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Abstract
For a nice topological space X, working at the prime p = 2, we consider the ‘un-
stable Boardman map’ (homomorphism if k > 0)

b: 7'Cm+kEkX ~ [X, QkSm+k] — HomZ/Z(H*QkS”’*’(,H*X)

defined by b(f) =f* where k>0 and m >0. We use classic maps, such as the
Kahn-Priddy map, to provide examples of X so that b is nonzero in many dimen-
sions. We also consider the case of X = QZS’”’Z, with particular interest in the cases
with 0 <k <l< 4 0o, and consider the problem of computing the image of

b T[leSnJrl ~ [QlSnJrl, Sm] —_— HomZ/Z(H‘Sm,H*Q’S““).

Our results concern with the extreme values of k given by k =0,l. For k=1, a
simple interpretation of well known facts about James-Hopf maps shows that the
image of b when m = 2n is always nontrivial; we have not completely determined
the image of b in this case. For k = 0 we completely determine the image of b in the
following cases: (1) m = n and [ > O arbitrary; (2) m > n and [ = 1. We observe
that in most of the cases the image is trivial with the exceptions corresponding to the
cases when either there is a (commutative) H-space structure on S” or there is a
Hopf invariant one element.
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1 Introduction and statement of results

Throughout the paper, we work 2-locally and all notation is to be understood
accordingly unless otherwise specified. In particular, H* (resp. H.) denotes
H*(—;Z/2) (resp. H*(—;Z/2)). We shall write P (resp. CP) for the infinite
dimensional real (resp. complex) projective space, and P" for its n-skeleton (resp.
2n-skeleton). For a pointed space X, we write QX = colim Q'X'X. For a map f :
X — Q"Y we shall write ad,(f) : Z'X — Q"'Y for its i-th adjoint where i < n.

Recall that a cospherical class in H*X is determined by a map f : X — S such
that f* # 0 (see for example [42]). A generalised cospherical class is obtained if we
replace S with a loop space on a sphere.

Definition 1.1 A generalised cospherical class in H.X is determined by a map
f:X — Qksmtk k>0, so that £, # 0. A reduced generalised cospherical class is
determined by a map f : X — Q‘S"** with k > 0 so that f, : H;X — H;Q‘S"* is
nontrivial for some i > m.

Note that over Z/2, H,X and H*X are dual vector spaces and the dual of f* is f..
The above definition then would be a reasonable definition. Note that one may
replace H*(—; Z/2) with any other homology theory E and study cospherical classes
in E*X (see [32] for an example with £ = KO). Obviously 0 € H.X is cospherical.
Hence, we shall focus on nonzero cospherical classes.

Remark 1.2 Recall that x € H,,X is called spherical if there exists f : §” — X such
that f,x,, = x where x,, € H »S™ 1s a generator. It should be noted that there exist
spaces which contain classes which are not spherical, neither cospherical. We call
these non-spherical classes. For example, note that H, P contains no spherical classes
as the generator a, € H,PisnotA-annihilated. Moreover, iff : P — S2is given with f,
nonzero, then f* # 0. The naturality of the cup-squaring operation shows that x% #0
in H*S? which is a contradiction. So, @, € H,P is a non-spherical class.

Often, we do not put much restrictions on X. However, in the case of applications
to bordism theory as we will discuss in a sequel, it is useful to assume that X is a
finite dimensional CW-complex. In this case we have the following.

Proposition 1.3 Suppose X is a finite dimensional CW-complex. Then a generalised
cospherical class in H*X is determined by, and determines, an element f € n]'X
viewed as a map X — QS™ with f, # 0.

Proof In one direction, suppose f : X — QX% determines a cospherical class in
H*X. Recall that the stabilisation map E : QS — Q8™ = colim Q'S induces
a monomorphism in homology [44, Proposition 3.1]. Therefore, (E of), # 0 and
the image of E o f is a nontrivial element in [X, QS™] ~ n"X. Conversely, suppose
g: X — Q8™ is given with g, # 0. Since X is finite dimensional then there exists &
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and f: X — Qf§"tk 5o that g = Eof. In particular, f, # 0. This completes the
proof. O

Note that the problem of computing generalised cospherical classes in H*X also
contributes to the study of the unstable Boardman homomorphism (see Sect. 2 for
explanations on the terminology)

b " ERX o~ [X, Q"] — Homy e grgnet o)

defined by A(f) = f*. Therefore, we may interpret our results in terms of image of b
as well. We record results in two opposite directions. In one direction, we provide
example of cases where nonzero generalised cospherical classes do exist. On the
opposite direction, we provide examples of spaces X where H,X consists of no
nonzero (generalised) cospherical classes. First, we wish to record the following
existence result which would follow from classic computations of Kahn and Priddy
[26] as well as well known facts on various transfer maps [33].

Theorem 1.4 Suppose G =7/2,S',S* and BGU" is the n-skeleton of BG. There
exists a map /l,? :xdmepGll — Qg \which is nontrivial in homology. In
particular, for any n > 0 there exists a map P" — Q" st which is nontrivial in
homology in every dimension 0<i<n.

There are possible way of extending the above list of groups. For instance, by
Kahn—Priddy theorem [26] (see also [11, Lemma 2.3]), for a connected CW-
complex X, a map f:X — QoS° factors through the Kahn-Priddy map
2 QP — QoS If f: X — QoS” satisfies f, # 0 then any pull back f X — QP
satisfies f~ . 7 0. If f further pulls back to P, hence corresponding to a nontrivial
element in H'(X;Z/2), then we might expect A 0ft0 be nonzero in homology. As
another example, one may consider the Segal type decomposition [36, Corollary]
QP = BO x F and look for generators of KO(X), represented by a map X — BO,
and see if they are nonzero in homology or not. For X = BG, these seem to provide
ways of extending the above list further.

Corollary 1.5 For i<n+ 1, there exist maps sipt — QUHN=igntl yohich are
nontrivial in 7 /2-homology in dimensions less than n + i and greater that 2i — 1.

Let’s note that ad,;;(4,) : Z""'P" — §"*! is trivial for obvious dimensional
reasons as X" P has its bottom cell in dimension n + 2. So, we may ask whether for
i>0and n > 1, there exists m and f : 'P" — §™ which is nontrivial in homology.
Note that once we find g : P* — S~/ with g, # Othenf = X’g would have the desired
property. So, we may ask whether if there exists f : P* — S§™ so that f. # 0? For
dimensional reason, we need 1 < m <n. Moreover, the projection onto the top cell
P" — S"isnontrivial in homology. Hence, we may restrict to the cases 1 <m <n — 1.
We have the following.

Lemma 1.6 Suppose f:P" — S™ is a map of spaces/suspension spectra and
I<m<n< +oo.
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(i) Ifmis odd then f, = 0.

(i) Forn=m+ 1 and m even, there exists a map f : P""' — S™ with f. # 0.
Moreover, for any such map the restriction f|p. is homotopic to the
projection onto the top cell.

(i) Ifn>m+2and m =2 mod 4 then f. = 0.

(iv) Ifm =0 mod 4 then for i <4 there exists a map f : P""" — S" with f, # 0.

(v)  Ifm =0 mod 8 then for i <7 there exists a map f : P"" — S™ with f, # 0.

We have some comments in order. First, the above lemma does not offer a
complete solution to the problem of determining those element of n”P" which are
nontrivial in homology. Second, the problem seems very much related to the famous
vector field problem, but this relation is not clear to the author. Thirdly, if we knew
that a secondary operation corresponding to the Adem relation for Sq*Sq* acts
trivially on H®P then the assertion of part (v) would be valid for all i <8. Finally,
notice that, in the case of m = 1, since H'(P";Z) ~ 7 /2 then choosing a generator
of this group represented as a map P" — S' we obtain a map which is nontrivial in
Z-homology. Part (i) of the above lemma then implies that any map P — S' which
is nontrivial in Z-homology must be of even degree. Note that the case of n = 1 is
well known as it forces m = 1, hence f € m Sk

Remark 1.7 Notice that the validity of Lemma 1.6 for stable maps, allows us to
decide about the existence of maps of spaces f:X'P" — §” with nontrivial
homology. For any map as such, one gets a (stable) map P" — S~ which then
allows to apply Lemma 1.6. We leave it to the reader to investigate this case further.

Next, we return to the case when X is a loop space on sphere and consider
b: [QIS”-H, QkSnH_k} — Homz/z(H*QkSerk7H*len+l>

with a particular interest in the case of k <[. Note that for k£ > 0 the source of b is the
‘unstable’ group [QIS"” , QkS’”“‘] whose complete computation needs a suitable un-
stable Adams spectral sequence (ASS). However, we do not attempt working with any
unstable ASS and instead we try to use available geometric techniques as well as
unstable invariants to study the image of this homomorphism. Our main observations
in this paper are about the ‘extreme’ values of k with k = 0, I. In the case of k = [ there
exist examples where the image of b is nontrivial. We have the following.

Theorem 1.8 For n > 0 and 1 <i<n there are maps f; : Qs+l — QIS gych
that fi # 0. Consequently, the image of

10l o+ 1=+ ol ((2n+1-1)+1
b: [Q S(" ) ,Q S( n ) ] — HomZ/Z(H*Q’S(Z”“*’)“,H*Q’S(”*‘*’)“)
is nontrivial.

The proof is immediate once we choose f; = Q' 'H with H : Q§"+! — Qg?+!
being the second James-Hopf map. It is also possible to use odd primary James—
Hopf map to produce examples at odd primes.
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The following provides a partial answer when k = 0.

Theorem 1.9 Suppose all spaces are localised at the prime 2 and let k = 0. The
following statements hold.

(i) If m=n =0 then for any | > 0 the image of b is isomorphic to Z/2{1}
where 1 € H'QS" is the fundamental class.

(i) Ifm=n>0and | =1 then the image of b is nontrivial if and only if
n € {1,3,7} and in this case the image is isomorphic to Z/2{0} where
0: Q8" — S is the boundary map in the Barratt—Puppe sequence for
one of the Hopf maps n,v, 0.

(i) Ifm=n>1andl > 1 then the image of b is trivial.

(iv) Ifm=n=1and anyl > 1 then the image of b is isomorphic to Z/2{0¢ }
where Og : QS' — S' corresponds to the structure map of S' as an infinite
loop space.

Next we consider the cases with f : Qs 5 §m In this case, we have only
results for / = 1. Note that by James splitting [41, Chapter VII] if f : Q§"! — ™
satisfies f, # 0 then m =  for some 7. We have the following.

Theorem 1.10 Suppose f : QS"! — §” with m = tn > n.

(i) Form>nwithm=tnifn+ 1isoddorbothof n+ 1 and t are even then
the image of b is trivial.
(i) Form>nwithm=mifn+1iseven, tis odd, and in & {3,7} then the
image of b is trivial.
(i) For tn € {3,7} there exists a map f : QS* — S' with H,(f) # 0.

We have excluded the case with tn = 1 as it implies that # = n = 1. In this case, it
is impossible to have 1 = m > n = 1. In this case, we have f : QS'*! — S is one of
the cases studied by the previous theorem.

Remark on the integral results Some of the tools and results that we use such as
the existence of Hopf bundles 7, v, or James’ splitting QXX =~ \/%) =X"", for
X path connected, are integral results. Therefore, one might expect that some of our
results, at least the existence results, also have integral counterparts. On the other
hand, some of obstructions that we have used to prove nonexistence results are
local, so we do not know whether the integral results hold. We have tried to
highlight the integral results when it is possible.

2 Motivation
The main motivation for this work is to study the image of the Hurewicz

homomorphism #h: n,X — H.X for certain cases X, and in particular the
homomorphisms
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h:n Qs — HQ'S" h:n,Q0S" — H.QS",

where n >0 and [ > 0. The problem of determining spherical classes in H.X is not
always an easy problem, e.g. in the case of X = QS* = colim Q'S it is open
problem (see for example [13, 39, 43]). The problem of determining spherical
classes in finite loop spaces Q'S"* is also open, although some progress for small
values of / has been made where we have achieved complete classification of these
classes (see [44] and [45]). We follow the philosophy that, at least on the level of
algebra, the Hurewicz and Boardman homomorphisms are dual (see Sect. 3 for
further discussions) and sometimes the dual problem might be easier to tackle.
Following this philosophy, we are interested in looking at the dual problem and
studying the image of Boardman homomorphisms

b: [QlSn+l, QkSerk] N Hom(H*QISnH’ H*QkSerk),

where k<oo with the convention Q*X*X = QX. To set up a more general
framework, let’s recall that for a spaces X with base point, we have isomorphisms of
groups

X ~ 1,0X ~ [§", 0X], 1}X ~ [X,0S"]

provided by the adjointness between Q% and X functors where
0X = colim Q'X'X. The evaluation map QX — XX induces the stable ho-
mology suspension ¢¢° : H,QX — H,X and the stable cohomology suspension a7, :
H*X — H*QX which fit into commutative diagrams as

78 X —~ Hom(H,S", H,QX) X —X~Hom(H"X, H"S™)

T e T |

Hom(H,S™, H,X) Hom(H"QX, H"S™)

Next, notice that we have inclusion maps Q'YX — QX which in the case of
h provides commutative diagram as

T8 X —— Hom(H, S, H,Q'% X)

! l

X ~ 1,QX ——~Hom(H,S", H,QX).

Also note that working at a prime p, the duality H"X ~ Homgz,y,x,7/,) between
homology and cohomology provided by the Universal Coefficient Theorem, allows
to consider b* and b as homomorphisms

b* : n'X — Hom(H,X,H,S"), b: "X — Hom(H,X, H,0S"),

which send f to f;. For b, this provides a commutative diagram as
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T HINIX == [ X, QY157 L Hom(H"Q!S" H"X) —= Hom(H, X, H,Q'S")

| T |

[X, Q5" —— Hom(H"QS", H"X ) —=— Hom(H, X, H,QS")

T X

These observations motivate one to study the unstable Boardman homomorphisms
b:[X, Q8" — Hom(H,X, H,Q'S"™),

where i > 0.

3 Some generalities

Suppose E is a nice ring spectrum with the identity. Write Ag = E*E for the algebra
of E-cohomology operations and A}’ for its opposite algebra. Furthermore, suppose
for any space X there is a Kronecker pairing E"X ® E, X — E, reflecting a duality
between the vector spaces E"X and E,X. Also modules in this section are left
modules. For any space X, E*X is a left Az-module whereas E, X is a left A}’ -module
where the existence of this structure comes from the existence of the Kronecker
pairing.
For spaces X and Y, one may consider Hurewicz and Boardman maps

h[X,Y] — Homge g (X E.Y), b: [X,Y] — Homy, _ me (E'Y, E'X)
which are defined by i(f) = f. and b(f) = f*, respectively. If we fix X (resp. ¥) then
upon being provided with a choice of a fixed element xg € E.X (resp. y* € E*Y) the

composition with the evaluation maps yields the usual Hurewicz and Boardman
maps

h:[X,Y] — EY, b:[X,Y] — E'X.

The main examples of such homomorphisms are the classic Hurewicz and Board-
man homomorphisms with X or Y being a sphere. One may replace [X, Y] with the
group of stable maps XX — XY, denoted by {X,Y}, which provides
stable Hurewicz and Boardman homomorphisms (instead of maps)

n {X7 Y} - HOH]AZP7 mod (E*Xa E*Y)7
b {X,Y} —s Homa,— moa (E'Y, E*X).

Choosing either X or Y to be a sphere, we have the stable Hurewicz and Boardman
homomorphisms, respectively. The first one is the stable Hurewicz homomorphism

hy:mY — E,Y.
Taking X = §” we have A* : {X,Y} = nY — H.Y. which sends f to (E.f)x, where

xE € E,(S") is a generator provided by the unit §% — E. This homomorphism has
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been studied extensively for many important spectra such as E =
HF,,MU,BP, K, KO,tmf as there exists complete description of the stable Hurewicz
homomorphism 7, : niSO — E,S° for these spectra [3, 20, 35, 19]. In fact com-
puting the image of this homomorphism is so important that one tends to find a
spectrum E so that A, : nS° — E.S° is much closer to becoming an isomorphism
and detects more and more elements in 72S°. From this point of view, there is an
attempt to find bounds on the dimension/exponents of kernel and cokernel of this
homomorphism (see [5, 34]). The second homomorphism is the stable Boardman
homomorphism

by X — E'X

which is defined by b°(f) = (E*f)x}. where x}. € E"X is a generator provided by the
unit S® — E. This homomorphism also has been studied in detail [22, 6].

These two homomorphisms are dual, possibly up to some degree shift, over w,.E
in a suitable sense (see [38, Chapter 13] for a detailed discussion). However, up to
our knowledge, despite existence of some explicit relation among hj; and b}, there is
no dictionary of the results about 4}, and b};,. We also note that this duality is not one
that is induced by means of the S-duality in the stable homotopy category in the
sense that for a given f : §” — X then D(f) is not necessarily, up to finite number of
suspensions, a map X — S". However, knowing that these homomorphisms are dual
in a suitable sense and the philosophy that sometimes solving a ‘dual’ problem
could be easier tempts one to study one of these homomorphisms to justify some of
claims about the other one. This duality could be used to obtain some information
on the algebra. For instance, one may try to relate the rank of the image of 4j; to the
rank of the kernel of b}, etc.

The aim of this work is to apply and explore this idea in the presence of the
destabilisation functor Q := Q>Z*. Note that there are commutative diagrams of
groups and their homomorphisms

[X7 QY] —h> HOInA%p— mod (E*X/ E*QY)
EL lHom(lE*X,afo)
{X7 Y} L) HOmA%p7 mod (E*X7 E*Y)

and

{X, Y} —~Homyu,_ mea (E*Y, E*X)
zl lHom(a;o,lE*X)
(X, QY] —2> Hom, — mod (E*QY, E*X)

where ¢3° and o are induced by the evaluation map e:X*QY — Y in E-
homology and E-cohomology, respectively. Here, we refer to 2 and b as
unstable Hurewicz and Boardman homomorphisms, respectively, in order to
distinguish them from their stable counterparts.
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4 Examples arising from the Kahn-Priddy type maps

The aim of this section is to prove Theorem 1.4 and Corollary 1.5. We show that the
Becker—Schultz—Mann—Miller—Miller transfer maps give rise to maps satisfying
Theorem 1.4 and Corollary 1.5. In particular, we observe that maps such as the
Kahn-Priddy map offer a geometric constructions for such transfer maps with
explicitly known homology [26, Theorem 3.1] (see also [33, Theorem A and its
Corollary]).

Recall that for a compact Lie group G, an embedding of a closed subgroup
i: K — G, and a twisting (virtual) vector bundle o — BG there exists a transfer
map, twisted by o, which is a map of Thom spectra

adg®a adg+o
BGo®* _, BRIk +¥lax

where adg is the vector bundle EG % g — BG with g being the Lie algebra of G on
which G acts through the adjoint representation and o|gx = (Bi)"a is the pull back
of « by the induced map between classifying spaces Bi [9] (see also [33] as well as
[27, Section 2.3]). In general, for any Lie group G if we choose o = —adg then
corresponding to the embedding of the trivial group 1 — G we have a transfer map

zdimspG, — $°.

Finally, notice that for any space the Becker—Gottlieb transfer map [8] associated
with the trivial bundle X — * provides us with a stable splitting (in fact just after
one suspension) X, ~ X V S°. Consequently, we may consider reduced transfer
maps

ydimsgG — pdimsBG, — $°.

The composition with the inclusion of BG[”], the n-skeleton of BG, in BG yields a
stable map

ydimsgGll — 0.
The stable adjoint of this map is a map of spaces
Zdim qBG[n] _ QSO

By Freudenthal’s theorem, noting that the source has top cell in dimension
dim g + n, this map factors through Q"*'§"+! with m = dim g + n.

Proof (Proof of Theorem 1.4) We begin with the specific example of G = Z/2. In
this case, a geometrically constructed representation for the reduced transfer map
P — S¥ is provided by the Kahn—Priddy map [26]. It is known that this map induces
an epimorphism on 7}, the 2-component of the stable homotopy. The stable adjoint
of this map provides a map 4 : QP — Q,S° where QS is the base point component
of 0S° corresponding to 0 € mHQS° ~ ngy. In fact, Kahn—Priddy theorem provides a
composition
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00S° — QP — QpS°

which is a 2-local equivalence [30, Corollaery 2.14]. Consequently, 4 induces an
epimorphism in H,(—;Z/2). On the other hand, notice that for a path connected
space X, the inclusion X — QX induces a monomorphism in homology. Therefore,
the composition

BZ/2 =P — QP — Q,S"

induces an epimorphism in Z/2-homology. Finally, notice that the inclusion of the
n-skeleton P" — P induces a monomorphism in homology in every positive
dimension less than n + 1. Hence, the composition P* — P — 00S8° induces an
epimorphism in positive dimensions less than n + 1. Finally, either by construction
of the unstable Kahn—Priddy map (see Proof of Corollary 1.5) or by Freudenthal’s
theorem, this latter map factors through Q""!'§"+! which induces an epimorphism in
homology in positive dimensions less than n+ 1. Since H;P" is nonzero for
0 <i <n, therefore our claim about the map 4, being nonzero follows automatically.

Next, consider the case of G = S!. In this case, we have the complex transfer map

AN *CP, — S°.

It is known that the map of spaces QXCP, — QS° yields an epimorphism when
restricted to the submodule of primitive elements [16, Theorem 7.8]. Note that in
homology of ZCP, because of the existence of a suspension, every nontrivial class
would be primitive. Consequently, the composition

SCP — QXCP, — QpS°

induces an epimorphism in Z/2 homology which is nontrivial in every odd degree.
As above, one can show that the composition TCP" — QS° factors through
Q?+2821+2 and the map TCP" — Q*"282"2 is nonzero in homology in every odd
degree less than 2n + 2.

Similarly, for the case of G = S3 one can show that the reduced twisted transfer
map X3 HP — S° gives rise to maps

23 HP" — Q4n+4S4n+4

are nonzero (at least at some positive dimensions). We leave the details to the
reader. L]

Next, we wish to offer a proof of Corollary 1.5. We do this by choosing a
geometrically constructed representative for the transfer RP — S° and use the
computations of [26].

Proof of Corollary 1.5 The proof of Corollary 1.5 immediately follows from the
above theorem if we give more details on homology. As there is a more geometric
way of proving this Corollary using the Kahn and Priddy map [26] (see also [14,
Section 4]) we begin with recalling this map and computations regarding its
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homology. For n > 1, given L € P" determines a hyperplane L and reflection with
respect to L' gives a linear map ;. : R""! — R""! of determinant —1. After one
point compactification one obtains a map S"*! — §"*! of degree —1. The loop sum
with a map of degree one (class of the identity) gives a map S"t' — §"+! of degree
0. This defines the unstable Kahn-Priddy map 4, :P" — Qg“S’”r1 where the
subindex O denotes the path component of Q""'§"*! corresponding to 0 €
Q" t1§"t! ~ 7 which is the basepoint component of Q""'S"*!. The maps are
compatible as n varies and we have commutative diagrams such as

pr_2n Qn—l—lsn—i—l

|

pr+l At Qn2gn+2

for any n. Here, the downward arrows are inclusions. These give rise to a map
J: P — QoS° where QyS° denotes the base component of QS° corresponding to
0 € mpQS° ~ 7§ so that the following diagram commutes

pn_2ry Qn—i-l Sn+1

P Q0S°.

We note that taking the component of QS in which A lands is important in writing
the homological computations. The homology of the space QyS° is known to be a
polynomial algebra [15, Page 86. Corollary 2] (see also [12, Part I. Lemma 4.10])
given by

H.Q0S° ~ Z/2[Q"[1] % [-2'D] : I admissible ,i; > ir + - - - + iy].

Here, I = (iy, ..., i,) is called admissible if it is a sequence of positive integers and
ij <2y forallje {1,...,r — 1}. Also, Q' = Q" --- Q" is the iterated Kudo-Araki
operation first defined in [28] and [29] (see also [15] and [12]). If a; € H;P is a
generator then the relation

hu(a) = Q1]+ 2]

describes homology of A [26, Theorem 3.1](see also [37, Chapter 1, Proof of
Theorem 5.6]). Moreover, recall that H,FQ’H'IS’hLl sits monomorphically inside
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H.Q,S° as a subalgebra [44, Proposition] and is described by [12, Part III] (see also
[39D)

H.Q™S™ ~ 7 /2[Q'[1] % [-2'D)] : T admissible , iy > iy + - - - + iy, i <n + 1].
The commutative diagram above, relating 4, and /, then implies that in homology

(Za). (@) = Q'[1] * [-2]

for all i <n + 1. Moreover, by [12, Part I, Theorem 1.1(7)] as well as [12, Page 47,
First Line], the iterated homology suspension ¢* : H,QS° — H, ;OS* satisfies
a* (Q'[1] * [-2]) = Q'x; where x; € H;S* is a generator. Also, by properties of
Kudo-Araki operations [12, Part I. Theorem 1.1] we have Q*x; = x7 and Q'x; = 0 if
i <k. Moreover, the definition of QX and the fact that Q and colim functors com-
mute show that QkQZkX = QX for any k > 0. In particular, this allows to consider
adjoints 4 : P — QS°. Consequently, for the k-adjoint of A as adi(1) : ZXP — QS*
we have

Ox #0 ifi>k
0 otherwise.

(). (k) = {

Again, by the commutativity of the above square, noting that Qng'S”+1 — Q8% is an
(n + 1)-fold loop map, it is easily verified that we have similar relations in place for
the k-th adjoint maps ady(4,) : Z*P" — Q" %§" which is defined as far as k <n
which proves the Corollary. O

Remark 4.1 1t is easy to show that 4, does not lift to a map P* — Q"S". To see this

consider the EHP-sequence S">Q8"1 £Qs2"*+! and loop it n-times. It is easy to
show that the composition (Q'H)o 2, :P" — Q"'s"1 — Q"Fl§2+1 gatisfies
((Q"H) o 4,),a, = x, where x, € H,Q""' 8?1 is a generator corresponding to
the bottom cell. Hence, (Q"H) o /, is essential, consequently A, does not lift to
Q'sn.

We can use the maps 4, to provide further examples of generalised cospherical
classes. Note that by universal property of iterated loop spaces, the map 7, extends
to an (n + 1)-fold loop map Q"= 1p? — Q"*1§"+! which we keep denoting by
/. Likewise, the mapping A extends to an infinite loop map QP — QS°. By the
construction of these extension maps, with the convention 4., = 4, we have the
following commutative diagrams

pn An Qn—i—l Sn+1

J |

Qn—l—lzn—&—lpn An QTL-l-lSTH-l
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which shows that 4, : Q"T'Z"1p? — Q"1 §"+1 i5 also nontrivial in homology in
many dimensions.

5 Proof of Lemma 1.6
We proof Lemma 1.6 in a few steps. Notice that we are dealing with the case n > m.
We first eliminate the cases with m being odd.

Lemma 5.1 Suppose m is odd and n > m. Then, for any f : P" — S™ we have

fe=0.
Proof Since m is odd then
ns1 = Sq'ay = Sq'f* (xn) = f*(Sq'xn) = 0
in H*P" which is a contradiction. U
Hence, from now on we consider the cases of m being even. First, let n = m + 1.

Lemma 5.2 Suppose m > 1 is even. Then, the projection onto the top cell P" — S§™
extends to a map P"*' — S™ which is nontrivial in homology. Moreover, for any
map f : P"™ — §" with f. # 0 the restriction f
projection onto the top cell.

pn o P" — S™ is homotopic to the

Proof For the quotient map g¢,, : S" — P™ and the projection onto the top cell
Pm - P — S™ it is known that the composition p,,g,, : S — S has degree 0 for m
even. Hence, p,, admits an extension over the cofibre of ¢,, which is prtl say
Pm : P! — S™ which is nonzero in H,(—;Z/2). Finally, note that for any f :
Pl — §™ with f. # 0 the restriction f|p, =foi where i:P™ — P"! is the
inclusion. In particular, (f oi), # 0 shows that i*(f) =foi# 0 in 7"P™ where
i* Pt P Note that for m > 2 even, n"P" ~ 7 /2 is generated by the
projection onto the top cell P — S™ [40, Theorem 4.1]. Since f o i # 0 hence f|pn
must be homotopic to the projection onto the top cell. This completes the proof. [

From now on, we consider the cases with n — m > 2 and n being even. Suppose
f: P" — 8™ is given with f, # 0 in homology. Since we work over Z/2 then f, # 0
if and only if f* # 0. We abuse the notation to use the same symbols to denote
homology and cohomology generators.

Lemma 5.3 Suppose 2m <n. Then for any f : P" — S™ we have f, = Q.

Proof 1n this case, f* # 0 implies that f*(x,,) = a,,. This leads to the equation
o = @, = Sq"ap = SG"f* (Xm) = f*SG" X = O

in H*P" which is a contradiction. This proves our claim. U

Hence, we need to deal with the case of n <2m. Note that we have resolved the
cases with n = m,m + 1. Hence, we may assume m + 2 <n<2m.

T Birkhauser



29 Page 14 of 26 H. Zare

Lemma 5.4 Suppose n—m>2 and m even such that m =2’ mod 2! and
m + 2' <n. Then, for any map f : P" — S™ we have f, = 0.

Proof 1If f. # O then f* # 0. Suppose m = 2 mod 2'*!. Then,
A2 = Sq2tam = Sq2rf* (xm) =f (Sq21xm) =0
which is a contradiction in H*P". Hence, f,. = 0. O

Note that we already have n — m > 2. By Lemma 5.4 if m = 2 mod 4 then for
any f : P* — S§" we have f, = 0. Hence, we only need to deal with the case of
m = 0 mod 4. We show that in this case, there is some n such that there exist maps
f: P" — S§™ with f, # 0. Note that for n >m, by pinching P"~! to a point, any map
f:P" — 8™ extends to a map P}, — 8™, and vice versa and map P}, — S" gives a
map P" — S” by composition. Hence, it is enough to show that there exists a map
P? — S§™ which is nonzero in homology. This latter is equivalent to saying that
there is a 2-local splitting

P~ S"V P

The following would be well known to experts. But, we record a proof.

Lemma 5.5 Suppose m >4 with m = 0 mod 4. Then, there is a 2-local splitting of
spaces
2 2
P2 = §" v P

There is also a 2-local splitting of spaces

m+3 ., m m-+3
P o gy P,

Now, by taking the projection map onto the S§” summand the following is
immediate.

Corollary 5.6 Suppose m >4 and m = 0 mod 4. Then, there exists a map P"+* —
S™ with f. # 0. There is exists also a map P"*> — S™ which is nontrivial in 7 /2-
homology.

We shall use James periodicity to do proof Lemma 5.5. Recall that, by James
periodicity [4, Theorem 6] (see also [35, Page 31]), there is a homotopy equivalence

200 it (k—1) - (k—1)+200)
)2 Pm - Pm+2(/’(k> ’

where

ok) =#{r:0<r<k,r=0,1,2,4 mod 8}.

Proof of Lemma 5.5 By James periodicity, P"+?> = Z4Pﬁ:ﬁ which by iterating

m

implies that P2 is homeomorphic to Z’”"‘Pg. So, it is enough to show P§ splits as
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$*V PS. To see this notice that for P} the attaching map of the 5-cell is the
composition of the projection map §* — P* and the pinch map P* — P*/P? = §*. It
is known that this composition is of degree 0, hence null. Hence, Pi ~ §*Vv $°. For
the attaching map of the 6-cell of P§, say $° — P3 one could process similarly,
noting that the component S> — §* belongs to 7§ ~ Z/2{n}. If it is nontrivial, then
there must be a nontrivial action of qu on H *Pg which there is none. Hence, this
component is trivial. The other is of degree 2, also seen by the nontrivial action of
Sq'. This shows that as spaces

P§~S*V P

Regarding the splitting P> notice that by James periodicity P"*3 ~ £"*P] and
we need to prove the splitting for P]. For P} ~ $* VV P} notice that the Adams Hopf
invariant one theorem (see Lemma 6.1) together with the existence of the Hopf
invariant one element ¢ € 75 imply that P’ stably splits as P® v §7. This implies that
stably P} ~ P§ v §7. On the other hand, notice that the attaching map of the 7-cell of
P} is amap S® — P§ ~ §* v PS. To prove the claimed splitting of spaces, we need
to show that the component S® — $* is null. However, this component belongs to
5 ~ Z/2{n*}. If this map is not null then, by naturality of the secondary opera-
tions, there must be a nontrivial secondary operation ® in P} with ®(as) = a7. The
stability of the secondary operations then would not allow a stable splitting of P
implied by the existence of the Hopf invariant one elements as demonstrated above.
This is a contradiction. Hence, the component §® — $* is null and as spaces we have

P} ~s*vPL
O
The above lemmata prove Theorem 1.6 in the case f : P* — §™ is a map of
spaces. But, notice that all the techniques we have used, are ‘stable’ and apply
stably, hence the result also holds for stable maps. In fact, in some specific
examples, the main point of Lemma 5.5 is to provide an unstable splitting.

As it seems the existence of Hopf invariant one elements plays a role here. We
have the following example as well.

Lemma 5.7 There is a 2-local splitting of spaces as
Pyt~ S8 v Pt

Consequently, whenever m = 0 mod 8, for i <7, there is a map f : P"* — S™ such
that f, # 0.

Proof By Lemma 6.1(iv) the existence of the Hopf invariant one element ¢ € 7
implies that there is a map & : S7 — P’ which is nonzero in homology. If D denotes
the S-duality functor then DPZ = ZP:Z:} [7]. Since S" and P" are finite CW

complexes then their suspension spectra are finite spectra, consequently g, # 0 if
and only if D(g), # 0 by [31, Lemma A.3]. Consequently, (¢), # 0 if and only if
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D(G) : £P~2 — S~ is nonzero in homology or equivalently =~ 'D(7) : P~2 — S8
is nonzero in homology. Using James periodicity, let

f=2PD(5): Pyt — St

Obviously, fi # 0. However, the connectivity arguments shows that f can be realised
as a map of spaces. Moreover, the inclusion of the bottom cell $% — P{* is non-
trivial in homology. Hence, as spaces

Pyt~ S8 v Pt
By iterated application of the James periodicity, for any k > 0, we obtain a map

8(k+1)+6 8(k+1
Pyt — 8y
which is nonzero in homology. The composition of the pinching map and the above
map as
8(k+1)+6 8(k+1)+6 8(k+1
PRI = Py — §¥D
is obviously nontrivial in homology. For i <7 the composition of the inclusion
P8+, p8(kt1)+6 with the above map yields a map

P8(k+1)+i _ Ss(k+1)

which is nonzero in homology. This completes the proof. O

6 Proof of Theorem 1.9: case of m=n>0
6.1 Case of I=1

For [ = 1 there are examples at hand which are provided by Hopf fibrations, namely
maps QS"*! — §" for n = 1,3,7. The existence of these maps also provides a
decomposition

QSn+1 ~ S" % QSZHJrl.

We show these are the only possible cases (at least modulo 2). The following
formulation of Adams’ Hopf invariant one element result is well known and the
equivalence of the various statements are to be found in various papers of James and
Adams and others. For instance, the equivalence of (ii) and (iii) follows from [18,
Proposition 6.1.5] when interpreted modulo 2, or the result of James [24, Theo-
rem 1.5] can be seen as an unstable analogue of (iii) = (iv) below (see also [25,
Theorem 1.2]. Similarly, splittings similar to, or leading to, splittings as in (iv) could
be found in [2, Theorem 1.2]. However, we record a proof for the sake of conve-
nience and future reference.
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Lemma 6.1 The following are equivalent.

(i) There is a map f : QS"*' — §" with f, # 0 (modulo 2).
(i) There is a map g : §2 — Q8" with g« # 0 (modulo 2).

§2+1 s s+ of unstable Hopf invariant one, and

(iii)) There is a map h:
ne{l,3,7}.
(iv)  There is a stable splitting P* ~ S"\/ P"~' where P" is the n-dimensional

real projective space.

Proof (i) = (ii): Let i:S" — QS""! be the inclusion adjoint the to identity
St — §"+1 Then (f o 1), # 0, hence (at p = 2) f o 1 is homotopic to the identity.

Together with James fibration §" — Q8" Q8>+ it follows that

(f,H) : Q"' — 5" x Qs>

is a homotopy equivalence. The inclusion §* — QS?**! gives rise to a spherical
class. Consequently, the composition

g: S2n N QSZn-H N QSn-H

gives rise to a spherical class in H,(QS*"*1;7/2), so g. # 0.

(ii) = (iii) : If g. # O then from James’ description of H,QS*"! we see that
g«(x2,) = x2. It is well known that the adjoint of g, say h:S*! — §"" has
unstable Hopf invariant one.

(iif) = (i) : As noted above, (ii) and (iii) are equivalent. It follows that the
adjoint of A, say g: 8% — QsH! maps nontrivially under
Hy : 10,Q8"! — 15, Q8?1 This implies that H o g is homotopic to the identity
map. The claimed decomposition follows immediately.

(ii) = (iv): First recall that the projection on the top cell P* — S" is an unsta-
ble map which is nontrivial in Z/2-homology. For g : S — QS"*! being nontrivial
in homology, consider the composition §** — QS"*! — Q8" and write g for this
map as well. By Kahn-Priddy theorem, g lifts to QX"P, and yields a map " —
QY"P which is nontrivial in homology. By taking adjoint, we obtain a map g :
S§" — QP which is nontrivial in homology. For dimensional reasons, this implies
that 4(g) = a, where h is the Hurewicz homomorphism n.QP — H,QP. Moreover,
by cellular approximation, we may restrict to a map g : §" — QP" which satisfies
h(g) = a,. This implies that the stable adjoint of this map as S* — P" is nontrivial
in homology. Therefore the composition §* — P" — S" is nontrivial in Z/2-ho-
mology. Noting that the cofibre of P* — §" is ZP"~! gives the other stable piece, so
Pt~ S5ty Pl

(iv) = (ii): Choose a splitting map S" — P"~! v §" ~ P" given by the inclusion
into the second summand. Then the adjoint $” — QP" is nontrivial in homology, so
the composition §” — QP. For dimensional reasons, the n-adjoint of this map $*" —
QX"P is nontrivial in homology. After composition with the Kahn-Priddy map
QX"P — QS" we obtain a map S?* — QS" which is nontrivial in homology. Also
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note that the inclusion QS"*! — QS" is a 2n equivalence, so we obtain a map
§%" — Q8" which is nontrivial in homology. This completes the proof. U

This settles the case with [ = 1. The case of / > 1 reduces to the case of / = 1 in
the following sense.

6.2 Case of I>1

Unlike the case of [ = 1, for / > 1 the existence of maps f : Q'S"* — §" with f, # 0
is not so immediate. For n =1 we may choose f:Q'S"" — §' to be any
representative of the identity element of H'(Q'S"*/; Z) ~ 7. 1t is immediate that f is
nonzero in H.(—; k) for k = Z,7Z/2. There is another way to see existence of such
maps. Since S' is an infinite loop space, let 0 : @S' — S! be the structure map which
has the property that the composition S' — QS' — S' is identity. In particular,
0. # 0. Now, the composition

f . lel+1 N QSI N Sl

satisfies f, # 0.

For the remaining cases, we have the following nonexistence result. Let’s note
that if £ : Q'S — §" exists with f, # 0 then the composition QS"*' — Q'§* —
§" also would be nontrivial in H, (—; k), hence by Lemma 6.1 we see that n must be
either 1, 3, or 7. As we considered the case of n = 1 above then we only need to
resolve the cases n € {3,7}.

Lemma 6.2

(i) Suppose n=73. Then, there exists no map f:Q*S> — > with f, #0.
Consequently, for 2 <1< + oo there exists no map f : Q'S — 3 with
f. #0.

(i) Suppose n="1. Then, these exists no map f: QS — S with f. # 0.
Consequently, for 2<1< + oo there exists no map f : Q'S — % with

f- #0.

Proof Proof of (i) and (ii) are similar. First note that the general case follows from
our claim for double loop spaces as follows. For instance, note that for [ > 2, the

composition Q*S° — Q"3 is nonzero in Hi(—;k) with k = Z,Z/2. Hence,
existence of any map f : Q'S — §3 with £, # 0 would imply that the composition
Q*s° — QI3 — §% is nonzero in homology, giving the desired contradiction.

Now we show there is no map f : Q28"+2 — §" (with n = 3,7) so that f, # 0.
Given a map f: Q*X?X — X we may define p:X x X — X by the following
composition

X xX — % x5, (XxX)— F(R*2) xz, (X xX) - Q*3°X — X,

where the first map on the left is projection, second and third maps are inclusion,
and the last map is f. This map is a commutative multiplication on X. Since the
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composition §" — Q*¥2§" — §" is nonzero in homology (we may assume it is
multiplication of degree 1), hence it is homotopic to the identity. On the other hand,
by construction, for a based path connected space X, the inclusion X — Q*X?X can

be decomposed as a composition
X5X x X — OP32X,

where o can be taken as either (1, %) or (*, 1) with  being the base point of X. This
implies that, for X = $3, 57, (X, p, *) is a commutative H space in the sense of [17].
But this is a contradiction as according to James [23, Theorem 1.1] it is known that
§% and S’ do not admit any commutative H-space structure. This latter also can be
seen from general result of Hubbuck [21, Theorem 1.1] as S® and S7 do not have
homotopy type of a torus. O

7 Case of m=n=0

Lemma 7.1 For any [ > 0 there exists a map f : Q'S' — S° with f, # 0. Moreover,
for any such f we have f = Qi where 1: Q'S — P =K(Z/2,1) represents the
fundamental class.

Proof Let [ > 0, and take the fundamental class 1 € H'QS! ~ 7 /2 which can be
realised as a map 1 : @S' — P. Define f to be the composition

Q's' — 088 7/2 = 5.

Clearly, f,. # 0. On the other hand, if f : Q's! — 0 =QPis given with f, # 0, then

the adjoint of f, say f : 2Q!S' — P is nontrivial in homology. Also, note we may
consider the composition

Qs S0 sl Lp

which is nontrivial in homology where e is the evaluation map (adjoint to the

identity). Since f J1oe€ [ZQ/S' P~ 7Z/2 and both elements are nontrivial,
therefore

f=1oe=f=Qioe=Qiol =Qu

This completes the proof. O

8 Proof of Theorem 1.10
8.1 The cases of m=tn with n+1 odd, or n+1 and t even

We begin with the case n = 0. In this case, as QS! ~ Z it is not possible to find
m > 0 so that g : QS' — S” is nontrivial in homology. Therefore, we consider the

T Birkhauser



29 Page 20 of 26 H. Zare

cases withn > 0. If f : QS"*! — §™ is given with f. # 0 then (Xf), # 0. In the light
of James splitting, Q8" ~\/_, "' m =1 for some ¢>1 are the only
possible choices for which (Xf), # 0 and consequently f, # O can happen. That is

Proposition 8.1 For f : QS"*! — S" with m # tn for all t, we have f, = 0.
Our main result in this section is the following.
Theorem 8.2

(i) Suppose n+1is odd, n > 0, and t > 1. Then for any f : QS"t! — §" we
have f, =0 in H.(—;k) with k =7,7/2.

(i) Suppose n+1,n>1, and t > 1 are even. Then for any f : QS §7 e
have f, =0 in H.(—;k) with k =7,7/2.

Proof The proof in both cases is by contradiction. By abuse of notation, we write x;

for a generator of H'S'. Let’s recall that

H* (QS",7) ~ { H*(QS":7) ~ { U20)if net s oddrz, o, . i »
26if ni1 18 €Ven

where I'z and E7 denote divided power algebra and exterior algebra functors over Z
respectively. We first prove the integral result.

(i) Suppose m = tn with t > 1 and f : QS"*! — §™ is given with f, # 0 in Z-
homology. For n > 1 with n 4 1 odd, and ¢ > 1, for dimensional reasons, for
X = Q8"+ §™ there is a duality between homology and cohomology with
H*X ~ Homgpy,x 7). It follows that f* #0. If n+1 is odd then having
F*(xm) # 0 we see that (f*(x,,))* # 0 in I'7(x,) Which implies that x2, # 0 in
H*S™ which is an obvious contradiction. Hence, f, = 0.

(i)  First suppose n > 1. Let’s note that for n > 1, H,QS"! has nontrivial
homology only in dimensions kn, with k > 0, by James’ splitting. So, if
H;QS8"! £ 0 then H;, QS""! ~ 0 for € € {—1, 1}. This property is essential
while appealing to the Universal Coefficient Theorem. Obviously, H,QS?
does not have this property. We just note that choosing ¢ even forces
f*(xm) € T'z(n,,)- The rest of the proof goes exactly as part (i) and we leave
the details to the reader.

Next, suppose either n 4 1 is odd with n > 0 and # > 1 or n + 1 and ¢ both are even
with #,n > 1. Assume f is given with f. # 0 in Z/2-homology. By the duality
between homology and cohomology over Z/2 we see that f*#0 in Z/2-
cohomology. For dimensional reasons, implied by our choices of n and ¢, together
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with the naturality of the Universal Coefficient Theorem, we have a commutative
diagram

0 —— Ext(Hy,—1(S™; Z),Z/2)

an (Stn,; 2/2)
jf* lHom(f*‘Z/Q)
0 — Ext(Hy, 1(QS"Y 2),2/2) —= H™(QS"H: 7,/2) —— Hom(Hy,, (257 Z), 7,/2) — 0

Hom(H,,(S™;Z2),7/2) — 0

The Ext terms do vanish for dimensional reasons, hence yielding a commutative
diagram as

~

H™(S™: 7,)2) Hom(H,,(S™;Z),7/2)
lf* lHom(,f*,Z/Q)
H™(QS™ 72/2) — Hom(Hy,,(QS™ Y Z),7/2).

We then conclude that the non-vanishing of f* in Z/2-cohomology implies the non-
vanishing of Hom(f,, Z/2) and consequently, non-vanishing of f, in Z-homology.
The result now follows by appealing to the integral case.

Finally, n = 1 and ¢ even, notice that by the Hopf invariant one result QS?% ~
QS3 x S' and the above decomposition of cohomology is becomes a result of this

splitting. The fact that ¢ is even implies that the composition QS*—QS? — §' is
nonzero in homology where ¢ is even. But, this leads to a contradiction by part (i).
O

8.2 Attaching by whitehead products

The content of this subsection is probably well known, but we include an exposition
for further reference. The idea is that given a CW-complex which splits after finite
number of suspensions, or stably splits, certain attaching maps are obtained from
Whitehead products. The main purpose of this subsection is to make such
statements more precise. In the case of splitting after finite number of suspensions, it
is enough to deal with the case of splitting after one suspension. During this section
and afterwards, for a CW-complex X, write X* for its k-skeleton. We write X; =
X/X*1 and X™ = X™/X"~!. We have the following.

Lemma 8.3 Suppose X is a CW-complex with finite number of cells in each
dimension. Suppose X has only one cell in dimensions n and 2n. Suppose TX*" ~
ST X2 then the attaching map of the 2n-cell in X, resulting in the !
summand of X", is “obtained” by a Whitehead product on the n-cell. More
precisely, write o for the attaching map S"~' — X*=1 p . X>"=1 — X2~ for the
pinching map, and i : §" — Xﬁ”’l for the inclusion of the bottom cell. If po o #£ 0
then up to multiplication by nonzero integer k
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poo= i#[lm ln]-

In particular, k could be chosen an odd number if the splitting is 2-local and
p oo # 0 holds 2-locally.

Note that the above lemma says that the attaching map after composition with a
suitable pinching map is image of a Whitehead product. In particular, it does not
claim that « is always a Whitehead product. Also, notice that the lemma does not
make any claim about the essentiality of o. If o is null then ig[1,,1,] =poa =0
which only says that [1,,1,] € ker(ix). In fact such an equation is useful and
required in proving Theorem 8.4.

Proof Suppose o : S?*~! — X?"~1 is the attaching map of the desired 2n-cell. We
may compose o with the projection p:X*"~! — X?"~!. The fact that X*" =
X?=1y, e after one suspension splits as TX>" ~ §2"*1 v £X?*~1 is the same as
saying that o« belongs to the kernel of the suspension map
E:myu 1 X — 1, 1 QEX?""!. The splitting of IX?" also implies that
DY) GUESD Y GLERVAC LSS Hence, E(poa)=0 for
E: 1 X! — 1y, 1QEX2""!. The space X2"~! has its bottom cell in dimension
n, so we may use the EHP-sequence in the meta-stable range. In particular, consider
the following portion of the EHP-sequence

25 (y2n—1 -1y _P m—1_E 2n—1
ﬂg,l,lg Z(Xn /\Xn )—>7‘E2n,1Xn —>7'C2n,IQZXn .

By exactness of the above sequence from E(p o o) = 0 we conclude that p o o = Pf§
for some f§ € my, 1 Q*Z(X>"" ! AX?"") and in particular f§ # 0 if o # 0. Writing
i:S" — X>"~! for the inclusion we have the following commutative diagram

Top—1252 1 Ton—19" Top—1225™
(QQE(ZN))#l i#l l(ﬂzi)#

— — P — E —
7T2n_1922(X3n 1/\X72Ln 1)—>7T2n_1X2n 1—>7T2n_1QZX2n 1.

Since X has only one cell in dimension 7 then the space £(X2"~! A X2'~1) has its
bottom cell in dimension 27 + 1, and (Q*Z(i A i) 4 1s an epimorphism in the above
diagram.  Hence, there exists a nonzero f € m,_Q*S¥"*t!  with
(QZZ(i/\i))#ﬁ/ = B. Since m,_ Q28 ~ 7 then p = kirny1 where k € Z is

2t~y Q282 i the generator. It follows that

nonzero and 1p,41 € Topy1
poou= i#P(k12,1+1) = ki#P12n+1.

However, it is known that P : nZn,leSz"“ — p,—18" 1s the Whitehead product,
that is P(12441) = [in, 1s]. Hence, up to a multiplication by a nonzero integer we
have
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poo= i#[lm ln]-

In the case of 2-local splitting, choosing k to be even implies that p o & = 0 which
contradicts the assumption. This completes the proof. O

It is possible to say more if we have more information on the attaching map of the
(n+ 1)-cell of X. For instance, if X has no cell in dimension n + 1 or the attaching
map is null then 7,41 Z(X, A X)) ~ Ton1 52" induced by the inclusion of the
bottom cell. In this case, (Q*X(i A i) 4 would be an isomorphism and " must be a
unique element. On the other hand, writing a : §* — X" for the attaching map of the
(n+1)-cell, if poa: 8" — X! = S" is essential then 7,X, ~ H,(X,;Z) would be
the cyclic group Z/°(p o a), hence H,,(X, A X,; Z) and consequently 7,1 2(X;, A
X,) ~ Hopi1(2(X, A X,); Z) would be cyclic groups too. In this case, up to
multiplication by an odd number, we may choose k = 1.

8.3 The case of n+1 even and t odd

We localise at the prime 2.

Theorem 8.4 Suppose f : QS"*! — S™ where t is odd and n+ 1 is even. If tn ¢
{1,3,7} then f. = 0.

Proof The proof is by contradiction, and we wish to apply Lemma 8.3 to prove the
Theorem. The space X = QS""! satisfies conditions of Lemma 8.3. Suppose tn &
{1,3,7} and f. # 0. Let i : S — X2"~! denote the inclusion of the bottom cell,
o : §2m=1 — X2m=1 the attaching map of the 2m-cell, and p : X"~ — X2"~1 the
pinching map which collapses X”~!. Then, by Lemma 8.3 we have

i#[ltnv ltn] =poca.

Moreover, for dimensional reasons, the restriction of f to the (2t — 1)-cell of X, say
Flom_y : X*~1 — S™ extends to a map g : X"~ — $™ so that gp = f],,,_,- These
data yield a commutative diagram as follows

fl2tn—1
SQtn 1 X2tn 1 n- S

[Ltn,Ltn]l lp /

Stn —)XQtn 1

On the other hand f/|,,,_, has to extend over the 2tn-skeleton of X to a map f/,,, :
X2m — S§™ where the necessity being implied by the existence of f : X — S™. The
existence of f|,,, is the same as saying that f],,,_, o « = 0. On the other hand i and g
are both nonzero in Hy,(—;Z/2) and working at the prime 2 this implies that we
may take g o i is the identity (over Z this implies that g o i is an odd multiple of the

identity). It follows that
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[tins 1m] = &4 © ig[tm, tm] = flypy_y 02 = 0.

It is known that for m odd the Whitehead product 1, ;] € T2,,—1S™ vanishes if and
only if there is a Hopf invariant one element in n,,,—1 8™ [10, Corollary 1.3, Remark
1.4] which together with Adams Hopf invariant one result means that m € {1,3,7}
[1]. This shows that if f extends over the 2tn-skeleton then tn € {1,3,7}. This gives
the desired contradiction. Hence, f. = 0. O

It remains to decide about the cases with i € {1,3,7} with  odd and n + 1 even
with n > 0. However, note that we have required ¢ > 1, so t > 3. Also, n has to be
odd. This leave us with the cases where n =1 and ¢ = 3,7. That is we have to
decide about the existence of maps QS — S’ with t € {3,7} such that £, # 0. We
have the following existence result and we note that its proof is also valid for the
case of QS? — S

Theorem 8.5 Fort € {1,3,7} there exists a map f : QS* — S' with f, # 0.

Proof First, notice that the existence of Hopf invariant one elements in 7 is
equivalent to existence of a decomposition QS ! ~ Q8%+ x §. By Lemma 6.1(i)
this is the same as existence of a map 0 : Qs+l 5 8" with 0, = 0. Second, recall
that for a path connected space X, James’ splitting XQ¥X ~ \/;;OlC X provides us
with projection maps p, : 2QXX — XXV whose adjoint

D QX — QXN

is the #-th James—Hopf invariant, sometimes denoted by j,. In particular, it is known
that j, induces nonzero map in #-th homology. Now, define f to be the composition

o> 105t S,
Obviously f, # 0. This proves the Theorem. O

Notice that the map O, which can be chosen to be the boundary map in the
fibration sequence corresponding to Hopf bundles, as well as James’ splitting both
exist integrally. This allows to show that the above theorem also holds in Z-
homology.

9 Notes on the case with />1 and m>n
We can use some geometry to prove
Lemma 9.1 Forany > 1 and f : Q'S" — §*" we have f, = 0.

Proof The inclusion i : QS"*' — Q/§"* is a 2n-equivalence. Hence, assuming f :

Q25"+2 — §2" is nontrivial in homology, g : Qs Lalgr L g0 satisties g« # 0.
This contradicts Theorem 8.2. O
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