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Abstract
Let XðRÞ be a separable rearrangement-invariant space and w be a suitable Muck-

enhoupt weight. We show that for any semi-almost periodic Fourier multiplier a on

XðR;wÞ ¼ ff : fw 2 XðRÞg there exist uniquely determined almost periodic Fourier

multipliers al; ar on XðR;wÞ, such that

a ¼ ð1� uÞal þ uar þ a0;

for some monotonically increasing function u with uð�1Þ ¼ 0, uðþ1Þ ¼ 1 and

some continuous and vanishing at infinity Fourier multiplier a0 on XðR;wÞ. This
result extends previous results by Sarason (Duke Math J 44:357–364, 1977) for

L2ðRÞ and by Karlovich and Loreto Hernández (Integral Equ Oper Theor 62:85–

128, 2008) for weighted Lebesgue spaces LpðR;wÞ with weights in a suitable sub-

class of the Muckenhoupt class ApðRÞ.
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1 Introduction

Let CðRÞ be the C�-algebra of all continuous functions on the two-point

compactification of the real line R ¼ ½�1;þ1� and

Cð _RÞ ¼ ff 2 CðRÞ : f ð�1Þ ¼ f ðþ1Þg;

where _R ¼ R [ f1g is the one-point compactification of the real line. Let APP
denote the set of all almost periodic polynomials, that is, finite sums of the formP

k2K ckek, where

ekðxÞ :¼ eikx; x 2 R;

ck 2 C and K � R is a finite subset of R. The smallest closed subalgebra of L1ðRÞ
that contains APP is denoted by AP and called the algebra of (uniformly) almost

periodic functions. Sarason [36] introduced the algebra of semi-almost periodic

functions as the smallest closed subalgebra of L1ðRÞ that contains AP and CðRÞ:

SAP :¼ algL1ðRÞfAP;CðRÞg:

It is not difficult to see that AP and SAP are C�-subalgebras of L1ðRÞ.

Theorem 1.1 (Sarason [36], see also [10, Theorem 1.21]) Let u 2 CðRÞ be any
function for which uð�1Þ ¼ 0 and uðþ1Þ ¼ 1. If a 2 SAP, then there exist

al; ar 2 AP and a0 2 Cð _RÞ such that a0ð1Þ ¼ 0 and

a ¼ ð1� uÞal þ uar þ a0: ð1:1Þ

The functions al; ar are uniquely determined by a and independent of the particular
choice of u. The maps a 7!al and a 7!ar are C

�-algebra homomorphisms of SAP onto
AP.

The uniquely determined function al (resp. ar) is called the left (resp. right)

almost periodic representative of the semi-almost periodic function a.

Let F : L2ðRÞ ! L2ðRÞ denote the Fourier transform:

ðF f ÞðxÞ :¼ bf ðxÞ :¼
Z

R

f ðtÞeitx dt; x 2 R;

and let F�1 : L2ðRÞ ! L2ðRÞ be the inverse of F ,

ðF�1gÞðtÞ ¼ 1

2p

Z

R

gðxÞe�itx dx; t 2 R:

It is well known that the Fourier convolution operator

W0ðaÞ :¼ F�1aF ð1:2Þ

is bounded on the space L2ðRÞ for every a 2 L1ðRÞ.
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Let XðRÞ be a separable Banach function space (see Sect. 2.1 for the definition

and some properties of Banach function spaces). Then L2ðRÞ \ XðRÞ is dense in

XðRÞ (see, e.g., [15, Lemma 2.1]). A function a 2 L1ðRÞ is called a Fourier

multiplier on XðRÞ if the convolution operator W0ðaÞ defined by (1.2) maps the set

L2ðRÞ \ XðRÞ into the space XðRÞ and extends to a bounded linear operator on

XðRÞ. The function a is called the symbol of the Fourier convolution operator

W0ðaÞ. The set MXðRÞ of all Fourier multipliers on XðRÞ is a unital normed algebra

under pointwise operations and the norm:

ak kMXðRÞ
:¼ W0ðaÞ

�
�

�
�
BðXðRÞÞ;

where BðXðRÞÞ denotes the Banach algebra of all bounded linear operators on the

space XðRÞ.
Note that the Lebesgue spaces LpðRÞ, 1� p�1, constitute the simplest example

of Banach function spaces. Motivated by the work of Duduchava and Saginashvili

[14], Karlovich and Spitkovsky [29] (see also [10, Section 19.1]) introduced the

algebra SAPLpðRÞ of semi-almost periodic Fourier multipliers on the Lebesgue

spaces LpðRÞ, 1\p\1, and proved an analogue of Sarason’s Theorem 1.1 for

SAPLpðRÞ (see [29, Lemma 3.1(iv)] and [10, Proposition 19.3]).

We should mention that, after Sarason’s pioneering paper [36], various classes of

Toeplitz and convolution type operators involving semi-almost periodic functions

were studied on various function spaces, for instance, by Saginashvili [35], Grudsky

[19]; Böttcher et al. [3–6, 8–10]; Nolasco and Castro [32, 33]; Bogveradze and

Castro [2]; the second author and Spitkovsky [25].

Let MðRÞ denote the set of all measurable complex-valued Lebesgue measurable

functions on R. As usual, we identify two functions on R which are equal almost

everywhere. A measurable function w : R ! ½0;1� is called a weight if the set

w�1ðf0;1gÞ has measure zero. For 1\p\1, the Muckenhoupt class ApðRÞ is

defined as the class of all weights w : R ! ½0;1� such that w 2 LplocðRÞ, w�1 2
Lp

0

locðRÞ and

sup
I

1

jIj

Z

I

wpðxÞ dx
� �1=p

1

jIj

Z

I

w�p0 ðxÞ dx
� �1=p0

\1; ð1:3Þ

where 1=pþ 1=p0 ¼ 1 and the supremum is taken over all intervals I � R of finite

length |I|. Since w 2 LplocðRÞ and w�1 2 Lp
0

locðRÞ, the weighted Lebesgue space

LpðR;wÞ :¼ ff 2 MðRÞ : fw 2 LpðRÞg

is a separable Banach function space (see, e.g., [26, Lemma 2.4]) with the norm:

kfkLpðR;wÞ :¼
Z

R

jf ðxÞjpwpðxÞ dx
� �1=p

:

Note that if w 2 ApðRÞ, then it may happen that the function ek does not belong to

MLpðR;wÞ for some k 2 R. Hence,order to generalize Theorem 1.1 to the setting of
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weighted Lebesgue spaces LpðR;wÞ, one has to restrict the study to a narrower class

of weights. For 1\p\1, let

A0
pðRÞ :¼ w 2 ApðRÞ : vk ¼

wð� þ kÞ
wð�Þ 2 L1ðRÞ for all k 2 R

� �

:

For a weight w 2 A0
pðRÞ, Karlovich and Loreto Hernández defined the algebra

SAPLpðR;wÞ of semi-almost periodic Fourier multipliers on the weighted Lebesgue

space LpðR;wÞ and proved an analogue of Theorem 1.1 in this setting (see [27,

Theorem 3.1]). The aim of this paper is to extend this result to the setting of

separable rearrangement-invariant Banach function spaces with suitable Mucken-

houpt weights.

It is well known that the Lebesgue spaces LpðRÞ, 1� p�1, fall in the class of

rearrangement-invariant Banach function spaces. Other classical examples of

rearrangement-invariant Banach function spaces are Orlicz spaces LUðRÞ and

Lorentz spaces Lp;qðRÞ, 1� p; q�1. For a rearrangement-invariant Banach

function space XðRÞ, its Boyd indices aX; bX are important interpolation charac-

teristics. In particular, aLp ¼ bLp ¼ 1=p for 1� p�1. In general, 0� aX � bX � 1

and it may happen that aX\bX . We postpone formal definitions of rearrangement-

invariant Banach function spaces and their Boyd indices until Sects. 2.2–2.3 and

refer to [1, Chap. 3] and [30, Chap. 2] for the detailed study of these concepts.

Let XðRÞ be a separable rearrangement-invariant Banach function space with the

Boyd indices aX; bX satisfying 0\aX; bX\1. Suppose that a weight w belongs to

A1=aX ðRÞ \ A1=bX ðRÞ. Then

XðR;wÞ :¼ ff 2 MðRÞ : fw 2 XðRÞg

is a separable Banach function space (see Lemma 2.3(b) below). Suppose that

a : R ! C is a function of finite total variation V(a) given by

VðaÞ :¼ sup
Xn

k¼1

jaðxkÞ � aðxk�1Þj;

where the supremum is taken over all partitions of R of the form

�1\x0\x1\ � � �\xn\þ1

with n 2 N. The set VðRÞ of all functions of finite total variation on R with the

norm

kakV :¼ kakL1ðRÞ þ VðaÞ

is a unital non-separable Banach algebra. It follows from [21, Corollary 2.2] that

there exists a constant cXðR;wÞ 2 ð0;1Þ such that for all a 2 VðRÞ,

kakMXðR;wÞ
� cXðR;wÞkakVðRÞ: ð1:4Þ

This inequality is usually called a Stechkin-type inequality (see, e.g., [13,

123

1138 C. A. Fernandes, A. Yu. Karlovich



Theorem 2.11] and [10, Theorem 17.1] for the case of Lebesgue spaces and

Lebesgue spaces with Muckenhoupt weights, respectively). Let CXðR;wÞð _RÞ and

CXðR;wÞðRÞ denote the closures of Cð _RÞ \ VðRÞ and CðRÞ \ VðRÞ with respect to

the norm of MXðR;wÞ, respectively.

If w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ, then APP � MXðR;wÞ (see Corollary 5.2 below).

Because of this observation, we will refer to A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ as the class of

suitable Muckenhoupt weights. By APXðR;wÞ we denote the closure of APP with

respect to the norm of MXðR;wÞ. Finally, let SAPXðR;wÞ be the smallest closed

subalgbera of MXðR;wÞ that contains the algebras APXðR;wÞ and CXðR;wÞðRÞ:

SAPXðR;wÞ ¼ algMXðR;wÞ
APXðR;wÞ;CXðR;wÞðRÞ

� �
:

In this paper we present a self-contained proof of the following result.

Theorem 1.2 (Main result) Let XðRÞ be a separable rearrangement-invariant
Banach function space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Let u 2 CðRÞ be any real-valued monotonically increas-

ing function such that uð�1Þ ¼ 0 and uðþ1Þ ¼ 1. Then for every function a 2
SAPXðR;wÞ there exist functions al; ar 2 APXðR;wÞ and a function a0 2 CXðR;wÞð _RÞ
such that a0ð1Þ ¼ 0 and (1.1) holds. The functions al, ar are uniquely determined
by the function a and are independent of the particular choice of the function u. The
maps a 7!al and a 7!ar are continuous Banach algebra homomorphisms of SAPXðR;wÞ
onto APXðR;wÞ of norm 1.

The paper is organized as follows. In Sect. 2, we collect definitions and

properties of rearrangement-invariant Banach functions spaces and their Boyd

indices aX ; bX . Further, we discuss properties of weighted rearrangement-invariant

spaces XðR;wÞ and state several results about general Fourier multipliers on

XðR;wÞ for weights w belonging to the intersection of the Muckenhoupt classes

A1=aX ðRÞ \ A1=bX ðRÞ.
In Sect. 3, we show that, under the assumption w 2 A1=aX ðRÞ \ A1=bX ðRÞ, the set

of continuous Fourier multipliers vanishing at infinity on the space XðR;wÞ
coincides with the closure of the set of all smooth compactly supported functions

with respect to the norm of MXðR;wÞ.

Relying on the results of the previous section, in Sect. 4, we show that

CXðR;wÞð _RÞ ¼ CXðR;wÞðRÞ \ Cð _RÞ and that the algebra CXðR;wÞð _RÞ is contained in the

algebra SOXðR;wÞ of slowly oscillating Fourier multipliers (see [21]).

In Sect. 5, we show that if w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ, then the set of almost

periodic polynomials APP is contained in MXðR;wÞ. We give an example of a

nontrivial weight in A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ (based on an example from [27]). Further,

we show that the product of an almost periodic Fourier multiplier and a continuous

Fourier multiplier vanishing at infinity is a continuous Fourier multiplier vanishing

at infinity.
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Section 6 is devoted to the proof of the main result. We show that the set Au of

functions of the form (1.1) with al; ar 2 APXðR;wÞ and a0 2 CXðR;wÞð _RÞ such that

a0ð1Þ ¼ 0 forms an algebra, and that the mappings a 7!al and a 7!ar are algebraic

homomorphisms of Au onto APXðR;wÞ. We prove that

kalkMXðR;wÞ
� kakMXðR;wÞ

; karkMXðR;wÞ
� kakMXðR;wÞ

; a 2 Au; ð1:5Þ

which implies that the algebra Au is closed. Since the closure of Au with respect to

the norm of MXðR;wÞ coincides with SAPXðR;wÞ, we conclude that Au is equal to

SAPXðR;wÞ. Moreover, inequalities (1.5) mean that a 7!al and a 7!ar are Banach

algebra homomorphisms of SAPXðjR;wÞ onto APXðR;wÞ of norm 1.

2 Preliminaries

2.1 Banach function spaces

Let Rþ :¼ ð0;1Þ and S 2 fRþ;Rg. The set of all Lebesgue measurable complex-

valued functions on S is denoted byMðSÞ. LetMþðSÞ be the subset of functions in
MðSÞ whose values lie in ½0;1�. The Lebesgue measure of a measurable set E � S

is denoted by |E| and its characteristic function is denoted by vE. Following [1,

Chap. 1, Definition 1.1], a mapping q : MþðSÞ ! ½0;1� is called a Banach

function norm if, for all functions f ; g; fn ðn 2 NÞ in MþðSÞ, for all constants a� 0,

and for all measurable subsets E of S, the following properties hold:

ðA1Þ qðf Þ ¼ 0 , f ¼ 0 a.e.; qðaf Þ ¼ aqðf Þ; qðf þ gÞ� qðf Þ þ qðgÞ;
ðA2Þ 0� g� f a.e. ) qðgÞ� qðf Þ (the lattice property);

ðA3Þ 0� fn " f a.e. ) qðfnÞ " qðf Þ (the Fatou property);

ðA4Þ jEj\1 ) qðvEÞ\1;

ðA5Þ jEj\1 )
Z

E

f ðxÞ dx�CEqðf Þ

with CE 2 ð0;1Þ which may depend on E and q but is independent of f. When

functions differing only on a set of measure zero are identified, the set XðSÞ of all
functions f 2 MðSÞ for which qðjf jÞ\1 is called a Banach function space. For

each f 2 XðSÞ, the norm of f is defined by

fk kXðSÞ:¼ qðjf jÞ:

Under the natural linear space operations and under this norm, the set XðSÞ becomes

a Banach space (see [1, Chap. 1, Theorems 1.4 and 1.6]). If q is a Banach function

norm, its associate norm q0 is defined on MþðSÞ by

q0ðgÞ :¼ sup

Z

S

f ðxÞgðxÞ dx : f 2 MþðSÞ; qðf Þ� 1

� �

; g 2 MþðSÞ:

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach function
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space X0ðRÞ determined by the Banach function norm q0 is called the associate

space (Köthe dual) of XðSÞ. The associate space X0ðSÞ is naturally identified with a

subspace of the (Banach) dual space ½XðSÞ��.

2.2 Rearrangement-invariant Banach function spaces

Suppose that S 2 fR;Rþg. Let M0ðSÞ and Mþ
0 ðSÞ be the classes of a.e. finite

functions in MðSÞ and MþðSÞ, respectively. The distribution function lf of a

function f 2 M0ðSÞ is given by

lf ðkÞ :¼
	
	fx 2 S : jf ðxÞj[ kg

	
	; k� 0:

Two functions f ; g 2 M0ðSÞ are said to be equimeasurable if lf ðkÞ ¼ lgðkÞ for all
k� 0. The non-increasing rearrangement of f 2 M0ðSÞ is the function defined by

f �ðtÞ :¼ inffk : lf ðkÞ� tg; t� 0:

We here use the standard convention that inf ; ¼ þ1.

A Banach function norm q : MþðSÞ ! ½0;1� is called rearrangement-invariant

if for every pair of equimeasurable functions f ; g 2 Mþ
0 ðSÞ the equality qðf Þ ¼ qðgÞ

holds. In that case, the Banach function space XðSÞ generated by q is said to be a

rearrangement-invariant Banach function space (or simply rearrangement-invariant

space). Lebesgue, Orlicz, and Lorentz spaces are classical examples of rearrange-

ment-invariant Banach function spaces (see, e.g., [1] and the references therein).

By [1, Chap. 2, Proposition 4.2], if a Banach function space XðSÞ is rearrangement-

invariant, then its associate space X0ðSÞ is rearrangement-invariant, too.

2.3 Boyd indices

Suppose XðRÞ is a rearrangement-invariant Banach function space generated by a

rearrangement-invariant Banach function norm q. In this case, the Luxemburg

representation theorem [1, Chap. 2, Theorem 4.10] provides a unique rearrange-

ment-invariant Banach function norm q over the half-line Rþ equipped with the

Lebesgue measure, defined by

qðhÞ :¼ sup

Z

Rþ

g�ðtÞh�ðtÞ dt : q0ðgÞ� 1

� �

;

and such that qðf Þ ¼ qðf �Þ for all f 2 Mþ
0 ðRÞ. The rearrangement-invariant Banach

function space generated by q is denoted by XðRþÞ.
For each t[ 0, let Et denote the dilation operator defined on MðRþÞ by

ðEtf ÞðsÞ ¼ f ðstÞ; 0\s\1:

With XðRÞ and XðRþÞ as above, let hXðtÞ denote the operator norm of E1=t as an

operator on XðRþÞ. By [1, Chap. 3, Proposition 5.11], for each t[ 0, the operator
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Et is bounded on XðRþÞ and the function hX is increasing and submultiplicative on

ð0;1Þ. The Boyd indices of XðRÞ are the numbers aX and bX defined by

aX :¼ sup
t2ð0;1Þ

log hXðtÞ
log t

; bX :¼ inf
t2ð1;1Þ

log hXðtÞ
log t

:

By [1, Chap. 3, Proposition 5.13], 0� aX � bX � 1. The Boyd indices are said to be

nontrivial if aX; bX 2 ð0; 1Þ. The Boyd indices of the Lebesgue space LpðRÞ,
1� p�1, are both equal to 1/p. Note that the Boyd indices of a rearrangement-

invariant space may be different [1, Chap. 3, Exercises 6, 13].

The next theorem follows from the Boyd interpolation theorem [11, Theorem 1]

for quasi-linear operators of weak types (p, p) and (q, q). Its proof can also be found

in [1, Chap. 3, Theorem 5.16] and [30, Theorem 2.b.11].

Theorem 2.1 Let 1� q\p�1 and XðRÞ be a rearrangement-invariant Banach
function space with the Boyd indices aX; bX satisfying 1=p\aX , bX\1=q. Then
there exists a constant Cp;q 2 ð0;1Þ such that if a linear operator T : MðRÞ !
MðRÞ is bounded on the Lebesgue spaces LpðRÞ and LqðRÞ, then it is also bounded
on the rearrangement-invariant Banach function space XðRÞ and

kTkBðXðRÞÞ �Cp;q max
�
kTkBðLpðRÞÞ; kTkBðLqðRÞÞ

�
: ð2:1Þ

Notice that estimate (2.1) is not stated explicitly in [1, 11, 30]. However, it can be

extracted from the proof of the Boyd interpolation theorem.

2.4 Weighted Banach function spaces

Let XðRÞ be a Banach function space generated by a Banach function norm q. We

say that f 2 XlocðRÞ if fvE 2 XðRÞ for any measurable set E � R of finite measure.

Lemma 2.2 [26, Lemma 2.4] Let XðRÞ be a Banach function space generated by a
Banach function norm q, let X0ðRÞ be its associate space, and let w : R ! ½0;1� be
a weight. Suppose that w 2 XlocðRÞ and 1=w 2 X0

locðRÞ. Then

qwðf Þ :¼ qðfwÞ; f 2 MþðRÞ;

is a Banach function norm and

XðR;wÞ :¼ ff 2 MðRÞ : fw 2 XðRÞg

is a Banach function space generated by the Banach function norm qw. The space

X0ðR;w�1Þ is the associate space of XðR;wÞ.
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2.5 Density of nice functions in separable rearrangement-invariant Banach
function spaces with Muckenhoupt weights

Recall that the (noncentered) Hardy–Littlewood maximal function Mf of a function

f 2 L1locðRÞ is defined by

ðMf ÞðxÞ :¼ sup
I3x

1

jIj

Z

I

jf ðyÞj dy; x 2 R;

where the supremum is taken over all intervals I � R of finite length containing the

point x.
Let SðRÞ be the Schwartz space of rapidly decreasing smooth functions and let us

denote by S0ðRÞ the set of all functions f 2 SðRÞ such that their Fourier transforms

F f have compact supports.

Lemma 2.3 Let XðRÞ be a separable rearrangement-invariant Banach function
space and X0ðRÞ be its associate space. Suppose that the Boyd indices of XðRÞ
satisfy 0\aX , bX\1 and w 2 A1=aX ðRÞ \ A1=bX ðRÞ. Then

(a) w 2 XlocðRÞ and 1=w 2 X0
locðRÞ;

(b) the Banach function space space XðR;wÞ is separable;
(c) the Hardy-Littlewood maximal operator M is bounded on the Banach function

space XðR;wÞ and on its associate space X0ðR;w�1Þ;
(d) the set S0ðRÞ is dense in the Banach function space XðR;wÞ.

Proof Parts (a) and (c) are proved in [21, Section 4.3]. Part (b) follows from part

(a), Lemma 2.2 and [26, Lemmas 2.7 and 2.11]. Part (d) is a consequence of parts

(b), (c) and [16, Theorem 4]. h

2.6 The Banach algebra MXðR,wÞ of Fourier multipliers

The following result plays an important role in this paper.

Theorem 2.4 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w
belongs to A1=aX ðRÞ \ A1=bX ðRÞ. If a 2 MXðR;wÞ, then

kakL1ðRÞ � kakMXðR;wÞ
: ð2:2Þ

The constant 1 on the right-hand side of (2.2) is best possible.

This theorem follows from Lemma 2.3(b) and [15, Theorem 2.4] (which was

deduced from [24, Corollary 4.2]).

Inequality (2.2) was established earlier in [22, Theorem 1] with some constant on

the right-hand side that depends on the space XðR;wÞ.
Since (2.2) is available, an easy adaptation of the proof of [18, Proposi-

tion 2.5.13] leads to the following (we refer to the proof of [22, Corollary 1] for

details).
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Corollary 2.5 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w
belongs to A1=aX ðRÞ \ A1=bX ðRÞ. Then the set of the Fourier multipliersMXðR;wÞ is a

Banach algebra under pointwise operations and the norm k � kMXðR;wÞ
.

As usual, we denote by C1
c ðRÞ the set of all infinitely differentiable functions

with compact support.

Theorem 2.6 Suppose that a non-negative even function u 2 C1
c ðRÞ satisfies the

condition
Z

R

uðxÞ dx ¼ 1 ð2:3Þ

and the function ud is defined for d[ 0 by

udðxÞ :¼ d�1uðx=dÞ; x 2 R: ð2:4Þ

Let XðRÞ be a separable rearrangement-invariant Banach function space with the
Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w belongs to
A1=aX ðRÞ \ A1=bX ðRÞ. If a 2 MXðR;wÞ, then for every d[ 0,

ka � udkMXðR;wÞ
� kakMXðR;wÞ

: ð2:5Þ

Proof The proof is analogous to the proof of [23, Theorem 2.6]. It follows from

Lemma 2.3(c) and [26, Theorems 3.8(a) and 3.9(c)] that if the weight w belongs to

A1=aX ðRÞ \ A1=bX ðRÞ, then

sup
�1\a\b\1

1

b� a
kvða;bÞkXðR;wÞkvða;bÞkX0ðR;w�1Þ\1:

Therefore, by [24, Lemma 1.3], the Banach function space XðR;wÞ satisfies the

hypotheses of [24, Theorem 1.3]. It is shown in its proof (see [24, Section 4.2]) that

for every d[ 0 and every f 2 SðRÞ \ XðR;wÞ,

kF�1ða � udÞF fkXðR;wÞ � sup
kF�1aF fkXðR;wÞ

kfkXðR;wÞ
: f 2 XSðR;wÞ

( )

kfkXðR;wÞ;

where

XSðR;wÞ :¼ ðSðRÞ \ XðR;wÞÞnf0g:

Then, for every d[ 0,

sup
kF�1ða � udÞF fkXðR;wÞ

kfkXðR;wÞ
: f 2 XSðR;wÞ

( )

�kakMXðR;wÞ
: ð2:6Þ

By Lemma 2.3(b), the Banach function space XðR;wÞ is separable. Then it follows

123

1144 C. A. Fernandes, A. Yu. Karlovich



from [1, Chap. 1, Corollary 5.6] and [24, Theorems 2.3 and 6.1] that for every

d[ 0, the left-hand side of inequality (2.6) coincides with the multiplier norm

ka � udkMXðR;wÞ
, which completes the proof of inequality (2.5). h

3 Continuous Fourier multipliers vanishing at infinity

3.1 The case of Lebesgue spaces with Muckenhoupt weights

The closure of a subset S of a Banach space E in the norm of E will be denoted by

closEðSÞ.
Let C0ðRÞ be the set of all functions f 2 Cð _RÞ such that f ð1Þ ¼ 0.

Lemma 3.1 Let 1\p\1 and w 2 ApðRÞ. Then

C0ðRÞ \ VðRÞ � closMLpðR;wÞ



C1
c ðRÞ

�
:

Proof The idea of the proof is borrowed from [20, Theorem 1.16] (see also [23,

Theorem 3.1]). If w 2 ApðRÞ, then w1þd2 2 Apð1þd1ÞðRÞ whenever jd1j and jd2j are
sufficiently small (see, e.g., [7, Theorem 2.31]). If p� 2, then one can find

sufficiently small d1; d2 [ 0 and a number h 2 ð0; 1Þ such that

1

p
¼ 1� h

2
þ h
pð1þ d1Þ

; w ¼ 11�hwð1þd2Þh; w1þd2 2 Apð1þd1ÞðRÞ: ð3:1Þ

If 1\p\2, then one can find a sufficiently small number d2 [ 0, a number d1\0

with sufficiently small jd1j, and a number h 2 ð0; 1Þ such that all conditions in (3.1)

are fulfilled.

Let us use the following abbreviations:

Mp :¼MLpðR;wÞ; Mph :¼ MLpð1þd1ÞðR;w1þd2 Þ;

Bp :¼BðLpðR;wÞÞ; Bph :¼ BðLpð1þd1ÞðR;w1þd2ÞÞ:

For n 2 N, let

wnðxÞ :¼
1 if jxj � n;

nþ 1� jxj if n\jxj\nþ 1;

0 if jxj � nþ 1:

8
><

>:
ð3:2Þ

Then wn has compact support and kwnkVðRÞ ¼ 3. By the Stechkin-type inequality

(1.4),

kwnkMph
� ch;

where ch is three times cLpð1þd1ÞðR;w1þd2 Þ, and the latter constant is the constant from

(1.4).

Let a 2 C0ðRÞ \ VðRÞ. Fix e[ 0. For n 2 N, take bn :¼ awn. Then
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lim
n!1

ka� bnkL1ðRÞ ¼ 0 ð3:3Þ

and bn 2 C0ðRÞ has compact support. Taking into account the Stechkin-type

inequality (1.4), we get

ka� bnkMph
�kakMph

ð1þ kwnkMph
Þ� ð1þ chÞchkakVðRÞ ð3:4Þ

and

kbnkMph
�kakMph

kwnkMph
� c2hkakVðRÞ: ð3:5Þ

It follows from (3.1) and the Stein–Weiss interpolation theorem (see, e.g., [1, Chap.

3, Theorem 3.6]) that

ka� bnkMp
¼ kW0ða� bnÞkBp

�kW0ða� bnÞk1�h
BðL2ðRÞÞkW0ða� bnÞkhBph

¼ ka� bnk1�h
L1ðRÞka� bnkhMph

:

ð3:6Þ

Combining (3.3), (3.4) and (3.6), we see that there exists n0 2 N such that

ka� bn0kMp
\e=2: ð3:7Þ

Let u 2 C1
c ðRÞ be a non-negative even function satisfying (2.3) and for d[ 0 let

the function ud be defined by (2.4). By Theorem 2.6 and inequality (3.5), for every

d[ 0,

kbn0 � udkMph
�kbn0kMph

� c2hkakVðRÞ: ð3:8Þ

It follows from [12, Propositions 4.18, 4.20–4.21] that bn0 � ud 2 C1
c ðRÞ and

lim
d!0þ

kbn0 � ud � bn0kL1ðRÞ ¼ 0: ð3:9Þ

In view of (3.1) and the Stein-Weiss interpolation theorem (see, e.g., [1, Chap. 3,

Theorem 3.6]), we see that

kbn0 � ud � bn0kMp

¼ kW0ðbn0 � ud � bn0ÞkBp

�kW0ðbn0 � ud � bn0Þk
1�h
BðL2ðRÞÞkW0ðbn0 � ud � bn0Þk

h
Bph

¼ kbn0 � ud � bn0k
1�h
L1ðRÞkbn0 � ud � bn0k

h
Mph

�kbn0 � ud � bn0k
1�h
L1ðRÞðkbn0 � udkMph

þ kbn0kMph
Þh:

ð3:10Þ

Combining (3.8)–(3.10), we conclude that there exists d0 [ 0 such that
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kbn0 � ud0 � bn0kMp
\e=2: ð3:11Þ

Hence, it follows from (3.7) and (3.11) that for every function a in the intersection

C0ðRÞ \ VðRÞ and every e[ 0 there exists a function bn0 � ud0 2 C1
c ðRÞ such that

ka� bn0 � ud0kMp
\e. Therefore, a 2 closMp



C1
c ðRÞ

�
. h

3.2 The case of rearrangement-invariant spaces with Muckenhoupt weights

The following lemma is an extension of the previous result to the case of

rearrangement-invariant Banach function spaces with Muckenhoupt weights.

Lemma 3.2 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w
belongs to A1=aX ðRÞ \ A1=bX ðRÞ. Then

C0ðRÞ \ VðRÞ � closMXðR;wÞ



C1
c ðRÞ

�
:

Proof Since aX; bX 2 ð0; 1Þ and w 2 A1=aX ðRÞ \ A1=bX ðRÞ, it follows from [7,

Theorem 2.31] that there exist p and q such that

1\q\1=bX � 1=aX\p\1; w 2 ApðRÞ \ AqðRÞ: ð3:12Þ

Let Cp;q 2 ð0;1Þ be the constant from estimate (2.1). Fix e[ 0 and take a function

a 2 C0ðRÞ \ VðRÞ. As in the proof of inequality (3.7) (see the proof of Lemma 3.1),

it can be shown that there exists n0 2 N such that

ka� bn0kMLpðR;wÞ
\

e
2Cp;q

; ka� bn0kMLqðR;wÞ
\

e
2Cp;q

; ð3:13Þ

where bn ¼ awn and wn is given by (3.2) for every n 2 N. It follows from (3.12),

(3.13) and Theorem 2.1 that

ka� bn0kMXðR;wÞ
¼ kW0ða� bn0ÞkBðXðR;wÞÞ

¼ kwW0ða� bn0Þw�1IkBðXðRÞÞ
�Cp;q max kwW0ða� bn0Þw�1IkBðLpðRÞÞ; kwW0ða� bn0Þw�1IkBðLqðRÞÞ

n o

¼ Cp;q max kW0ða� bn0ÞkBðLpðR;wÞÞ; kW0ða� bn0ÞkBðLqðR;wÞÞ
n o

¼ Cp;q max ka� bn0kMLpðR;wÞ
; ka� bn0kMLqðR;wÞ

n o
\e=2:

ð3:14Þ

As in the proof of inequality (3.11) (see the proof of Lemma 3.1), it can be shown

that there exists d0 [ 0 such that
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kbn0 � ud0 � bn0kMLpðR;wÞ
\

e
2Cp;q

; kbn0 � ud0 � bn0kMLqðR;wÞ
\

e
2Cp;q

; ð3:15Þ

where u 2 C1
c ðRÞ is a non-negative even function satisfying (2.3) and the functions

ud are defined for all d[ 0 by (2.4). Arguing as in the proof of (3.14), we deduce

from (3.12), (3.15) and Theorem 2.1 that

kbn0 � ud0 � bn0kMXðR;wÞ
\e=2: ð3:16Þ

It follows from (3.14) and (3.16) that for every function a in the intersection

C0ðRÞ \ VðRÞ and every e[ 0 there exists a function bn0 � ud0 2 C1
c ðRÞ such that

ka� bn0 � ud0kMXðR;wÞ
\e. Therefore, a 2 closMXðR;wÞ



C1
c ðRÞ

�
. h

Now we are in a position to prove the main result of this section.

Theorem 3.3 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w
belongs to A1=aX ðRÞ \ A1=bX ðRÞ. Consider the set

C0;XðR;wÞð _RÞ :¼ a 2 CXðR;wÞð _RÞ : að1Þ ¼ 0
� �

: ð3:17Þ

Then

C0;XðR;wÞð _RÞ ¼ closMXðR;wÞ



C1
c ðRÞ

�
: ð3:18Þ

Proof Let a 2 CXðR;wÞð _RÞ be such that að1Þ ¼ 0. Fix e[ 0. By the definition of

the algebra CXðR;wÞð _RÞ, there exists a function b 2 Cð _RÞ \ VðRÞ such that

ka� bkMXðR;wÞ
\e=3: ð3:19Þ

It follows from this observation and the continuous embedding of MXðR;wÞ into

L1ðRÞ (see Theorem 2.4) that

jbð1Þj ¼ jað1Þ � bð1Þj� ka� bkL1ðRÞ � ka� bkMXðR;wÞ
\e=3: ð3:20Þ

Take c ¼ b� bð1Þ 2 C0ðRÞ \ VðRÞ. By Lemma 3.2, there exists a function d 2
C1
c ðRÞ � MXðR;wÞ such that

kc� dkMXðR;wÞ
\e=3: ð3:21Þ

Combining inequalities (3.19)–(3.21), we see that

ka� dkMXðR;wÞ
� ka� bkMXðR;wÞ

þ jbð1Þj þ kc� dkMXðR;wÞ
\e:

Hence
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C0;XðR;wÞð _RÞ � closMXðR;wÞ



C1
c ðRÞ

�
: ð3:22Þ

Let us prove the reverse embedding. Take a 2 closMXðR;wÞ



C1
c ðRÞ

�
. Then there

exists a sequence fangn2N � C1
c ðRÞ such that

lim
n!1

kan � akMXðR;wÞ
¼ 0:

Since C1
c ðRÞ � Cð _RÞ \ VðRÞ, the above equality and the continuous embedding of

the algebra MXðR;wÞ into the algebra L1ðRÞ (see Theorem 2.4) imply that a 2
CXðR;wÞð _RÞ and

jað1Þj ¼ lim
n!1

janð1Þ � að1Þj� lim
n!1

kan � akL1ðRÞ

� lim
n!1

kan � akMXðR;wÞ
¼ 0:

Thus

closMXðR;wÞ



C1
c ðRÞ

�
� C0;XðR;wÞð _RÞ: ð3:23Þ

Combining (3.22) and (3.23), we arrive at (3.18). h

4 Continuous and slowly oscillating Fourier multipliers

4.1 Continuous Fourier multipliers on one and two-point compactifications
of the real line

For a function f 2 CðRÞ, let

Jf ðxÞ :¼

f ð�1Þ if x 2 ð�1;�1Þ;
1

2

�
f ð�1Þð1� xÞ þ f ðþ1Þð1þ xÞ


if x 2 ½�1; 1�;

f ðþ1Þ if x 2 ð1;þ1Þ:

8
>><

>>:
ð4:1Þ

It is easy to see that

kJf kVðRÞ ¼ max
�
jf ð�1Þj; jf ðþ1Þj

�
þ jf ðþ1Þ � f ð�1Þj: ð4:2Þ

Therefore Jf 2 CðRÞ \ VðRÞ and f � Jf 2 C0ðRÞ.
The next lemma extends [29, Lemma 3.1(i)] from the setting of Lebesgue spaces

to the setting of rearrangement-invariant Banach function spaces with Muckenhoupt

weights.

Lemma 4.1 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that
w 2 A1=aX ðRÞ \ A1=bX ðRÞ. Then
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CXðR;wÞð _RÞ ¼ CXðR;wÞðRÞ \ Cð _RÞ: ð4:3Þ

Proof The proof is analogous to the proof of [29, Lemma 3.1(i)] (see also [23,

Lemma 3.2]). It is obvious that CXðR;wÞð _RÞ � CXðR;wÞðRÞ. On the other hand, it

follows from Theorem 2.4 that CXðR;wÞð _RÞ � Cð _RÞ. Therefore,

CXðR;wÞð _RÞ � CXðR;wÞðRÞ \ Cð _RÞ: ð4:4Þ

To prove the opposite embedding, let us consider an arbitrary function a 2
CXðR;wÞðRÞ such that aðþ1Þ ¼ að�1Þ. Let fangn2N � CðRÞ \ VðRÞ be a sequence
such that kan � akMXðR;wÞ

! 0 as n ! 1. According to Theorem 2.4, the sequence

fangn2N converges to a uniformly on R. Hence, in particular, anð	1Þ ! að1Þ as
n ! 1. Let the functions bn :¼ Jan�að1Þ be defined by (4.1) with an � að1Þ in

place of f. By the Stechkin-type inequality (1.4) and equality (4.2), we have

kbnkMXðR;wÞ
� cXðR;wÞkJan�að1ÞkVðRÞ
¼ cXðR;wÞ max

�
janð�1Þ � að1Þj; janðþ1Þ � að1Þj

�

þ cXðR;wÞjanðþ1Þ � anð�1Þj:

Therefore, kbnkMXðR;wÞ
! 0 as n ! 1 and thus,

lim
n!1

kan � bn � akMXðR;wÞ
¼ 0:

Since an � bn 2 Cð _RÞ \ VðRÞ, the latter equality implies that a 2 CXðR;wÞð _RÞ. Thus

CXðR;wÞðRÞ \ Cð _RÞ � CXðR;wÞð _RÞ: ð4:5Þ

Combining embeddings (4.4)–(4.5), we arrive at equality (4.3). h

4.2 Embedding of the algebra CXðR,wÞð _RÞ into the algebra SOXðR,wÞ of slowly
oscillating Fourier multipliers

Let CbðRÞ :¼ CðRÞ \ L1ðRÞ. For a bounded measurable function f : R ! C and a

set J � R, let

oscðf ; JÞ :¼ ess sup
x;y2J

jf ðxÞ � f ðyÞj:

Let SO be the C�-algebra of all slowly oscillating functions at 1 defined by

SO :¼ f 2 CbðRÞ : lim
x!þ1

oscðf ; ½�x;�x=2� [ ½x=2; x�Þ ¼ 0

� �

:

Consider the differential operator ðDf ÞðxÞ ¼ xf 0ðxÞ and its iterations defined by

D0f ¼ f and Djf ¼ DðDj�1f Þ for j 2 N. Let
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SO3 :¼ a 2 SO \ C3ðRÞ : lim
x!1

ðDjaÞðxÞ ¼ 0; j ¼ 1; 2; 3
n o

;

where C3ðRÞ denotes the set of all three times continuously differentiable functions.

It is easy to see that SO3 is a commutative Banach algebra under pointwise oper-

ations and the norm

kakSO3 :¼
X3

j¼0

1

j!
kDjakL1ðRÞ:

It follows from [21, Corollary 2.6] that if XðRÞ is a separable rearrangement-in-

variant Banach function space with the Boyd indices aX ; bX such that 0\aX , bX\1

and w 2 A1=aX ðRÞ \ A1=bX ðRÞ, then there exists a constant cXðR;wÞ 2 ð0;1Þ such that

for all a 2 SO3,

kakMXðR;wÞ
� cXðR;wÞkakSO3 :

The continuous embedding SO3 � MXðR;wÞ allows us to define the algebra SOXðR;wÞ
of slowly oscillating Fourier multipliers as the closure of SO3 with respect to the

multiplier norm:

SOXðR;wÞ :¼ closMXðR;wÞ



SO3

�
:

The following result is analogous to [28, Lemma 3.6].

Lemma 4.2 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that a weight w

belongs to A1=aX ðRÞ \ A1=bX ðRÞ. Then CXðR;wÞð _RÞ � SOXðR;wÞ.

Proof Let a 2 CXðR;wÞð _RÞ. Fix e[ 0. Then there exists b 2 Cð _RÞ \ VðRÞ such that

ka� bkMXðR;wÞ
\e=2: ð4:6Þ

Then b� bð1Þ 2 C0ðRÞ \ VðRÞ. By Lemma 3.2,

b� bð1Þ 2 closMXðR;wÞ



C1
c ðRÞ

�
:

Then there exists c 2 C1
c ðRÞ such that

kb� bð1Þ � ckMXðR;wÞ
\e=2: ð4:7Þ

It follows from inequalities (4.6) and (4.7) that

ka� ðcþ bð1ÞÞkMXðR;wÞ
\e:

Since cþ bð1Þ 2 C1
c ðRÞ _þC � SO3, we get a 2 closMXðR;wÞ ðSO3Þ ¼ SOXðR;wÞ. h

123

Semi-almost periodic Fourier multipliers on rearrangement-invariant. . . 1151



5 Almost periodic Fourier multipliers and their products
with continuous Fourier multipliers vanishing at infinity

5.1 The algebra APXðR,wÞ of almost periodic Fourier multipliers

For k 2 R, let Tk denote the translation operator defined by

ðTkf ÞðxÞ ¼ f ðx� kÞ; x 2 R:

Lemma 5.1 Let XðRÞ be a rearrangement-invariant Banach function space and
w : R ! ½0;1� be a weight such that w 2 XlocðRÞ and 1=w 2 X0

locðRÞ. Suppose that
k 2 R. Then the translation operator Tk is bounded on the Banach function space
XðR;wÞ if and only if the function

vkðxÞ :¼
wðxþ kÞ
wðxÞ ; x 2 R;

belongs to the space L1ðRÞ. In that case kTkkBðXðR;wÞÞ ¼ kvkkL1ðRÞ.

Proof The operator Tk is bounded on the space XðR;wÞ if and only if the operator

wTkw
�1I ¼ TkðvkIÞ is bounded on the space XðRÞ. Moreover, their norms coincide.

It is easy to see that for every f 2 XðRÞ, the function Tkf is equimeasurable with f,
whence kTkfkXðRÞ ¼ kfkXðRÞ. Therefore,

kTkkBðXðR;wÞÞ ¼ kTkðvkIÞkBðXðRÞÞ ¼ kvkIkBðXðRÞÞ:

By [31, Theorem 1], the multiplication operator vkI is bounded on the space XðRÞ if
and only if vk 2 L1ðRÞ and kvkIkBðXðRÞÞ ¼ kvkkL1ðRÞ. Thus,

kTkkBðXðR;wÞÞ ¼ kvkkL1ðRÞ. h

As a consequence of the previous result, we show that for all k 2 R, the

exponential functions ekðxÞ ¼ eikx, x 2 R, are Fourier multipliers on separable

rearrangement-invariant Banach function spaces with weights in the sublclass

A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ of the class of Muckenhoupt weights.

Corollary 5.2 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX � bX\1. Suppose that a weight w

belongs to A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Then for every k 2 R, the function ek belongs to

MXðR;wÞ and kekkMXðR;wÞ
¼ kvkkL1ðRÞ.

Proof It follows from the definition of the classes A0
1=aX

ðRÞ and A0
1=bX

ðRÞ that the
function vkðxÞ ¼ wðxþkÞ

wðxÞ , x 2 R, is bounded for every k 2 R. By Lemma 2.3(a), w 2
XlocðRÞ and 1=w 2 X0

locðRÞ. Then, by Lemma 5.1, the operator Tk is bounded on the

Banach function space XðR;wÞ and

123

1152 C. A. Fernandes, A. Yu. Karlovich



kTkkBðXðR;wÞÞ ¼ kvkkL1ðRÞ; k 2 R:

It remains to observe that Tk ¼ W0ðekÞ. Thus ek 2 MXðR;wÞ and

kekkMXðR;wÞ
¼ kW0ðekÞkBðXðR;wÞÞ ¼ kvkkL1ðRÞ; k 2 R;

which completes the proof. h

Corollary 5.2 implies that if XðRÞ is a separable rearrangement-invariant Banach

function spaces and w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ, then APP � MXðR;wÞ. We define the

algebra APXðR;wÞ of almost periodic Fourier multipliers by

APXðR;wÞ :¼ closMXðR;wÞ



APP

�
:

It is natural to refer to the weights in A0
1=aX

\ A0
1=bX

as suitable Muckenhoupt

weights. The class of suitable Muckenhoput weights contains many nontrivial

weights as the following example shows.

For d; m; g 2 R, consider the weight

wðxÞ :¼ exp


dþ m sinðg logðlog jxjÞÞ

�
if jxj � e;

expðdÞ if jxj\e:

(

Let r 2 ð1;1Þ. It was shown in [27, Example 4.2] that if

�1=r\d� jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
� dþ jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
\1� 1=r;

then w 2 A0
r ðRÞ. Hence if 0\aX � bX\1 and

�aX\d� jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
� dþ jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
\1� bX ;

then w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ.

5.2 Products of almost periodic Fourier multipliers and continuous Fourier
multipliers vanishing at infinity

The next lemma generalizes [29, Lemma 3.1(iii)] from the setting of Lebesgue

spaces to the setting of rearrangement-invariant Banach function spaces with

suitable Muckenhoupt weights.

Lemma 5.3 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that w belongs to

A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ and C0;XðR;wÞð _RÞ is defined by (3.17). If a 2 APXðR;wÞ and

w 2 C0;XðR;wÞð _RÞ, then aw 2 C0;XðR;wÞð _RÞ.

Proof By Theorem 3.3, there exists a sequence fwngn2N � C1
c ðRÞ such that
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lim
n!1

kwn � wkMXðR;wÞ
¼ 0: ð5:1Þ

By the definition of the algebra APXðR;wÞ, there exists a sequence an 2 APP such that

lim
n!1

kan � akMXðR;wÞ
¼ 0: ð5:2Þ

Then anwn 2 C1
c ðRÞ � Cð _RÞ \ VðRÞ for every n 2 N. Moreover, (5.1)–(5.2) imply

that

lim
n!1

kanwn � awkMXðR;wÞ
¼ 0:

Hence aw 2 CXðR;wÞð _RÞ. In view of the continuous embedding of MXðR;wÞ into

L1ðRÞ (see Theorem 2.4) and the above equality, we obtain

jðawÞð1Þj ¼ lim
n!1

jðanwnÞð1Þ � ðawÞð1Þj� lim
n!1

kanwn � awkL1ðRÞ

� lim
n!1

kanwn � awkMXðR;wÞ
¼ 0:

Thus ðawÞð1Þ ¼ 0 and aw 2 C0;XðR;wÞð _RÞ. h

6 Proof of the main result

6.1 The algebra Au

For a real-valued monotonically increasing function u 2 CðRÞ such that

uð�1Þ ¼ 0 uðþ1Þ ¼ 1; ð6:1Þ

consider the set

Au :¼ a ¼ ð1� uÞal þ uar þ a0 : al; ar 2 APXðR;wÞ; a0 2 C0;XðR;wÞð _RÞ
� �

:

Lemma 6.1 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. If u 2 CðRÞ is a real-valued monotonically increasing

function such that uð�1Þ ¼ 0 and uðþ1Þ ¼ 1, then the set Au is an algebra and
the mappings a 7!al and a 7!ar are algebraic homomorphisms of Au onto APXðR;wÞ.

Proof If a; b 2 Au, then

a ¼ ð1� uÞal þ uar þ a0; b ¼ ð1� uÞbl þ ubr þ b0

with some al; ar; bl; br 2 APXðR;wÞ and a0; b0 2 C0;XðR;wÞð _RÞ. Therefore

aþ b ¼ ð1� uÞðal þ blÞ þ uðar þ brÞ þ ða0 þ b0Þ ð6:2Þ

and
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ab ¼ ð1� uÞ2albl þ u2arbr þ ð1� uÞuðalbr þ arblÞ
þ


ð1� uÞal þ uar

�
b0 þ



ð1� uÞbl þ ubr

�
a0 þ a0b0

¼ ð1� uÞalbl þ uarbr þ c0;

ð6:3Þ

where

c0 ¼ ðu� u2Þ
�
ðalbr þ arblÞ � ðalbl þ arbrÞ



þ


ð1� uÞal þ uar

�
b0 þ



ð1� uÞbl þ ubr

�
a0 þ a0b0:

ð6:4Þ

Since 1� u; u 2 CðRÞ \ VðRÞ � CXðR;wÞðRÞ and a0; b0 2 C0;XðR;wÞðRÞ, it follows

from Lemma 4.1 that

ð1� uÞa0; ua0; ð1� uÞb0; ub0 2 C0;XðR;wÞð _RÞ:

Then, by Lemma 5.3,

ð1� uÞalb0; uarb0; ð1� uÞbla0; ubra0 2 C0;XðR;wÞð _RÞ: ð6:5Þ

Since u� u2 2 CðRÞ \ VðRÞ � CXðR;wÞðRÞ and uð	1Þ � u2ð	1Þ ¼ 0, by

Lemma 4.1, u� u2 2 C0;XðR;wÞð _RÞ. Then, in view of Lemma 5.3, we also conclude

that

ðu� u2Þ
�
ðalbr þ arblÞ � ðalbl þ arbrÞ


2 C0;XðR;wÞð _RÞ: ð6:6Þ

It follows from (6.4) to (6.6) that c0 2 C0;XðR;wÞð _RÞ. In view of this observation and

equalities (6.2)–(6.3), we see that aþ b; ab 2 Au. Therefore, Au is an algebra. It is

clear that the mappings a 7!al and a 7!ar are algebraic homomorphisms of Au onto

APXðR;wÞ. h

6.2 The multiplier norm of a= ð1- uÞar + uar + a0 2 Au dominates
the multiplier norms of ar and al

In this section we will prepare the proof of the fact that the algebraic

homomorphisms Au ! APXðR;wÞ given by a 7!al and a 7!ar are actually Banach

algebra homomorphisms of norm 1. To this end, we will show that for a 2 Au,

karkMXðR;wÞ
� kakMXðR;wÞ

; kalkMXðR;wÞ
� kakMXðR;wÞ

: ð6:7Þ

For a 2 L1ðRÞ and h 2 R, we define

ahðxÞ :¼ aðxþ hÞ; x 2 R:

The following consequence of Kronecker’s theorem (see, e.g., [10, Theorem 1.12])

plays a crucial role in the proof of inequalities (6.7).

Lemma 6.2 If a1; . . .; ak 2 APP is a finite collection of almost periodic polyno-
mials, then there exists a sequence fhngn2N of real numbers such that hn ! þ1 as

n ! 1 and
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lim
n!1

ka	hn
m � amkL1ðRÞ ¼ 0

for each m 2 f1; . . .; kg.

For the sign ‘‘?’’, the proof of the above lemma is given in [10, Lemma 10.2],

for the sign ‘‘–’’, the proof is analogous.

We start the proof of inequalities (6.7) for a ¼ ð1� vÞal þ var þ a0 with a nice

function v in place of u and nice functions al; ar and a0.

Lemma 6.3 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Let v 2 CðRÞ be any real-valued monotonically increas-

ing function such that there exists a point x0 [ 0 such that vðxÞ ¼ 0 for x\� x0
and vðxÞ ¼ 1 for x[ x0. If al; ar 2 APP, a0 2 C1

c ðRÞ, and

a ¼ ð1� vÞal þ var þ a0; ð6:8Þ

then inequalities (6.7) hold.

Proof The idea of the proof is borrowed from the proof of [27, Theorem 3.1]. By

Lemma 6.2, there is a sequence fhngn2N of real numbers such that hn ! þ1 as

n ! 1 and

lim
n!1

kahnr � arkL1ðRÞ ¼ 0; lim
n!1

kða0rÞ
hn � a0rkL1ðRÞ ¼ 0; ð6:9Þ

lim
n!1

ka�hn
l � alkL1ðRÞ ¼ 0; lim

n!1
kða0lÞ

�hn � a0lkL1ðRÞ ¼ 0: ð6:10Þ

Let us show that

s-lim
n!1

ehnW
0ðaÞe�hn I ¼ W0ðarÞ; s-lim

n!1
e�hnW

0ðaÞehn I ¼ W0ðalÞ ð6:11Þ

on the space XðR;wÞ. As

e	hnW
0ðaÞe
hn I ¼ W0ða	hnÞ;

we have to prove that for every f 2 XðR;wÞ,

lim
n!1

W0ðahn � arÞf
�
�

�
�
XðR;wÞ¼ 0; ð6:12Þ

lim
n!1

W0ða�hn � alÞf
�
�

�
�
XðR;wÞ¼ 0: ð6:13Þ

Since the operators W0ðahn � arÞ and W0ða�hn � alÞ are uniformly bounded in n 2
N and the set S0ðRÞ is dense in the space XðR;wÞ in view of Lemma 2.3, applying

[34, Lemma 1.4.1], we conclude that it is enough to prove equalities (6.12)–(6.13)

for all f 2 S0ðRÞ.
Fix f 2 S0ðRÞ. Then, by a smooth version of Urysohn’s lemma (see, e.g., [17,

Proposition 6.5]), there is a function w 2 C1
c ðRÞ such that 0�w� 1, suppF f �

suppw and wjsuppF f ¼ 1. Therefore, for all n 2 N,
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W0ðahn � arÞf ¼ F�1ðahn � arÞwF f ; W0ða�hn � alÞf ¼ F�1ða�hn � alÞwF f

and

W0ðahn � arÞf
�
�

�
�
XðR;wÞ � kðahn � arÞwkMXðR;wÞ

kfkXðR;wÞ; ð6:14Þ

W0ða�hn � alÞf
�
�

�
�
XðR;wÞ � kða�hn � alÞwkMXðR;wÞ

kfkXðR;wÞ: ð6:15Þ

Since vðxÞ ¼ 1 for x[ x0 and vðxÞ ¼ 0 for x\� x0 and a0 2 C1
c ðRÞ, there exists

N 2 N such that for all x 2 suppw and n[N,

vðxþ hnÞ ¼ 1; vðx� hnÞ ¼ 0; a0ðx	 hnÞ ¼ 0:

Hence, for all n[N and x 2 R,



ahnðxÞ � arðxÞ

�
wðxÞ ¼



ahnr ðxÞ � arðxÞ

�
wðxÞ; ð6:16Þ



a�hnðxÞ � alðxÞ

�
wðxÞ ¼



a�hn
l ðxÞ � alðxÞ

�
wðxÞ: ð6:17Þ

It is clear that the functions on the right-hand sides of (6.16)–(6.17) belong to

C1
c ðRÞ. Therefore, by the Stechkin-type inequality (1.4), for all n[N,

�
�


ahn � ar

�
w
�
�
MXðR;wÞ

¼
�
�


ahnr � ar

�
w
�
�
MXðR;wÞ

� cXðR;wÞ
�
�


ahnr � ar

�
w
�
�
VðRÞ

¼ cXðR;wÞ
�
�


ahnr � ar

�
w
�
�
L1ðRÞ

þ cXðR;wÞ

Z

R

ðahnr Þ
0ðxÞ � a0rðxÞ

	
	

	
	 jwðxÞj dx

þ cXðR;wÞ

Z

R

ahnr ðxÞ � arðxÞ
	
	

	
	 jw0ðxÞj dx

� cXðR;wÞ


kwkL1ðRÞ þ kw0kL1ðRÞ

��
�ahnr � ar

�
�
L1ðRÞ

þ cXðR;wÞkwkL1ðRÞ
�
�ðahnr Þ

0 � a0r
�
�
L1ðRÞ

ð6:18Þ

and, analogously,

�
�


a�hn � al

�
w
�
�
MXðR;wÞ

� cXðR;wÞ


kwkL1ðRÞ þ kw0kL1ðRÞ

��
�a�hn

l � al
�
�
L1ðRÞ

þ cXðR;wÞkwkL1ðRÞ
�
�ða�hn

l Þ0 � a0l
�
�
L1ðRÞ:

ð6:19Þ

Combining (6.14)–(6.15) and (6.18)–(6.19) with (6.9)–(6.10), we see that equalities

(6.12)–(6.13) hold for every f 2 S0ðRÞ. Therefore, (6.11) are fulfilled for every

f 2 XðR;wÞ. Hence, by the Banach-Steinhaus theorem (see, e.g., [34,

Theorem 1.4.2]),
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karkMXðR;wÞ
¼ kW0ðarÞkBðXðR;wÞÞ � lim inf

n!1
kehnW0ðaÞe�hn IkBðXðR;wÞÞ

� kW0ðaÞkBðXðR;wÞÞ ¼ kakMXðR;wÞ

and, analogously,

kalkMXðR;wÞ
¼ kW0ðalÞkBðXðR;wÞÞ � lim inf

n!1
ke�hnW

0ðaÞehnIkBðXðR;wÞÞ
� kW0ðaÞkBðXðR;wÞÞ ¼ kakMXðR;wÞ

;

which completes the proof of (6.7). h

Now we extend the previous result for functions a of the form (6.8) with general

al; ar 2 APXðR;wÞ and a0 2 C0;XðR;wÞð _RÞ, keeping the nice function v as above.

Lemma 6.4 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Let v 2 CðRÞ be any real-valued monotonically increas-

ing function such that there exists a point x0 [ 0 such that vðxÞ ¼ 0 for x\� x0
and vðxÞ ¼ 1 for x[ x0. If al; ar 2 APXðR;wÞ, a0 2 C0;XðR;wÞð _RÞ, where C0;XðR;wÞð _RÞ
is defined by (3.17), and a is given by equality (6.8), then inequalities (6.7) hold.

Proof By the definition of APXðR;wÞ, there are sequences faðnÞl gn2N; fa
ðnÞ
r gn2N in

APP such that

lim
n!1

�
�a

ðnÞ
l � al

�
�
MXðR;wÞ

¼ 0; lim
n!1

�
�aðnÞr � ar

�
�
MXðR;wÞ

¼ 0: ð6:20Þ

On the other hand, by Theorem 3.3, there is a sequence faðnÞ0 gn2N in C1
c ðRÞ such

that

lim
n!1

�
�a

ðnÞ
0 � a0

�
�
MXðR;wÞ

¼ 0: ð6:21Þ

For n 2 N, consider the functions

aðnÞ :¼ ð1� vÞaðnÞl þ vaðnÞr þ a
ðnÞ
0 : ð6:22Þ

It follows from equalities (6.20)–(6.22) and Lemma 6.3 that

kalkMXðR;wÞ
¼ lim

n!1

�
�a

ðnÞ
l

�
�
MXðR;wÞ

� lim
n!1

�
�aðnÞ

�
�
MXðR;wÞ

¼ kakMXðR;wÞ
;

karkMXðR;wÞ
¼ lim

n!1

�
�aðnÞr

�
�
MXðR;wÞ

� lim
n!1

�
�aðnÞ

�
�
MXðR;wÞ

¼ kakMXðR;wÞ
;

which completes the proof of inequalities (6.7). h

Now we observe that the algebra Au does not depend on the particular choice of a

real-valued monotonically increasing function u 2 CðRÞ satisfying conditions (6.1).

Lemma 6.5 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

123

1158 C. A. Fernandes, A. Yu. Karlovich



w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Let u; v 2 CðRÞ be two real-valued monotonically

increasing functions such that

uð�1Þ ¼ vð�1Þ ¼ 0; uðþ1Þ ¼ vðþ1Þ ¼ 1:

Then Au ¼ Av.

Proof If a 2 Au, then a ¼ ð1� uÞal þ uar þ a0 for some al; ar 2 APXðR;wÞ and

a0 2 C0;XðR;wÞð _RÞ. On the other hand, a ¼ ð1� vÞal þ var þ b0 with

b0 ¼ ðv� uÞal þ ðu� vÞar þ a0 ¼ ðu� vÞðar � alÞ þ a0:

Since the functions u, v are monotonically increasing, we have u; v 2 VðRÞ. Hence
u� v 2 VðRÞ \ CðRÞ and

uðþ1Þ � vðþ1Þ ¼ uð�1Þ � vð�1Þ ¼ 0:

Thus u� v 2 Cð _RÞ \ VðRÞ � CXðR;wÞð _RÞ and ðu� vÞð1Þ ¼ 0. Since the function

ar � al belongs to APXðR;wÞ, it follows from Lemma 5.3 that

ðu� vÞðar � alÞ 2 C0;XðR;wÞð _RÞ:

Then b0 2 C0;XðR;wÞð _RÞ and a 2 Av. Therefore Au � Av. It can be shown analo-

gously that Av � Au. Thus Au ¼ Av. h

Combining Lemmas 6.4–6.5, we arrive at the main result of this subsection.

Theorem 6.6 Let XðRÞ be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0\aX , bX\1. Suppose that

w 2 A0
1=aX

ðRÞ \ A0
1=bX

ðRÞ. Let u 2 CðRÞ be a real-valued monotonically increasing

function such that uð�1Þ ¼ 0 and uðþ1Þ ¼ 1. If a 2 Au, that is,

a ¼ ð1� uÞal þ uar þ a0 with al; ar 2 APXðR;wÞ; a0 2 C0;XðR;wÞð _RÞ;

where C0;XðR;wÞð _RÞ is defined by (3.17), then inequalities (6.7) hold.

6.3 Proof of Theorem 1.2

The idea of the proof is borrowed from the proof of [10, Theorem 1.21]. If

a 2 APXðR;wÞ, then a ¼ ð1� uÞaþ uaþ 0, whence a 2 Au. If f 2 CXðR;wÞðRÞ, then
the function f0 ¼ f � ð1� uÞf ð�1Þ � uf ðþ1Þ belongs to C0;XðR;wÞð _RÞ. Therefore
f ¼ ð1� uÞf ð�1Þ þ uf ðþ1Þ þ f0 2 Au. These observations imply that

SAPXðR;wÞ � closMXðR;wÞ ðAuÞ: ð6:23Þ

On the other hand, it is obvious that
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closMXðR;wÞ ðAuÞ � SAPXðR;wÞ: ð6:24Þ

Combining (6.23)–(6.24), we arrive at the equality

SAPXðR;wÞ ¼ closMXðR;wÞ ðAuÞ: ð6:25Þ

By Theorem 6.6, for every a ¼ ð1� uÞar þ uar þ a0 2 Au with al; ar 2 APXðR;wÞ

and a0 2 C0;XðR;wÞð _RÞ, one has

karkMXðR;wÞ
� kakMXðR;wÞ

; kalkMXðR;wÞ
� kakMXðR;wÞ

: ð6:26Þ

Consequently, if
�
ð1� uÞaðnÞl þ ua

ðnÞ
r þ a

ðnÞ
0

�
n2N is a Cauchy sequence in Au,

where
�
a
ðnÞ
l

�
n2N;

�
a
ðnÞ
r

�
n2N are sequences in APXðR;wÞ and

�
a
ðnÞ
0

�
n2N is a sequence

in C0;XðR;wÞð _RÞ, then
�
a
ðnÞ
l

�
n2N and

�
a
ðnÞ
r

�
n2N are Cauchy sequences in APXðR;wÞ.

Consequently,
�
a
ðnÞ
0

�
n2N is a Cauchy sequence in C0;XðR;wÞð _RÞ. Since APXðR;wÞ is

closed by its definition and C0;XðR;wÞð _RÞ is closed in view of Theorem 3.3, we

conclude that the limits

al :¼ lim
n!1

a
ðnÞ
l ; ar ¼ lim

n!1
aðnÞr

belong to APXðR;wÞ and that the limit

a0 :¼ lim
n!1

a
ðnÞ
0

belongs to C0;XðR;wÞð _RÞ. Therefore, the limit

lim
n!1



ð1� uÞaðnÞl þ uaðnÞr þ a

ðnÞ
0

�

belongs to Au. Thus

closMXðR;wÞ ðAuÞ ¼ Au: ð6:27Þ

It follows from (6.25) and (6.27) that Au ¼ SAPXðR;wÞ. In particular, every function

a 2 SAPXðR;wÞ is of the form

a ¼ ð1� uÞal þ uar þ a0 ð6:28Þ

with al; ar 2 APXðR;wÞ and a0 2 C0;XðR;wÞ. We infer from (6.26) that the represen-

tation (6.28) is unique for the function u. Moreover, the proof of Lemma 6.5 shows

that al; ar 2 APXðR;wÞ are independent of the particular choice of the function u. By

Lemma 6.1, the mappings a 7!al and a 7!ar are algebraic homomorphisms of Au ¼
SAPXðR;wÞ onto APXðR;wÞ. In view of (6.26), these homomorphisms are Banach

algebra homomorphisms of the Banach algebra SAPXðR;wÞ onto the Banach algebra

APXðR;wÞ and the norms of these homomorphisms are not greater than one. For every

function a 2 APXðR;wÞ, we have equalities in (6.26) because
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a ¼ ð1� uÞaþ uaþ 0 ¼ al ¼ ar:

Thus, the norms of the homomorphisms a 7!al and a 7!al are equal to one. h
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4. Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: Toeplitz operators with frequency modulated semi-

almost periodic symbols. J. Fourier Anal. Appl. 7, 523–535 (2001)
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7. Böttcher, A., Karlovich, Y.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators.
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