

ORIGINAL ARTICLE

On a paper of Dressler and Van de Lune

P. A. Panzone¹

Received: 20 September 2019 / Accepted: 1 February 2020 / Published online: 19 February 2020 © Sociedad Matemática Mexicana 2020

Abstract

If $z \in \mathbb{C}$ and $1 \le n$ is a natural number then

$$\sum_{\substack{d_1d_2=n\\d_1d_2=n}} (1-z^{p_1})\cdots (1-z^{p_m})z^{q_1e_1+\cdots+q_ie_i} = 1,$$

where $d_1 = p_1^{r_1} \dots p_m^{r_m}$, $d_2 = q_1^{e_1} \dots q_i^{e_i}$ are the prime decompositions of d_1, d_2 . This is one of the identities involving arithmetic functions that we prove using ideas from the paper of Dressler and van de Lune [3].

Keyword Arithmetic functions · Identities · Zeta function

Mathematics Subject Classification 11A25 · 11MXX

1 Introduction and results

Recall that the arithmetic function $\omega(n)$ is the number of distinct prime divisors of a positive integer n and $\Omega(n)$ is the total number of prime divisors of n. In other words if for a natural number $n \ge 2$ we write $n = p_1^{r_1} \dots p_m^{r_m}$ with p_i distinct primes (a notation that we keep throughout this paper where p always denotes a prime) then $\omega(n) = m$, $\Omega(n) = r_1 + \dots + r_m$ and $\Omega(1) = \omega(1) = 0$. Write $\zeta(s)$ for the Riemann–Zeta function.

One knows that $\omega(n) = O(\log n / \log \log n)$ which easily implies that $\sum_{n=1}^{\infty} z^{\omega(n)} / n^s$ is an entire function of z when $\Re \mathfrak{s} = \sigma >$. Also

UNS-INMABB-Conicet.

Departmento e Instituto de Matemática (INMABB), Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca 8000, Argentina

P. A. Panzone pablopanzone@hotmail.com

$$\sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \frac{z}{p^s} + \frac{z^2}{p^{2s}} + \cdots \right) = \prod_{p} \frac{1}{1 - z/p^s},$$

is an analytic function of z if $1 < \sigma$ and $|z| < 2^{\sigma}$.

In [3] the following remarkable duality relation was proved.

Theorem 1 (R. Dressler and J. van de Lune) If $|z| < 2^{\sigma}$ and $\Re s = \sigma > then$

$$\left(\sum_{n=1}^{\infty} \frac{(1-z)^{\omega(n)}}{n^s}\right) \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n^s}\right) = \zeta(s).$$

The aim of this note is to obtain similar formulas using the methods of [3].

To state our results we need some definitions: let $\omega_o(n)$ ($\omega_e(n)$ respectively) be the number of primes in the decomposition of n with odd (even respectively) exponent. Thus $\omega_o(2^23^55^6) = 1$, $\omega_e(2^23^55^6) = 2$. Note that $\omega_e(n) + \omega_o(n) = \omega(n)$. $\lfloor x \rfloor$ is the floor function and μ is the Möbius function. The radical of a number n is defined as $rad(n) = p_1 \cdots p_m$.

Ramanujan's tau function is defined by (see [2], p. 136)

$$z \prod_{n=1}^{\infty} (1 - z^n)^{24} = \sum_{n=1}^{\infty} \tau(n) z^n,$$

and its associated Dirichlet series is

$$\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s} = \prod_{p} \frac{1}{1 - \tau(p)p^{-s} + p^{11 - 2s}}.$$
 (1)

One has the bound

$$|\tau(p)| \le 2p^{11/2}. (2)$$

This result was conjectured by Ramanujan and it was proved by Deligne [2].

The main contribution of this note is the following theorem. Note: in formulas (a)–(g) below it is assumed that in all the sums the term with n = 1 is equal to 1.

Theorem 2

(a) If $1 < \sigma = \Re \mathfrak{s}$, $|\mathfrak{z}| < then$

$$\left(\sum_{n=1}^{\infty} \frac{(1-z^{p_1})\cdots(1-z^{p_m})}{n^s}\right) \left(\sum_{n=1}^{\infty} \frac{z^{p_1r_1+\cdots+p_mr_m}}{n^s}\right) = \zeta(s).$$

(b) If $1 < \sigma, |z| \le 1$ then

$$\sum_{n=1}^{\infty} \frac{z^{p_1 r_1 + \dots + p_m r_m}}{n^s} = \zeta(s) \sum_{n=1}^{\infty} \frac{(z^{p_1} - 1) \cdots (z^{p_m} - 1) z^{(r_1 - 1)p_1 + \dots + (r_m - 1)p_m}}{n^s}.$$

(c) If $0 < |z| < 2^{\sigma}$ and $1 < \sigma$ then

$$\sum_{n=1}^{\infty} \frac{z^{\Omega(n)-\omega(n)} (1+z)^{\omega(n)}}{n^s} = \frac{\zeta(s)}{\zeta(2s)} \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n^s} \right).$$

(d) If $z \in \mathbb{C}$ and $1 < \sigma$ then

$$\sum_{n=1}^{\infty} \frac{(z+2)^{\omega(n)}}{n^s} = \frac{\zeta(s)^2}{\zeta(2s)} \left(\sum_{n=1}^{\infty} \frac{(-1)^{\Omega(n) - \omega(n)} z^{\omega(n)}}{n^s} \right).$$

(e) If 0 < |z| < 1 and $1 < \sigma$ then

$$\sum_{n=1}^{\infty} \frac{z^{\Omega(n)-\omega(n)}(z-1/p_1)\cdots(z-1/p_m)}{n^s} = \frac{\zeta(s)}{\zeta(s+1)} \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n)-\omega(n)}(z-1)^{\omega(n)}}{n^s}\right).$$

(f) If $0 < |z| \le 1$ and $1 < \sigma$ then

$$\begin{split} \frac{\zeta(s)\zeta(2s)\zeta(3s)}{\zeta(6s)} &= \left(\sum_{n=1}^{\infty} \frac{(-1)^{\omega_o(n)}(1+z)^{\omega_e(n)}z^{\sum_{i=1}^{m}\left\lfloor\frac{r_i-1}{2}\right\rfloor}}{n^s}\right) \\ &\times \left(\sum_{n=1}^{\infty} \frac{\{(r_1+1)-(r_1-1)z\}\cdots\{(r_m+1)-(r_m-1)z\}}{n^s}\right). \end{split}$$

(g) If $1 < \Re \lambda$ and $1 < \sigma$ then

$$\sum_{n=1}^{\infty} \frac{1}{rad(n)^{\lambda} n^{s}} = \zeta(s) \left\{ \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \left(1 - \frac{1}{p_{1}^{\lambda}} \right) \cdots \left(1 - \frac{1}{p_{m}^{\lambda}} \right) \right\}.$$

(h) Assume that $\{\epsilon_p\}$ is any sequence of complex numbers defined on the set of primes with $|\epsilon_p| \le 1$ for all p. Write $n = n_1 n_2$, where $n_1 = p_1 \dots p_t$, $n_2 = p_{t+1}^{r_{t+1}} \dots p_m^{r_m}$ with $2 \le \min\{r_{t+1}, \dots, r_m\}$ and define

$$\begin{split} a_n &:= \prod_1 \prod_2, \\ \prod_1 &:= \prod_{p \in n_1} \left\{ \epsilon_p p^{11/2} - \tau(p) \right\}, \\ \prod_2 &:= n_2^{11/2} rad(n_2)^{-11} \prod_{k=t+1}^m \left\{ \left(1 + \epsilon_{p_k}^2 \right) p_k^{11} - \epsilon_{p_k} p_k^{11/2} \tau(p_k) \right\} \epsilon_{p_k}^{r_k - 2}. \\ A(s) &:= \sum_{n=1}^\infty \frac{a_n}{n^s}, \\ B(s) &:= \sum_{n=1}^\infty \frac{\mu(n) \epsilon_{p_1} \cdots \epsilon_{p_m}}{n^{s-11/2}}. \end{split}$$

Then if $13/2 < \sigma$

$$\left(\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}\right)^{-1} = A(s)B(s).$$

Note: it is understood that the first summand is 1 in any of the last two sums. Also $\prod_{i} = 1$ if $n_i = 1$.

We remark that the formula in the abstract follows from formula (a) where it is understood there that $(1-z^{p_1})\cdots(1-z^{p_m})\equiv 1$ if $d_1=1$ and $z^{q_1e_1+\cdots+q_ie_i}\equiv 1$ if $d_2=1$.

Observe that formula (b) yields, on setting z = 0, the well-known relation

$$1 = \zeta(s) \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$

Also, the above zeta quotients appearing in formulas (c)–(f) are well-known: if $\phi(n)$ is the number of numbers less than n and prime to n and the arithmetic function $\kappa(n)$ is defined by $\kappa(1)=1$ and $\kappa(p_1^{r_1}\dots p_m^{r_m})=r_1\dots r_m$ then

$$\frac{\zeta(s)^2}{\zeta(2s)} = \sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^s},$$
$$\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^s},$$
$$\frac{\zeta(s)\zeta(2s)\zeta(3s)}{\zeta(6s)} = \sum_{n=1}^{\infty} \frac{\kappa(n)}{n^s},$$
$$\frac{\zeta(s)}{\zeta(s+1)} = \sum_{n=1}^{\infty} \frac{\phi(n)}{n^{s+1}}.$$

See [1] p. 247, [4] formulas (1,2,7), (1.2.8) and (1.2.12).

This permits, using Dirichlet convolution, to obtain the following corollary.

Corollary 1 *If* $z \in \mathbb{C}$ *in* (*i*), (*ii*) *and* (*iii*) *then*

(i)

$$z^{\Omega(n)-\omega(n)}(1+z)^{\omega(n)} = \sum_{d|n} |\mu(n/d)| z^{\Omega(d)}.$$

(ii)
$$(z+2)^{\omega(n)} = \sum_{d|n} 2^{\omega(n/d)} (-1)^{\Omega(d)} (-z)^{\omega(d)}.$$

(iii)
$$n(z-1/p_1)\cdots(z-1/p_m)z^{\Omega(n)-\omega(n)}=\sum_{d|n}d\ \phi(n/d)z^{\Omega(d)-\omega(d)}(z-1)^{\omega(d)}.$$

(iv) If $\lambda \in \mathbb{C}$ then

$$rad(n)^{\lambda} = \sum_{d|n} \mu(d) (1 - q_1^{\lambda}) \cdots (1 - q_i^{\lambda}).$$

(Note: here $d = q_1^{e_1} \cdots q_i^{e_i}$ is the prime decomposition of d and if d = 1 in the last sum then summand is understood to be 1.)

Proof Formulas (i), (ii), (iii), (iv) follow from formulas (c), (d), (e), (g) respectively and analytic continuation. \Box

2 Proof

Recall that if $2 \le n$ is an integer then we write $n = p_1^{r_1} \cdots p_m^{r_m}$ with p_i different primes. We record the following formal formulas:

$$\prod_{p} \left(1 + \frac{g(p)}{p^{s} - z} \right) = \prod_{p} \left(1 + \frac{g(p)}{p^{s}} + \frac{zg(p)}{p^{2s}} + \frac{z^{2}g(p)}{p^{3s}} + \cdots \right)
= \sum_{p=1}^{\infty} \frac{z^{\Omega(n) - \omega(n)}g(p_{1}) \cdots g(p_{m})}{n^{s}},$$
(3)

$$\prod_{p} \frac{p^{s}}{p^{s} - g(p)} = \prod_{p} \left(1 + \frac{g(p)}{p^{s}} + \frac{g(p)^{2}}{p^{2s}} + \frac{g(p)^{3}}{p^{3s}} + \cdots \right)
= \sum_{n=1}^{\infty} \frac{g(p_{1})^{r_{1}} \cdots g(p_{m})^{r_{m}}}{n^{s}}.$$
(4)

If we set g(p) = z, z = 1 in the first equation and g(p) = z in the second equation one gets:

$$\prod_{p} \left(1 + \frac{z}{p^s - 1} \right) = \sum_{n=1}^{\infty} \frac{z^{\omega(n)}}{n^s},\tag{5}$$

$$\prod_{p} \frac{p^{s}}{p^{s} - z} = \sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n^{s}}.$$
 (6)

Using this two formulas in

$$\zeta(s) = \prod_{p} \frac{p^s}{p^s - 1} = \prod_{p} \left(\frac{p^s}{p^s - z}\right) \left(1 + \frac{1 - z}{p^s - 1}\right)$$

yields Theorem 1.

The values of z and σ depend on each formula in such way that the products or sums involved are absolutely convergent. For example assume that $|z| \le 1$ and $1 < \sigma$. Then if $g(p) = 1 - z^p$, z = 1 in (3) and $g(p) = z^p$ in (4) one has

$$\prod_{p} \left(1 + \frac{1 - z^{p}}{p^{s} - 1} \right) = \sum_{n=1}^{\infty} \frac{(1 - z^{p_{1}}) \cdots (1 - z^{p_{m}})}{n^{s}},\tag{7}$$

$$\prod_{p} \frac{p^{s}}{p^{s} - z^{p}} = \sum_{n=1}^{\infty} \frac{z^{p_{1}r_{1} + \dots + p_{m}r_{m}}}{n^{s}}.$$
 (8)

The product of (7) and (8) is equal to $\zeta(s)$. This proves formula (a) of Theorem 2. Also

$$\prod_{p} \left(\frac{p^{s} - 1}{p^{s} - z^{p}} \right) = \prod_{p} \left(\left\{ 1 - \frac{1}{p^{s}} \right\} \left\{ 1 + \frac{z^{p}}{p^{s}} + \frac{z^{2p}}{p^{2s}} + \cdots \right\} \right) \\
= \sum_{n=1}^{\infty} \frac{(z^{p_{1}} - 1) \cdots (z^{p_{m}} - 1) z^{(r_{1} - 1)p_{1} + \cdots + (r_{m} - 1)p_{m}}}{n^{s}}.$$

Formula (b) follows using (8) and observing that $\prod_{p} \frac{p^{s}}{p^{s}-z^{p}} \left(\frac{p^{s}-1}{p^{s}-z^{p}}\right)^{-1} = \zeta(s)$.

If $g(p) = 1/p^{\lambda}$, z = 1 in (3) then

$$\prod_{p} \left(1 + \frac{1/p^{\lambda}}{p^{s} - 1} \right) = \sum_{n=1}^{\infty} \frac{1}{rad(n)^{\lambda} n^{s}}.$$

Also

$$\prod_{p} \left(\frac{p^{s} - 1 + 1/p^{\lambda}}{p^{s}} \right)^{-1} = \prod_{p} \left(1 - \frac{1}{p^{s}} \left\{ 1 - \frac{1}{p^{\lambda}} \right\} \right)^{-1} \\
= \left\{ \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \left(1 - \frac{1}{p_{1}^{\lambda}} \right) \cdots \left(1 - \frac{1}{p_{m}^{\lambda}} \right) \right\}^{-1}.$$

The product of this two formulas yields formula (g).

In a similar way using (3) one has that

$$\prod_{p} \left(1 + \frac{z}{p^s - u} \right) = \sum_{n=1}^{\infty} \frac{u^{\Omega(n) - \omega(n)} z^{\omega(n)}}{n^s},\tag{9}$$

which can be used to prove that

$$\begin{split} \frac{\zeta(s)^2}{\zeta(2s)} &= \prod_p \frac{p^s + 1}{p^s - 1} = \prod_p \frac{p^s + z + 1}{p^s - 1} \frac{p^s + 1}{p^s + z + 1} \\ &= \prod_p \left(1 + \frac{z + 2}{p^s - 1} \right) \left(1 + \frac{z}{p^s + 1} \right)^{-1} \\ &= \left(\sum_{n=1}^{\infty} \frac{(z + 2)^{\omega(n)}}{n^s} \right) \left(\sum_{n=1}^{\infty} \frac{(-1)^{\Omega(n) - \omega(n)} z^{\omega(n)}}{n^s} \right)^{-1}, \end{split}$$

which is formula (d).

Also

$$\begin{split} \frac{\zeta(s)}{\zeta(s+1)} &= \prod_{p} \frac{p^{s} - 1/p}{p^{s} - 1} = \prod_{p} \left(\frac{p^{s} - 1}{p^{s} - z}\right)^{-1} \left(\frac{p^{s} - 1/p}{p^{s} - z}\right) \\ &= \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n) - \omega(n)} (z - 1)^{\omega(n)}}{n^{s}}\right)^{-1} \\ &\times \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n) - \omega(n)} (z - 1/p_{1}) \cdots (z - 1/p_{m})}{n^{s}}\right), \end{split}$$

which is formula (e).

Formula (c) follows from (using (9) and (6))

$$\frac{\zeta(s)}{\zeta(2s)} = \prod_{p} \frac{p^s + 1}{p^s} = \prod_{p} \left(1 + \frac{1+z}{p^s - z} \right) \left(\frac{p^s}{p^s - z} \right)^{-1}$$
$$= \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n) - \omega(n)} (1+z)^{\omega(n)}}{n^s} \right) \left(\sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n^s} \right)^{-1}.$$

To prove formula (f) observe that after simplification using $\zeta(s) = \prod_{p} \frac{p^s}{p^s - 1}$ one has

$$\frac{\zeta(s)\zeta(2s)\zeta(3s)}{\zeta(6s)} = \prod_{p} \frac{p^{2s} - p^{s} + 1}{(p^{s} - 1)^{2}}.$$

Formula (f) follows multiplying

$$\begin{split} &\prod_{p} \frac{p^{2s} - p^{s} + 1}{p^{2s} - z} = \prod_{p} \left(1 - \frac{1}{p^{s}} + \frac{1}{p^{2s}} \right) \left(1 + \frac{z}{p^{2s}} + \frac{z^{2}}{p^{4s}} + \cdots \right) \\ &= \prod_{p} \left(1 - \frac{1}{p^{s}} - \frac{z}{p^{3s}} - \frac{z^{2}}{p^{5s}} - \cdots + \frac{(1+z)}{p^{2s}} + \frac{z(1+z)}{p^{4s}} + \frac{z^{2}(1+z)}{p^{6s}} + \cdots \right) \\ &= \sum_{1}^{\infty} \frac{(-1)^{\omega_{o}(n)} (1+z)^{\omega_{e}(n)} z^{\sum_{i=1}^{m} \left\lfloor \frac{r_{i}-1}{2} \right\rfloor}}{n^{s}}, \end{split}$$

with

$$\prod_{p} \frac{p^{2s} - z}{(p^{s} - 1)^{2}} = \prod_{p} \left(1 - \frac{z}{p^{2s}} \right) \left(1 + \frac{2}{p^{s}} + \frac{3}{p^{2s}} + \cdots \right)
= \prod_{p} \left(1 + \frac{2}{p^{s}} + \frac{3 - z}{p^{2s}} + \frac{4 - 2z}{p^{3s}} + \cdots \right)
= \sum_{p=1}^{\infty} \frac{\{(r_{1} + 1) - (r_{1} - 1)z\} \cdots \{(r_{m} + 1) - (r_{m} - 1)z\}}{n^{s}}.$$

Next we prove formula (h). One has the following formal formula

$$\prod_{p} \frac{p^{s} - \tau(p) + p^{11}/p^{s}}{p^{s} - g(p)} = \prod_{p} \left(1 - \frac{\tau(p)}{p^{s}} + \frac{p^{11}}{p^{2s}} \right) \left(1 + \frac{g(p)}{p^{s}} + \frac{g(p)^{2}}{p^{2s}} + \cdots \right)
= \prod_{p} \left\{ 1 + \frac{g(p) - \tau(p)}{p^{s}} + \sum_{j=2}^{\infty} \frac{g(p)^{j-2} \left\{ g(p)^{2} - g(p)\tau(p) + p^{11} \right\}}{p^{js}} \right\}
= \sum_{j=1}^{\infty} \frac{\prod_{k=1; r_{k}=1}^{m} \left\{ g(p_{k}) - \tau(p_{k}) \right\} \prod_{k=1; r_{k} \geq 2}^{m} \left\{ g(p_{k})^{2} - g(p_{k})\tau(p_{k}) + p_{k}^{11} \right\} g(p_{k})^{r_{k}-2}}{n^{s}}.$$

Setting $g(p) = \epsilon_p p^{11/2}$ with $|\epsilon_p| \le 1$ in the last formula one gets

$$A(s) := \prod_{p} \frac{p^{s} - \tau(p) + p^{11}/p^{s}}{p^{s} - \epsilon_{p} p^{11/2}} = \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}},$$

where a_n is defined as follows. To ease the notation we write $n=n_1n_2$, where n_i are positive integers such that $n_1=p_1\dots p_t, n_2=p_{t+1}^{r_{t+1}}\dots p_m^{r_m}$ with $2\leq \min\{r_{t+1},\dots,r_m\}$. Then

$$\begin{split} a_n &:= \prod_1 \prod_2, \\ &\prod_1 := \prod_{p \in n_1} \left\{ \epsilon_p p^{11/2} - \tau(p) \right\}, \\ &\prod_2 := \prod_{k=t+1}^m \left\{ (1 + \epsilon_{p_k}^2) p_k^{11} - \epsilon_{p_k} p_k^{11/2} \tau(p_k) \right\} \epsilon_{p_k}^{r_k - 2} p_k^{\frac{11}{2}(r_k - 2)} \\ &= n_2^{11/2} rad(n_2)^{-11} \prod_{k=t+1}^m \left\{ (1 + \epsilon_{p_k}^2) p_k^{11} - \epsilon_{p_k} p_k^{11/2} \tau(p_k) \right\} \epsilon_{p_k}^{r_k - 2}. \end{split}$$

If one sets

$$B(s) := \prod_{p} \frac{p^{s} - \epsilon_{p} p^{11/2}}{p^{s}} = \sum_{n=1}^{\infty} \frac{\mu(n) \epsilon_{p_{1}} \cdots \epsilon_{p_{m}}}{n^{s-11/2}},$$

then

$$A(s)B(s) = \left(\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}\right)^{-1},$$

which follows using (1). The proof is complete.

References

- 1. Apostol, T.: Introduction to Analytic Number Theory. Springer, New York (1976)
- 2. Apostol, T.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1976)
- 3. Dressler, R.E., van de Lune, J.: Some remarks concerning the number theoretic functions $\omega(n)$ and $\Omega(n)$. Proc. Am. Math. Soc. **41**(2), 403–406 (1973)
- 4. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford Univ. Press, New York (1986). (revised by D. R. Heath-Brown)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

