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Abstract
The present study develops the dispersion and attenuation characteristics of Ray-

leigh wave regulations through a pre-stressed Voigt type viscoelastic strip of finite

thickness. The displacement expressions of Rayleigh wave in the strip are intro-

duced. The complex frequency equation of the wave motion is thus obtained. We

have studied the effects of initial stress, attenuation coefficients and dissipation

factor on the phase and damped velocities simultaneously.

Keywords Attenuation coefficient � Dissipation factor � Phase velocity � Damping

velocity
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1 Introduction

Viscoelasticity means the combination of viscosity and elasticity; it is a special

characteristic of materials that display both viscous and elastic behaviour when

subjected to distortion. The most determining attribute of the viscoelastic materials

is their ability to absorb the high amount of energy produced during volcanic

eruptions and earthquakes. Hence, to withstand the tremors during an earthquake,

some of the metal alloys possessing viscoelastic property are utilized as dampers in

the construction of multi-storey buildings. Therefore, the study of seismic waves

through viscoelastic structures has become a matter of interest among several
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geophysicists and seismologists worldwide [1–3]. Recently, Saha et al. [4]

investigated the phase velocity variation on the Raylegh wave propagation in a

pre-stressed medium.

It is well known that the Earth is a pre-stressed medium. A large quantity of

initial stress may generate in the Earth because of several natural and artificial

phenomena such as difference in gravity, temperature, weight, manufacturing

activities, differential external forces, slow process of creep, hydrostatic tension or

compression, presence of overburdened layer, external loading etc. Researchers and

seismologists mostly favour the pre-stressed structure to analyse the underground

response of seismic surface waves. Some exemplary works on initially stressed

media were acknowledged by several authors including [5–8].

The assumption of Voigt-type viscoelastic surface stratum of the earth resting on

an extremely rigid foundation creates a strong basis for the consideration in the

study of geomechanical problems. The main aim of this paper is to study the

Rayleigh wave propagation through a Voigt-type viscoelastic layer of finite

thickness resting over a rigid foundation. A complex frequency equation for the

wave propagation obtained using suitable boundary conditions. A comparative

observation has been executed through the numerical computations and graphical

views concerned to the effects of attenuation coefficient, dissipation factor and

initial stress on the phase and damped velocities of the wave.

2 Formulation and assumption of the problem

Let us assume a Voigt-viscoelastic layer of finite thickness h under initial stress

P resting over a rigid foundation, such that x-axis is parallel to the direction of wave

propagation and z-axis is pointing positively in the half-space as shown in Fig. 1.

3 Solution of the problem

Let ðu; v; wÞ are displacement component vectors of the viscoelastic strip along x, y
and z directions, respectively. Then, by the characteristic of Rayleigh waves, we

have

u ¼ uðx; z; tÞ; v ¼ 0; w ¼ wðx; z; tÞ; and oð�Þ=oy ¼ 0: ð1Þ

In view of (1), non-vanishing equation of motion is governed by (Biot [9])

Fig. 1 Geometry of the problem

123

1334 M. K. Singh, P. Alam



o/11

ox
þ o/13

oz
� P

ox13

oz
¼ q

o2u

ot2
;

o/13

ox
þ o/33

oz
� P

ox13

ox
¼ q

o2w

ot2
;

ð2Þ

where, q represents the density of the medium and /ij are the stress components.

/11 ¼ ð�kþ 2�lÞe11 þ �ke33; /13 ¼ 2�le13; /33 ¼ ð�kþ 2�lÞe33 þ �ke11: ð3Þ
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are lame’s constants and k0; l0 are viscosity of viscoelastic medium.
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Putting u; wf g ¼ U zð Þ; W zð Þf geiðgt�kxÞ in above equations, where g is angular

frequency. Then we have

Dl �
P

2

� �
D2 þ g2q� k2 Dk þ 2Dl

� �� 	
U � ik Dk þ Dl þ

P

2

� �� 	
DW ¼ 0;

Dk þ 2Dl
� �

D2 þ g2q� k2 Dl þ
P

2

� �� 	
W � ik Dk þ Dl

� �
 �
DU ¼ 0;

ð5Þ

Now substituting U zð Þ; W zð Þf g ¼ Eeskz; Feskz
� 

in Eqs. (5), we obtain

B1s
2 þ B2

� �
E � isB3ð ÞF ¼ 0

A1s
2 þ A2

� �
F � isA3ð ÞE ¼ 0;

ð6Þ

where, B1 ¼ Dl � P
2

� �
; B2 ¼ g2q

k2
� Dk þ 2Dl
� �

; B3 ¼ Dk þ Dl þ P
2

� �
; A1 ¼

Dk þ 2Dl

� �
; A2 ¼ g2q

k2
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2

� �
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� �
; Dl ¼ l 1þ iQ�1

1

� �
; Dk ¼

k 1þ iQ�1
2

� �
; Q�1

1 ¼ l0g
l and Q�1

2 ¼ k0g
k : Here, Q�1

1 and Q�1
2 are dissipation factors

of viscoelastic medium [9].

We have a following biquadratic equation for the non-trivial solution of the

above two equations

s4 þ a1s
2 þ a2 ¼ 0; ð7Þ

where, a1 ¼ ðqc2Þ=ð1þidÞ2�Dl�P=2

Dkþ2Dl

� �
þ ðqc2Þ=ð1þidÞ2�Dk�2Dl

Dl�P=2

� �
þ DkþDl

Dkþ2Dl

� �
DkþDlþP=2

Dl�P=2

� �

and a2 ¼ ðqc2Þ=ð1þidÞ2�Dl�P=2

Dkþ2Dl

� �
ðqc2Þ=ð1þidÞ2�Dk�2Dl

Dl�P=2

� �
.

Solution of Eqs. (7) can be obtained as
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where, Er and Fr are arbitrary constants and sr are the roots of bi-quadratic Eq. (7)
(for r = 1, 2). But, we have a relation Fr ¼ nrEr from (6). Therefore, the appropriate

solution can be obtained as

u ¼
X
r¼1;2

Ere
�ksrz þ E3e

ks1z þ E4e
ks2z

 !
eiðgt�kxÞ

w ¼
X
r¼1;2

nrEre
�ksrz þ n3E3e

ks1z þ n4E4e
ks2z

 !
eiðgt�kxÞ;

ð9Þ

where, nr ¼ isrA3

A1s2rþA2
:

4 Boundary conditions

1. At z ¼ 0

(a) /13 ¼ 0

(b) /33 ¼ 0

2. At z ¼ h

(a) u ¼ 0

(b) w ¼ 0

The above boundary conditions lead to a homogeneous algebraic system of

equations with the help of Eq. (9) as

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

A1

A2

A3

A4

��������

0
BB@

1
CCA ¼ 0; ð10Þ

where, a11 ¼ n1i� s1; a12 ¼ n2i� s2; a13 ¼ n3iþ s1; a14 ¼ n4iþ s2; a21 ¼
Dkn1s1 � iDl a22 ¼ Dkn2s2 � iDl; a23 ¼ �Dkn3s1 � iDl; a24 ¼ �Dkn4s2 � iDl;

a31 ¼ es1xð1þidÞ; a32 ¼ es2xð1þidÞ; a33 ¼ e�s1xð1þidÞ; a34 ¼ e�s2xð1þidÞ; a41 ¼
n1e

s1xð1þidÞ; a42 ¼ n2e
s2xð1þidÞ; a43 ¼ n3e

�s1xð1þidÞ and a44 ¼ n4e
�s2xð1þidÞ:
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For such a system of simultaneous equations to have a non-trivial solution, it is

necessary for the determinant of the coefficient matrix aij
�� ��; ðfor i; j ¼ 1; 2; 3; 4Þ to

be zero, i.e., aij
�� �� ¼ 0; and its real part Re aij

�� �� ¼ 0; provides dispersion relation

associated with phase velocity Vp ¼ c=b
� �

, whereas the imaginary part Im aij
�� �� ¼ 0;

gives damping relation associated with damped velocity Vd ¼ c=bð Þ for the

Rayleigh wave. Considering the wave number k ¼ k1 þ ik2 ðsayÞ as a complex

number, then we have

k ¼ k1ð1þ idÞ; ð11Þ

where, d ¼ k2
k1
is dimensionless attenuation coefficient; k1; k2 are real. Therefore, the

velocity c of the wave can be evaluated by the relation

g ¼ Re½k�c: ð12Þ

5 Numerical computations and discussions

To execute the comparative study of the effects of dimensionless parameters such as

attenuation coefficient ðdÞ, dissipation factors ðQ�1
1 ; Q�1

2 Þ and initial stress

parameter on the dimensionless phase velocity (Vp ¼ c=b) and dimensionless

damped velocity (Vd ¼ c=b) with respect to the real wave number ðk1hÞ of the

wave, we have taken numerical data l ¼ 32:3GPA k ¼ 42:9GPA and q ¼
2:802 g/cm3 from Gubbins [10]. Minute observation of all figures concludes that the

as the wave number (k1h) is decreasing phase velocity (Vp) is increasing, whereas

damped velocity (Vd) increasing wrt the wave number (k1h) (Table 1).

Figure 2 describes the effect of attenuation coefficient dð Þ arising due to the

complex wave number on the phase and damped velocities of Rayleigh waves,

respectively. It is clear from the figure that phase velocity and damped velocity both

are decreasing as the magnitude of attenuation coefficient increasing. The varying

effect of attenuation coefficient is more prominent on the damped velocity as

compare to the phase velocity.

Figure 3 reveals the effect of dissipation factor Q�1
1

� �
(associated with the

Lames’ Constant l of the strip) on the phase and damped velocities of Rayleigh

waves, respectively. The meticulous inspection of delineates that phase velocity of

Table 1 Fixed values of parameters

Parameters d ¼ k2=k1 Q�1
1 ¼ k0gð Þ=k Q�1

2 ¼ l0gð Þ=l X ¼ P= 2lð Þ

Figure 1 – 0.005 0.07 0.1

Figure 2 0.004 – 0.07 0.1

Figure 3 0.004 0.005 – 0.1

Figure 4 0.004 0.005 0.07 –
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the wave increasing, while the damped velocity is decreasing as the magnitude of

Q�1
1 increasing. The varying effect of Q�1

1 is negligible on the phase velocity as

compare to the damped velocity.

In Fig. 4, the impacts of dissipation factor Q�1
2

� �
(associated with the Lames’

Constant k of the strip) on the phase and damped velocities of Rayleigh waves,

respectively. It has been found from the figure that phase velocity and damped

velocity both are increasing as the magnitude Q�1
2 increasing. Moreover, the varying

effect of Q�1
2 is notable on the damped velocity.

The curves plotted in Fig. 5 elucidate the effect of initial stress parameter Xð Þ on
the phase and damped velocities of Rayleigh waves, respectively. The figure reflects

that X has increasing effect on the phase velocity, whereas it has mixed impact on

Fig. 2 Variation of attenuation coefficient ðdÞ; for a phase velocity Vp ¼ c=b
� �

and b damped velocity

Vd ¼ c=bð Þ

Fig. 3 Variation of dissipation factor Q�1
1 due to lame’s constants k for a phase velocity Vp ¼ c=b

� �
and

b damped velocity Vd ¼ c=bð Þ
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the damped velocity. The varying effect of X is very negligible on the phase

velocity as compare to the damped velocity (Fig. 5).

6 Conclusion

Within the framework of a pre-stressed Voigt type viscoelastic strip of finite

thickness an analytical study has been carried out for the Rayleigh wave

propagation. Numerical computation and graphical illustrations have been per-

formed to set forth the analytical findings of parametric effects on the velocity

profile of the wave. The important findings emerged in this study are:

Fig. 4 Variation of dissipation factor Q�1
2 due to lame’s constants l for a phase velocity Vp ¼ c=b

� �
and

b damped velocity Vd ¼ c=bð Þ

Fig. 5 Variation of initial stress parameter X ¼ P=2l for a phase velocity Vp ¼ c=b
� �

and b damped

velocity Vd ¼ c=bð Þ
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1. The small variation in the magnitude of parameters makes a significant impact

on the damped velocity. On the other hand, it has a low impact on the phase

velocity of the wave.

2. Both dissipation factors and initial stress have proportional impact on the phase

velocity of the wave, whereas attenuation coefficient has inverse impact on the

phase velocity.

3. The dissipation factor associated with the Lames’ Constant k has proportional

impact on the damped velocity, whereas attenuation coefficient and the

dissipation factor associated with the Lames’ Constant l have inverse impact on

the damped velocity. Contrary to all parameters, initial stress has a mixed effect

on the damped velocity of the wave.

The present study has possible applications in the geophysical prospecting. It can

be useful for the study of seismic waves generated by artificial explosions and can

provide valuable information about the selection of proper structural materials in the

area of construction work.
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