! S1.

Theorem 8.5 For t 2 f1; 3; 7g there exists a map f : XS2 ! St with f� 6¼ 0.

Proof First, notice that the existence of Hopf invariant one elements in pst is

equivalent to existence of a decomposition XStþ1 ’ XS2tþ1 	 St. By Lemma 6.1(i)

this is the same as existence of a map o : XStþ1 ! St with o� 6¼ 0. Second, recall

that for a path connected space X, James’ splitting RXRX ’
Wþ1

t¼1 RX^t provides us

with projection maps pt : RXRX ! RX^t whose adjoint

ept : XRX ! XRX^t

is the t-th James–Hopf invariant, sometimes denoted by jt. In particular, it is known

that jt induces nonzero map in t-th homology. Now, define f to be the composition

XS2�!jt XStþ1�!o St:

Obviously f� 6¼ 0. This proves the Theorem. h

Notice that the map o, which can be chosen to be the boundary map in the

fibration sequence corresponding to Hopf bundles, as well as James’ splitting both

exist integrally. This allows to show that the above theorem also holds in Z-

homology.

9 Notes on the case with l > 1 and m>n

We can use some geometry to prove

Lemma 9.1 For any l[ 1 and f : XlSnþl ! S2n we have f� ¼ 0.

Proof The inclusion i : XSnþ1 ! XlSnþl is a 2n-equivalence. Hence, assuming f :

X2Snþ2 ! S2n is nontrivial in homology, g : XSnþ1!i XlSnþl!f S2n satisfies g� 6¼ 0.

This contradicts Theorem 8.2. h
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23. James, I.M.: Multiplication on spheres. I. Proc. Am. Math. Soc. 8, 192–196 (1957)

24. James, I.M.: Note on Stiefel manifolds. I. Bull. Lond. Math. Soc. 2, 199–203 (1970)

25. James, I.M.: Note on Stiefel manifolds. II. J. Lond. Math. Soc. 2(4), 109–117 (1971)

26. Kahn, D.S., Priddy, S.B.: Applications of the transfer to stable homotopy theory. Bull. Am. Math.

Soc. 78, 981–987 (1972)

27. Kashiwabara, T., Zare, H.: Splitting Madsen–Tillmann spectra I. Twisted transfer maps. Bull. Belg.

Math. Soc. Simon Stevin 25(2), 263–304 (2018)

28. Kudo, T., Araki, S.: On H�ðXNðSnÞ; Z2Þ. Proc. Jpn. Acad. 32, 333–335 (1956)
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