

ORIGINAL ARTICLE

Semi-almost periodic Fourier multipliers on rearrangementinvariant spaces with suitable Muckenhoupt weights

C. A. Fernandes¹ · A. Yu. Karlovich¹

Received: 4 November 2019 / Accepted: 7 January 2020 / Published online: 29 January 2020 - Sociedad Matemática Mexicana 2020

Abstract

Let $X(\mathbb{R})$ be a separable rearrangement-invariant space and w be a suitable Muckenhoupt weight. We show that for any semi-almost periodic Fourier multiplier a on $X(\mathbb{R}, w) = \{f : fw \in X(\mathbb{R})\}$ there exist uniquely determined almost periodic Fourier multipliers a_l , a_r on $X(\mathbb{R}, w)$, such that

$$
a=(1-u)a_l+ua_r+a_0,
$$

for some monotonically increasing function u with $u(-\infty) = 0$, $u(+\infty) = 1$ and some continuous and vanishing at infinity Fourier multiplier a_0 on $X(\mathbb{R}, w)$. This result extends previous results by Sarason (Duke Math J 44:357–364, 1977) for $L^2(\mathbb{R})$ and by Karlovich and Loreto Hernández (Integral Equ Oper Theor 62:85– 128, 2008) for weighted Lebesgue spaces $L^p(\mathbb{R}, w)$ with weights in a suitable subclass of the Muckenhoupt class $A_p(\mathbb{R})$.

Keywords Rearrangement-invariant Banach function space \cdot Boyd $indices \cdot$ Muckenhoupt weight \cdot Almost periodic function \cdot Semi-almost periodic function · Fourier multiplier

Mathematics Subject Classification Primary $42A45$ \cdot Secondary $46E30$

& A. Yu. Karlovich oyk@fct.unl.pt

> C. A. Fernandes caf@fct.unl.pt

Dedicated to Professor Yuri I. Karlovich on the occasion of his 70th birthday.

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the projects UID/MAT/00297/2019 (Centro de Matemática e Aplicações).

Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica, Portugal

1 Introduction

Let $C(\overline{\mathbb{R}})$ be the C^{*}-algebra of all continuous functions on the two-point compactification of the real line $\mathbb{R} = [-\infty, +\infty]$ and

$$
C(\mathbb{R}) = \{ f \in C(\overline{\mathbb{R}}) : f(-\infty) = f(+\infty) \},
$$

where $\dot{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ is the one-point compactification of the real line. Let APP denote the set of all almost periodic polynomials, that is, finite sums of the form $\sum_{\lambda \in A} c_{\lambda} e_{\lambda}$, where

$$
e_{\lambda}(x):=e^{i\lambda x},\quad x\in\mathbb{R},
$$

 $c_i \in \mathbb{C}$ and $\Lambda \subset \mathbb{R}$ is a finite subset of R. The smallest closed subalgebra of $L^{\infty}(\mathbb{R})$ that contains APP is denoted by AP and called the algebra of (uniformly) almost periodic functions. Sarason [\[36](#page-27-0)] introduced the algebra of semi-almost periodic functions as the smallest closed subalgebra of $L^{\infty}(\mathbb{R})$ that contains AP and $C(\overline{\mathbb{R}})$:

$$
SAP := \mathrm{alg}_{L^{\infty}(\mathbb{R})} \{AP, C(\overline{\mathbb{R}})\}.
$$

It is not difficult to see that AP and SAP are C*-subalgebras of $L^{\infty}(\mathbb{R})$.

Theorem 1.1 (Sarason [\[36](#page-27-0)], see also [[10,](#page-26-0) Theorem 1.21]) Let $u \in C(\overline{\mathbb{R}})$ be any function for which $u(-\infty) = 0$ and $u(+\infty) = 1$. If $a \in SAP$, then there exist $a_l, a_r \in AP$ and $a_0 \in C(\mathbb{R})$ such that $a_0(\infty) = 0$ and

$$
a = (1 - u)a_l + ua_r + a_0.
$$
 (1.1)

The functions a_l , a_r are uniquely determined by a and independent of the particular choice of u. The maps $a \mapsto a_l$ and $a \mapsto a_r$ are C^{*}-algebra homomorphisms of SAP onto AP.

The uniquely determined function a_l (resp. a_r) is called the left (resp. right) almost periodic representative of the semi-almost periodic function a.

Let $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform:

$$
(\mathcal{F}f)(x) := \widehat{f}(x) := \int_{\mathbb{R}} f(t) e^{itx} dt, \quad x \in \mathbb{R},
$$

and let $\mathcal{F}^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be the inverse of \mathcal{F} ,

$$
(\mathcal{F}^{-1}g)(t) = \frac{1}{2\pi} \int_{\mathbb{R}} g(x)e^{-itx} dx, \quad t \in \mathbb{R}.
$$

It is well known that the Fourier convolution operator

$$
W^0(a) := \mathcal{F}^{-1} a \mathcal{F} \tag{1.2}
$$

is bounded on the space $L^2(\mathbb{R})$ for every $a \in L^{\infty}(\mathbb{R})$.

Let $X(\mathbb{R})$ be a separable Banach function space (see Sect. [2.1](#page-5-0) for the definition and some properties of Banach function spaces). Then $L^2(\mathbb{R}) \cap X(\mathbb{R})$ is dense in $X(\mathbb{R})$ (see, e.g., [[15,](#page-26-0) Lemma 2.1]). A function $a \in L^{\infty}(\mathbb{R})$ is called a Fourier multiplier on $X(\mathbb{R})$ if the convolution operator $W^0(a)$ defined by [\(1.2\)](#page-1-0) maps the set $L^2(\mathbb{R}) \cap X(\mathbb{R})$ into the space $X(\mathbb{R})$ and extends to a bounded linear operator on $X(\mathbb{R})$. The function a is called the symbol of the Fourier convolution operator $W^0(a)$. The set $\mathcal{M}_{X(\mathbb{R})}$ of all Fourier multipliers on $X(\mathbb{R})$ is a unital normed algebra under pointwise operations and the norm:

$$
||a||_{\mathcal{M}_{X(\mathbb{R})}} := ||W^{0}(a)||_{\mathcal{B}(X(\mathbb{R}))},
$$

where $\mathcal{B}(X(\mathbb{R}))$ denotes the Banach algebra of all bounded linear operators on the space $X(\mathbb{R})$.

Note that the Lebesgue spaces $L^p(\mathbb{R})$, $1 \leq p \leq \infty$, constitute the simplest example of Banach function spaces. Motivated by the work of Duduchava and Saginashvili [\[14](#page-26-0)], Karlovich and Spitkovsky [\[29](#page-27-0)] (see also [\[10](#page-26-0), Section 19.1]) introduced the algebra $SAP_{L^p(\mathbb{R})}$ of semi-almost periodic Fourier multipliers on the Lebesgue spaces $L^p(\mathbb{R})$, $1\lt p<\infty$, and proved an analogue of Sarason's Theorem [1.1](#page-1-0) for $SAP_{IP(\mathbb{R})}$ (see [\[29](#page-27-0), Lemma 3.1(iv)] and [[10](#page-26-0), Proposition 19.3]).

We should mention that, after Sarason's pioneering paper [[36\]](#page-27-0), various classes of Toeplitz and convolution type operators involving semi-almost periodic functions were studied on various function spaces, for instance, by Saginashvili [[35\]](#page-27-0), Grudsky [\[19](#page-26-0)]; Böttcher et al. $[3-6, 8-10]$; Nolasco and Castro $[32, 33]$ $[32, 33]$ $[32, 33]$ $[32, 33]$; Bogveradze and Castro [[2\]](#page-26-0); the second author and Spitkovsky [\[25](#page-27-0)].

Let $\mathfrak{M}(\mathbb{R})$ denote the set of all measurable complex-valued Lebesgue measurable functions on $\mathbb R$. As usual, we identify two functions on $\mathbb R$ which are equal almost everywhere. A measurable function $w : \mathbb{R} \to [0,\infty]$ is called a weight if the set $w^{-1}(\{0,\infty\})$ has measure zero. For $1\lt p<\infty$, the Muckenhoupt class $A_p(\mathbb{R})$ is defined as the class of all weights $w : \mathbb{R} \to [0, \infty]$ such that $w \in L^p_{loc}(\mathbb{R})$, $w^{-1} \in$ $L^{p'}_{\text{loc}}(\mathbb{R})$ and

$$
\sup_{I} \left(\frac{1}{|I|} \int_{I} w^{p}(x) dx \right)^{1/p} \left(\frac{1}{|I|} \int_{I} w^{-p'}(x) dx \right)^{1/p'} < \infty,
$$
\n(1.3)

where $1/p + 1/p' = 1$ and the supremum is taken over all intervals $I \subset \mathbb{R}$ of finite length III. Since $w \in L^p_{loc}(\mathbb{R})$ and $w^{-1} \in L^{p'}_{loc}(\mathbb{R})$, the weighted Lebesgue space

$$
L^p(\mathbb{R}, w) := \{ f \in \mathfrak{M}(\mathbb{R}) : f w \in L^p(\mathbb{R}) \}
$$

is a separable Banach function space (see, e.g., [\[26](#page-27-0), Lemma 2.4]) with the norm:

$$
||f||_{L^p(\mathbb{R},w)} := \left(\int_{\mathbb{R}} |f(x)|^p w^p(x) \,dx\right)^{1/p}.
$$

Note that if $w \in A_p(\mathbb{R})$, then it may happen that the function e_λ does not belong to $\mathcal{M}_{L^p(\mathbb{R},w)}$ for some $\lambda \in \mathbb{R}$. Hence, order to generalize Theorem [1.1](#page-1-0) to the setting of weighted Lebesgue spaces $L^p(\mathbb{R}, w)$, one has to restrict the study to a narrower class of weights. For $1 \lt p \lt \infty$, let

$$
A_p^0(\mathbb{R}) := \left\{ w \in A_p(\mathbb{R}) \ : \ v_{\lambda} = \frac{w(\cdot + \lambda)}{w(\cdot)} \in L^{\infty}(\mathbb{R}) \text{ for all } \lambda \in \mathbb{R} \right\}.
$$

For a weight $w \in A_p^0(\mathbb{R})$, Karlovich and Loreto Hernández defined the algebra $SAP_{L^{p}(\mathbb{R},w)}$ of semi-almost periodic Fourier multipliers on the weighted Lebesgue space $L^p(\mathbb{R}, w)$ and proved an analogue of Theorem [1.1](#page-1-0) in this setting (see [[27,](#page-27-0) Theorem 3.1]). The aim of this paper is to extend this result to the setting of separable rearrangement-invariant Banach function spaces with suitable Muckenhoupt weights.

It is well known that the Lebesgue spaces $L^p(\mathbb{R})$, $1 \leq p \leq \infty$, fall in the class of rearrangement-invariant Banach function spaces. Other classical examples of rearrangement-invariant Banach function spaces are Orlicz spaces $L^{\phi}(\mathbb{R})$ and Lorentz spaces $L^{p,q}(\mathbb{R})$, $1 \leq p, q \leq \infty$. For a rearrangement-invariant Banach function space $X(\mathbb{R})$, its Boyd indices α_X, β_X are important interpolation characteristics. In particular, $\alpha_{L^p} = \beta_{L^p} = 1/p$ for $1 \leq p \leq \infty$. In general, $0 \leq \alpha_X \leq \beta_X \leq 1$ and it may happen that $\alpha_X\lt \beta_X$. We postpone formal definitions of rearrangementinvariant Banach function spaces and their Boyd indices until Sects. [2.2–2.3](#page-6-0) and refer to $[1, Chap. 3]$ $[1, Chap. 3]$ $[1, Chap. 3]$ and $[30, Chap. 2]$ $[30, Chap. 2]$ for the detailed study of these concepts.

Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices α_X , β_X satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. Then

$$
X(\mathbb{R}, w) := \{ f \in \mathfrak{M}(\mathbb{R}) : f w \in X(\mathbb{R}) \}
$$

is a separable Banach function space (see Lemma [2.3\(](#page-8-0)b) below). Suppose that $a : \mathbb{R} \to \mathbb{C}$ is a function of finite total variation $V(a)$ given by

$$
V(a) := \sup \sum_{k=1}^n |a(x_k) - a(x_{k-1})|,
$$

where the supremum is taken over all partitions of $\mathbb R$ of the form

$$
-\infty < x_0 < x_1 < \cdots < x_n < +\infty
$$

with $n \in \mathbb{N}$. The set $V(\mathbb{R})$ of all functions of finite total variation on R with the norm

$$
||a||_V := ||a||_{L^{\infty}(\mathbb{R})} + V(a)
$$

is a unital non-separable Banach algebra. It follows from [[21,](#page-26-0) Corollary 2.2] that there exists a constant $c_{X(\mathbb{R},w)} \in (0,\infty)$ such that for all $a \in V(\mathbb{R})$,

$$
||a||_{\mathcal{M}_{X(\mathbb{R},w)}} \le c_{X(\mathbb{R},w)} ||a||_{V(\mathbb{R})}.
$$
\n(1.4)

This inequality is usually called a Stechkin-type inequality (see, e.g., [[13,](#page-26-0)

Theorem 2.11] and [\[10](#page-26-0), Theorem 17.1] for the case of Lebesgue spaces and Lebesgue spaces with Muckenhoupt weights, respectively). Let $C_{X(\mathbb{R},w)}(\mathbb{R})$ and $C_{X(\mathbb{R},w)}(\overline{\mathbb{R}})$ denote the closures of $C(\dot{\mathbb{R}}) \cap V(\mathbb{R})$ and $C(\overline{\mathbb{R}}) \cap V(\mathbb{R})$ with respect to the norm of $\mathcal{M}_{X(\mathbb{R},w)}$, respectively.

If $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$, then $APP \subset \mathcal{M}_{X(\mathbb{R},w)}$ (see Corollary [5.2](#page-17-0) below). Because of this observation, we will refer to $A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$ as the class of suitable Muckenhoupt weights. By $AP_{X(\mathbb{R},w)}$ we denote the closure of APP with respect to the norm of $\mathcal{M}_{X(\mathbb{R},w)}$. Finally, let $SAP_{X(\mathbb{R},w)}$ be the smallest closed subalgbera of $\mathcal{M}_{X(\mathbb{R},w)}$ that contains the algebras $AP_{X(\mathbb{R},w)}$ and $C_{X(\mathbb{R},w)}(\overline{\mathbb{R}})$:

$$
\textit{SAP}_{X(\mathbb{R},w)} = \text{alg}_{\mathcal{M}_{X(\mathbb{R},w)}} \big\{ \textit{AP}_{X(\mathbb{R},w)}, \textit{C}_{X(\mathbb{R},w)}(\overline{\mathbb{R}}) \big\}.
$$

In this paper we present a self-contained proof of the following result.

Theorem 1.2 (Main result) Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Let $u \in C(\overline{\mathbb{R}})$ be any real-valued monotonically increasing function such that $u(-\infty) = 0$ and $u(+\infty) = 1$. Then for every function $a \in$ $SAP_{X(\mathbb{R},w)}$ there exist functions $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and a function $a_0 \in C_{X(\mathbb{R},w)}(\mathbb{R})$ such that $a_0(\infty) = 0$ and ([1](#page-1-0).1) holds. The functions a_l , a_r are uniquely determined by the function a and are independent of the particular choice of the function u. The maps a $\mapsto a_l$ and a $\mapsto a_r$ are continuous Banach algebra homomorphisms of SAP_{X(Rw)} onto $AP_{X(\mathbb{R},w)}$ of norm 1.

The paper is organized as follows. In Sect. [2](#page-5-0), we collect definitions and properties of rearrangement-invariant Banach functions spaces and their Boyd indices α_X , β_X . Further, we discuss properties of weighted rearrangement-invariant spaces $X(\mathbb{R}, w)$ and state several results about general Fourier multipliers on $X(\mathbb{R}, w)$ for weights w belonging to the intersection of the Muckenhoupt classes $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R}).$

In Sect. [3,](#page-10-0) we show that, under the assumption $w \in A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$, the set of continuous Fourier multipliers vanishing at infinity on the space $X(\mathbb{R}, w)$ coincides with the closure of the set of all smooth compactly supported functions with respect to the norm of $\mathcal{M}_{X(\mathbb{R},w)}$.

Relying on the results of the previous section, in Sect. [4,](#page-14-0) we show that $C_{X(\mathbb{R},w)}(\dot{\mathbb{R}}) = C_{X(\mathbb{R},w)}(\overline{\mathbb{R}}) \cap C(\dot{\mathbb{R}})$ and that the algebra $C_{X(\mathbb{R},w)}(\dot{\mathbb{R}})$ is contained in the algebra $SO_{X(\mathbb{R},w)}$ of slowly oscillating Fourier multipliers (see [\[21](#page-26-0)]).

In Sect. [5,](#page-17-0) we show that if $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$, then the set of almost periodic polynomials APP is contained in $\mathcal{M}_{X(\mathbb{R},w)}$. We give an example of a nontrivial weight in $A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$ (based on an example from [[27\]](#page-27-0)). Further, we show that the product of an almost periodic Fourier multiplier and a continuous Fourier multiplier vanishing at infinity is a continuous Fourier multiplier vanishing at infinity.

Section [6](#page-19-0) is devoted to the proof of the main result. We show that the set \mathcal{A}_{μ} of functions of the form [\(1.1\)](#page-1-0) with $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and $a_0 \in C_{X(\mathbb{R},w)}(\mathbb{R})$ such that $a_0(\infty) = 0$ forms an algebra, and that the mappings $a \mapsto a_l$ and $a \mapsto a_r$ are algebraic homomorphisms of \mathcal{A}_u onto $AP_{X(\mathbb{R},w)}$. We prove that

$$
||a_{l}||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}, \quad ||a_{r}||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}, \quad a \in \mathcal{A}_{u}, \tag{1.5}
$$

which implies that the algebra A_u is closed. Since the closure of A_u with respect to the norm of $\mathcal{M}_{X(\mathbb{R},w)}$ coincides with $SAP_{X(\mathbb{R},w)}$, we conclude that \mathcal{A}_u is equal to $SAP_{X(\mathbb{R},w)}$. Moreover, inequalities (1.5) mean that $a \mapsto a_l$ and $a \mapsto a_r$ are Banach algebra homomorphisms of $SAP_{X(|R,w)}$ onto $AP_{X(\mathbb{R},w)}$ of norm 1.

2 Preliminaries

2.1 Banach function spaces

Let $\mathbb{R}_+ := (0, \infty)$ and $\mathbb{S} \in \{ \mathbb{R}_+, \mathbb{R} \}$. The set of all Lebesgue measurable complexvalued functions on S is denoted by $\mathfrak{M}(S)$. Let $\mathfrak{M}^+(\mathfrak{S})$ be the subset of functions in $\mathfrak{M}(\mathbb{S})$ whose values lie in $[0,\infty]$. The Lebesgue measure of a measurable set $E \subset \mathbb{S}$ is denoted by |E| and its characteristic function is denoted by χ_F . Following [[1,](#page-26-0) Chap. 1, Definition 1.1], a mapping $\rho : \mathfrak{M}^+(\mathfrak{S}) \to [0,\infty]$ is called a Banach function norm if, for all functions f, g, f_n $(n \in \mathbb{N})$ in $\mathfrak{M}^+(\mathfrak{S})$, for all constants $a \geq 0$, and for all measurable subsets E of \mathcal{S} , the following properties hold:

\n- (A1)
$$
\rho(f) = 0 \Leftrightarrow f = 0
$$
 a.e., $\rho(af) = a\rho(f)$, $\rho(f + g) \le \rho(f) + \rho(g)$,
\n- (A2) $0 \le g \le f$ a.e. $\Rightarrow \rho(g) \le \rho(f)$ (the lattice property),
\n- (A3) $0 \le f_n \uparrow f$ a.e. $\Rightarrow \rho(f_n) \uparrow \rho(f)$ (the Fatou property),
\n- (A4) $|E| < \infty \Rightarrow \rho(\chi_E) < \infty$,
\n- (A5) $|E| < \infty \Rightarrow \int_E f(x) \, dx \le C_E \rho(f)$
\n

with $C_E \in (0,\infty)$ which may depend on E and ρ but is independent of f. When functions differing only on a set of measure zero are identified, the set $X(\mathbb{S})$ of all functions $f \in \mathfrak{M}(\mathbb{S})$ for which $\rho(|f|) < \infty$ is called a Banach function space. For each $f \in X(\mathbb{S})$, the norm of f is defined by

$$
||f||_{X(\mathbb{S})} := \rho(|f|).
$$

Under the natural linear space operations and under this norm, the set $X(\mathbb{S})$ becomes a Banach space (see [\[1](#page-26-0), Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate norm ρ' is defined on $\mathfrak{M}^+(\mathfrak{S})$ by

$$
\rho'(g) := \sup \bigg\{ \int_{\mathbb{S}} f(x)g(x) dx \ : \ f \in \mathfrak{M}^+(\mathbb{S}), \ \rho(f) \le 1 \bigg\}, \quad g \in \mathfrak{M}^+(\mathbb{S}).
$$

It is a Banach function norm itself [[1,](#page-26-0) Chap. 1, Theorem 2.2]. The Banach function

space $X'(\mathbb{R})$ determined by the Banach function norm ρ' is called the associate space (Köthe dual) of $X(\mathbb{S})$. The associate space $X'(\mathbb{S})$ is naturally identified with a subspace of the (Banach) dual space $[X(\mathbb{S})]^*$.

2.2 Rearrangement-invariant Banach function spaces

Suppose that $\mathbb{S} \in \{ \mathbb{R}, \mathbb{R}_+ \}$. Let $\mathfrak{M}_0(\mathbb{S})$ and $\mathfrak{M}_0^+(\mathbb{S})$ be the classes of a.e. finite functions in $\mathfrak{M}(\mathbb{S})$ and $\mathfrak{M}^+(\mathbb{S})$, respectively. The distribution function μ_f of a function $f \in \mathfrak{M}_0(\mathbb{S})$ is given by

$$
\mu_f(\lambda) := \big|\{x \in \mathbb{S} : |f(x)| > \lambda\}\big|, \quad \lambda \ge 0.
$$

Two functions $f, g \in \mathfrak{M}_0(\mathbb{S})$ are said to be equimeasurable if $\mu_f(\lambda) = \mu_g(\lambda)$ for all $\lambda \geq 0$. The non-increasing rearrangement of $f \in \mathfrak{M}_0(\mathbb{S})$ is the function defined by

$$
f^*(t) := \inf\{\lambda : \mu_f(\lambda) \le t\}, \quad t \ge 0.
$$

We here use the standard convention that inf $\emptyset = +\infty$.

A Banach function norm $\rho : \mathfrak{M}^+(\mathfrak{S}) \to [0,\infty]$ is called rearrangement-invariant if for every pair of equimeasurable functions $f, g \in \mathfrak{M}^+_0(\mathbb{S})$ the equality $\rho(f) = \rho(g)$ holds. In that case, the Banach function space $X(\mathbb{S})$ generated by ρ is said to be a rearrangement-invariant Banach function space (or simply rearrangement-invariant space). Lebesgue, Orlicz, and Lorentz spaces are classical examples of rearrangement-invariant Banach function spaces (see, e.g., [\[1](#page-26-0)] and the references therein). By [\[1](#page-26-0), Chap. 2, Proposition 4.2], if a Banach function space $X(\mathbb{S})$ is rearrangementinvariant, then its associate space $X'(\mathbb{S})$ is rearrangement-invariant, too.

2.3 Boyd indices

Suppose $X(\mathbb{R})$ is a rearrangement-invariant Banach function space generated by a rearrangement-invariant Banach function norm ρ . In this case, the Luxemburg representation theorem [[1,](#page-26-0) Chap. 2, Theorem 4.10] provides a unique rearrangement-invariant Banach function norm $\bar{\rho}$ over the half-line \mathbb{R}_+ equipped with the Lebesgue measure, defined by

$$
\overline{\rho}(h) := \sup \biggl\{ \int_{\mathbb{R}_+} g^*(t) h^*(t) \, \mathrm{d} t : \ \rho'(g) \leq 1 \biggr\},
$$

and such that $\rho(f) = \overline{\rho}(f^*)$ for all $f \in \mathfrak{M}_0^+(\mathbb{R})$. The rearrangement-invariant Banach function space generated by $\overline{\rho}$ is denoted by $\overline{X}(\mathbb{R}_+)$.

For each $t > 0$, let E_t denote the dilation operator defined on $\mathfrak{M}(\mathbb{R}_+)$ by

$$
(E_tf)(s) = f(st), \quad 0 < s < \infty.
$$

With $X(\mathbb{R})$ and $\overline{X}(\mathbb{R}_+)$ as above, let $h_X(t)$ denote the operator norm of $E_{1/t}$ as an operator on $\overline{X}(\mathbb{R}_+)$. By [[1,](#page-26-0) Chap. 3, Proposition 5.11], for each $t > 0$, the operator E_t is bounded on $\overline{X}(\mathbb{R}_+)$ and the function h_X is increasing and submultiplicative on $(0, \infty)$. The Boyd indices of $X(\mathbb{R})$ are the numbers α_X and β_X defined by

$$
\alpha_X := \sup_{t \in (0,1)} \frac{\log h_X(t)}{\log t}, \quad \beta_X := \inf_{t \in (1,\infty)} \frac{\log h_X(t)}{\log t}.
$$

By [\[1](#page-26-0), Chap. 3, Proposition 5.13], $0 \leq \alpha_X \leq \beta_X \leq 1$. The Boyd indices are said to be nontrivial if $\alpha_X, \beta_X \in (0, 1)$. The Boyd indices of the Lebesgue space $L^p(\mathbb{R})$, $1 \le p \le \infty$, are both equal to $1/p$. Note that the Boyd indices of a rearrangementinvariant space may be different [\[1](#page-26-0), Chap. 3, Exercises 6, 13].

The next theorem follows from the Boyd interpolation theorem [\[11](#page-26-0), Theorem 1] for quasi-linear operators of weak types (p, p) and (q, q) . Its proof can also be found in [\[1](#page-26-0), Chap. 3, Theorem 5.16] and [[30,](#page-27-0) Theorem 2.b.11].

Theorem 2.1 Let $1 \le q < p \le \infty$ and $X(\mathbb{R})$ be a rearrangement-invariant Banach function space with the Boyd indices α_X, β_X satisfying $1/p<\alpha_X, \beta_X\lt1/q$. Then there exists a constant $C_{p,q} \in (0,\infty)$ such that if a linear operator $T : \mathfrak{M}(\mathbb{R}) \to$ $\mathfrak{M}(\mathbb{R})$ is bounded on the Lebesgue spaces $L^p(\mathbb{R})$ and $L^q(\mathbb{R})$, then it is also bounded on the rearrangement-invariant Banach function space $X(\mathbb{R})$ and

$$
||T||_{\mathcal{B}(X(\mathbb{R}))} \leq C_{p,q} \max \{ ||T||_{\mathcal{B}(L^p(\mathbb{R}))}, ||T||_{\mathcal{B}(L^q(\mathbb{R}))} \}.
$$
 (2.1)

Notice that estimate (2.1) is not stated explicitly in [\[1](#page-26-0), [11](#page-26-0), [30\]](#page-27-0). However, it can be extracted from the proof of the Boyd interpolation theorem.

2.4 Weighted Banach function spaces

Let $X(\mathbb{R})$ be a Banach function space generated by a Banach function norm ρ . We say that $f \in X_{loc}(\mathbb{R})$ if $f \chi_E \in X(\mathbb{R})$ for any measurable set $E \subset \mathbb{R}$ of finite measure.

Lemma 2.2 [\[26](#page-27-0), Lemma 2.4] Let $X(\mathbb{R})$ be a Banach function space generated by a Banach function norm ρ , let $X'(\mathbb{R})$ be its associate space, and let $w : \mathbb{R} \to [0, \infty]$ be a weight. Suppose that $w \in X_{loc}(\mathbb{R})$ and $1/w \in X'_{loc}(\mathbb{R})$. Then

$$
\rho_w(f) := \rho(fw), \quad f \in \mathfrak{M}^+(\mathbb{R}),
$$

is a Banach function norm and

$$
X(\mathbb{R}, w) := \{ f \in \mathfrak{M}(\mathbb{R}) : f w \in X(\mathbb{R}) \}
$$

is a Banach function space generated by the Banach function norm ρ_w . The space $X'(\mathbb{R}, w^{-1})$ is the associate space of $X(\mathbb{R}, w)$.

2.5 Density of nice functions in separable rearrangement-invariant Banach function spaces with Muckenhoupt weights

Recall that the (noncentered) Hardy–Littlewood maximal function Mf of a function $f \in L^1_{loc}(\mathbb{R})$ is defined by

$$
(Mf)(x) := \sup_{I \ni x} \frac{1}{|I|} \int_I |f(y)| \, \mathrm{d}y, \quad x \in \mathbb{R},
$$

where the supremum is taken over all intervals $I \subset \mathbb{R}$ of finite length containing the point x .

Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of rapidly decreasing smooth functions and let us denote by $\mathcal{S}_0(\mathbb{R})$ the set of all functions $f \in \mathcal{S}(\mathbb{R})$ such that their Fourier transforms Ff have compact supports.

Lemma 2.3 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space and $X'(\mathbb{R})$ be its associate space. Suppose that the Boyd indices of $X(\mathbb{R})$ satisfy $0<\alpha_X$, $\beta_X<1$ and $w \in A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. Then

- (a) $w \in X_{loc}(\mathbb{R})$ and $1/w \in X'_{loc}(\mathbb{R})$;
- (b) the Banach function space space $X(\mathbb{R}, w)$ is separable;
- (c) the Hardy-Littlewood maximal operator M is bounded on the Banach function space $X(\mathbb{R}, w)$ and on its associate space $X'(\mathbb{R}, w^{-1})$;
- (d) the set $\mathcal{S}_0(\mathbb{R})$ is dense in the Banach function space $X(\mathbb{R}, w)$.

Proof Parts (a) and (c) are proved in $[21, \text{Section 4.3}]$ $[21, \text{Section 4.3}]$. Part (b) follows from part (a), Lemma [2.2](#page-7-0) and [\[26](#page-27-0), Lemmas 2.7 and 2.11]. Part (d) is a consequence of parts (b), (c) and $[16,$ $[16,$ Theorem 4].

2.6 The Banach algebra $\mathcal{M}_{X(\mathbb{R},w)}$ of Fourier multipliers

The following result plays an important role in this paper.

Theorem 2.4 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X\lt1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. If $a \in \mathcal{M}_{X(\mathbb{R},w)}$, then

$$
||a||_{L^{\infty}(\mathbb{R})} \le ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}.\tag{2.2}
$$

The constant 1 on the right-hand side of (2.2) is best possible.

This theorem follows from Lemma 2.3(b) and $[15,$ $[15,$ Theorem 2.4] (which was deduced from [[24,](#page-26-0) Corollary 4.2]).

Inequality (2.2) was established earlier in $[22,$ $[22,$ Theorem 1] with some constant on the right-hand side that depends on the space $X(\mathbb{R}, w)$.

Since (2.2) is available, an easy adaptation of the proof of $[18, Proposi [18, Proposi [18, Proposi$ tion 2.5.13] leads to the following (we refer to the proof of [[22,](#page-26-0) Corollary 1] for details).

Corollary 2.5 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X\lt1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. Then the set of the Fourier multipliers $\mathcal{M}_{X(\mathbb{R},w)}$ is a Banach algebra under pointwise operations and the norm $\|\cdot\|_{\mathcal{M}_{X(\mathbb{R},w)}}$.

As usual, we denote by $C_c^{\infty}(\mathbb{R})$ the set of all infinitely differentiable functions with compact support.

Theorem 2.6 Suppose that a non-negative even function $\varphi \in C_c^{\infty}(\mathbb{R})$ satisfies the condition

$$
\int_{\mathbb{R}} \varphi(x) dx = 1 \tag{2.3}
$$

and the function φ_{δ} is defined for $\delta > 0$ by

$$
\varphi_{\delta}(x) := \delta^{-1} \varphi(x/\delta), \quad x \in \mathbb{R}.
$$
 (2.4)

Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. If $a \in \mathcal{M}_{X(\mathbb{R},w)}$, then for every $\delta > 0$,

$$
||a * \varphi_{\delta}||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}.
$$
\n(2.5)

Proof The proof is analogous to the proof of [[23,](#page-26-0) Theorem 2.6]. It follows from Lemma [2.3](#page-8-0)(c) and $[26,$ $[26,$ Theorems 3.8(a) and 3.9(c)] that if the weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$, then

$$
\sup_{-\infty < a < b < \infty} \frac{1}{b-a} \|\chi_{(a,b)}\|_{X(\mathbb{R},w)} \|\chi_{(a,b)}\|_{X'(\mathbb{R},w^{-1})} < \infty.
$$

Therefore, by [\[24](#page-26-0), Lemma 1.3], the Banach function space $X(\mathbb{R}, w)$ satisfies the hypotheses of [[24,](#page-26-0) Theorem 1.3]. It is shown in its proof (see [\[24](#page-26-0), Section 4.2]) that for every $\delta > 0$ and every $f \in \mathcal{S}(\mathbb{R}) \cap X(\mathbb{R}, w)$,

$$
\|\mathcal{F}^{-1}(a*\varphi_{\delta})\mathcal{F}f\|_{X(\mathbb{R},w)} \leq \sup \left\{\frac{\|\mathcal{F}^{-1}a\mathcal{F}f\|_{X(\mathbb{R},w)}}{\|f\|_{X(\mathbb{R},w)}}:f\in X_{\mathcal{S}}(\mathbb{R},w)\right\}\|f\|_{X(\mathbb{R},w)},
$$

where

$$
X_{\mathcal{S}}(\mathbb{R},w):=(\mathcal{S}(\mathbb{R})\cap X(\mathbb{R},w))\backslash\{0\}.
$$

Then, for every $\delta > 0$,

$$
\sup\left\{\frac{\|\mathcal{F}^{-1}(a*\varphi_{\delta})\mathcal{F}f\|_{X(\mathbb{R},w)}}{\|f\|_{X(\mathbb{R},w)}}:f\in X_{\mathcal{S}}(\mathbb{R},w)\right\}\leq\|a\|_{\mathcal{M}_{X(\mathbb{R},w)}}.\tag{2.6}
$$

By Lemma [2.3\(](#page-8-0)b), the Banach function space $X(\mathbb{R}, w)$ is separable. Then it follows

from [\[1](#page-26-0), Chap. 1, Corollary 5.6] and [\[24](#page-26-0), Theorems 2.3 and 6.1] that for every δ > 0, the left-hand side of inequality ([2.6](#page-9-0)) coincides with the multiplier norm $\|a * \varphi_{\delta}\|_{\mathcal{M}_{X(\mathbb{R},w)}},$ which completes the proof of inequality [\(2.5\)](#page-9-0).

3 Continuous Fourier multipliers vanishing at infinity

3.1 The case of Lebesgue spaces with Muckenhoupt weights

The closure of a subset $\mathfrak S$ of a Banach space $\mathcal E$ in the norm of $\mathcal E$ will be denoted by $\text{clos}_{\mathcal{E}}(\mathfrak{S}).$

Let $C_0(\mathbb{R})$ be the set of all functions $f \in C(\mathbb{R})$ such that $f(\infty) = 0$.

Lemma 3.1 Let $1 < p < \infty$ and $w \in A_p(\mathbb{R})$. Then

$$
C_0(\mathbb{R})\cap V(\mathbb{R})\subset \text{clos}_{\mathcal{M}_{L^p(\mathbb{R},w)}}\big(C_c^{\infty}(\mathbb{R})\big).
$$

Proof The idea of the proof is borrowed from $[20,$ $[20,$ Theorem 1.16] (see also $[23,$ $[23,$ Theorem 3.1]). If $w \in A_p(\mathbb{R})$, then $w^{1+\delta_2} \in A_{p(1+\delta_1)}(\mathbb{R})$ whenever $|\delta_1|$ and $|\delta_2|$ are sufficiently small (see, e.g., [[7,](#page-26-0) Theorem 2.31]). If $p \ge 2$, then one can find sufficiently small $\delta_1, \delta_2 > 0$ and a number $\theta \in (0, 1)$ such that

$$
\frac{1}{p} = \frac{1-\theta}{2} + \frac{\theta}{p(1+\delta_1)}, \quad w = 1^{1-\theta} w^{(1+\delta_2)\theta}, \quad w^{1+\delta_2} \in A_{p(1+\delta_1)}(\mathbb{R}). \tag{3.1}
$$

If $1\leq p\leq 2$, then one can find a sufficiently small number $\delta_2 > 0$, a number $\delta_1 < 0$ with sufficiently small $|\delta_1|$, and a number $\theta \in (0, 1)$ such that all conditions in (3.1) are fulfilled.

Let us use the following abbreviations:

$$
\begin{aligned} &\mathcal{M}_p:=\mathcal{M}_{L^p(\mathbb{R},w)},\quad \mathcal{M}_{p_\theta}:=\mathcal{M}_{L^{p(1+\delta_1)}(\mathbb{R},w^{1+\delta_2})},\\ &\mathcal{B}_p:=\mathcal{B}(L^p(\mathbb{R},w)),\quad \mathcal{B}_{p_\theta}:=\mathcal{B}(L^{p(1+\delta_1)}(\mathbb{R},w^{1+\delta_2})).\end{aligned}
$$

For $n \in \mathbb{N}$, let

$$
\psi_n(x) := \begin{cases}\n1 & \text{if } |x| \le n, \\
n+1-|x| & \text{if } n < |x| < n+1, \\
0 & \text{if } |x| \ge n+1.\n\end{cases}
$$
\n(3.2)

Then ψ_n has compact support and $\|\psi_n\|_{V(\mathbb{R})}=3$. By the Stechkin-type inequality $(1.4),$ $(1.4),$

$$
\|\psi_n\|_{\mathcal{M}_{p_\theta}} \leq c_\theta,
$$

where c_{θ} is three times $c_{L^{p(1+\delta_1)}(\mathbb{R},w^{1+\delta_2})}$, and the latter constant is the constant from (1.4) .

Let $a \in C_0(\mathbb{R}) \cap V(\mathbb{R})$. Fix $\varepsilon > 0$. For $n \in \mathbb{N}$, take $b_n := a\psi_n$. Then

$$
\lim_{n \to \infty} \|a - b_n\|_{L^{\infty}(\mathbb{R})} = 0 \tag{3.3}
$$

and $b_n \in C_0(\mathbb{R})$ has compact support. Taking into account the Stechkin-type inequality ([1.4](#page-3-0)), we get

$$
||a - b_n||_{\mathcal{M}_{p_\theta}} \le ||a||_{\mathcal{M}_{p_\theta}} (1 + ||\psi_n||_{\mathcal{M}_{p_\theta}}) \le (1 + c_\theta) c_\theta ||a||_{V(\mathbb{R})}
$$
(3.4)

and

$$
||b_n||_{\mathcal{M}_{p_\theta}} \le ||a||_{\mathcal{M}_{p_\theta}} ||\psi_n||_{\mathcal{M}_{p_\theta}} \le c_\theta^2 ||a||_{V(\mathbb{R})}.
$$
\n(3.5)

It follows from (3.1) (3.1) (3.1) and the Stein–Weiss interpolation theorem (see, e.g., [[1,](#page-26-0) Chap. 3, Theorem 3.6]) that

$$
||a - b_n||_{\mathcal{M}_p} = ||W^0(a - b_n)||_{\mathcal{B}_p}
$$

\n
$$
\leq ||W^0(a - b_n)||_{\mathcal{B}(L^2(\mathbb{R}))}^{1-\theta} ||W^0(a - b_n)||_{\mathcal{B}_{p_\theta}}^{\theta}
$$

\n
$$
= ||a - b_n||_{L^{\infty}(\mathbb{R})}^{1-\theta} ||a - b_n||_{\mathcal{M}_{p_\theta}}^{\theta}.
$$
\n(3.6)

Combining ([3.3](#page-10-0)), (3.4) and (3.6), we see that there exists $n_0 \in \mathbb{N}$ such that

$$
||a - b_{n_0}||_{\mathcal{M}_p} < \varepsilon/2.
$$
\n(3.7)

Let $\varphi \in C_c^{\infty}(\mathbb{R})$ be a non-negative even function satisfying ([2.3](#page-9-0)) and for $\delta > 0$ let the function φ_{δ} be defined by [\(2.4](#page-9-0)). By Theorem [2.6](#page-9-0) and inequality (3.5), for every $\delta > 0$,

$$
||b_{n_0} * \varphi_\delta||_{\mathcal{M}_{p_\theta}} \le ||b_{n_0}||_{\mathcal{M}_{p_\theta}} \le c_\theta^2 ||a||_{V(\mathbb{R})}.
$$
\n(3.8)

It follows from [[12,](#page-26-0) Propositions 4.18, 4.20–4.21] that $b_{n_0} * \varphi_{\delta} \in C_c^{\infty}(\mathbb{R})$ and

$$
\lim_{\delta \to 0^+} \|b_{n_0} * \varphi_\delta - b_{n_0}\|_{L^\infty(\mathbb{R})} = 0.
$$
\n(3.9)

In view of [\(3.1](#page-10-0)) and the Stein-Weiss interpolation theorem (see, e.g., [[1,](#page-26-0) Chap. 3, Theorem 3.6]), we see that

$$
\|b_{n_0} * \varphi_{\delta} - b_{n_0}\|_{\mathcal{M}_p} \n= \|W^0(b_{n_0} * \varphi_{\delta} - b_{n_0})\|_{\mathcal{B}_p} \n\le \|W^0(b_{n_0} * \varphi_{\delta} - b_{n_0})\|_{\mathcal{B}(L^2(\mathbb{R}))}^{1-\theta} \|W^0(b_{n_0} * \varphi_{\delta} - b_{n_0})\|_{\mathcal{B}_{p_\theta}}^{\theta} \n= \|b_{n_0} * \varphi_{\delta} - b_{n_0}\|_{L^{\infty}(\mathbb{R})}^{1-\theta} \|b_{n_0} * \varphi_{\delta} - b_{n_0}\|_{\mathcal{M}_{p_\theta}}^{\theta} \n\le \|b_{n_0} * \varphi_{\delta} - b_{n_0}\|_{L^{\infty}(\mathbb{R})}^{1-\theta} (\|b_{n_0} * \varphi_{\delta}\|_{\mathcal{M}_{p_\theta}} + \|b_{n_0}\|_{\mathcal{M}_{p_\theta}})^{\theta}.
$$
\n(3.10)

Combining (3.8)–(3.10), we conclude that there exists $\delta_0 > 0$ such that

$$
||b_{n_0} * \varphi_{\delta_0} - b_{n_0}||_{\mathcal{M}_p} < \varepsilon/2.
$$
 (3.11)

Hence, it follows from (3.7) (3.7) and (3.11) that for every function a in the intersection $C_0(\mathbb{R}) \cap V(\mathbb{R})$ and every $\varepsilon > 0$ there exists a function $b_{n_0} * \varphi_{\delta_0} \in C_c^{\infty}(\mathbb{R})$ such that $||a - b_{n_0} * \varphi_{\delta_0}||_{\mathcal{M}_p} < \varepsilon$. Therefore, $a \in \text{clos}_{\mathcal{M}_p}(C_c^{\infty}(\mathbb{R}))$. Hence the contract \Box

3.2 The case of rearrangement-invariant spaces with Muckenhoupt weights

The following lemma is an extension of the previous result to the case of rearrangement-invariant Banach function spaces with Muckenhoupt weights.

Lemma 3.2 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_Y}(\mathbb{R})$. Then

$$
C_0(\mathbb{R})\cap V(\mathbb{R})\subset \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R})).
$$

Proof Since $\alpha_X, \beta_X \in (0,1)$ and $w \in A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$, it follows from [[7,](#page-26-0) Theorem 2.31] that there exist p and q such that

$$
1 < q < 1/\beta_X \le 1/\alpha_X < p < \infty, \quad w \in A_p(\mathbb{R}) \cap A_q(\mathbb{R}). \tag{3.12}
$$

Let $C_{p,q} \in (0,\infty)$ be the constant from estimate ([2.1](#page-7-0)). Fix $\varepsilon > 0$ and take a function $a \in C_0(\mathbb{R}) \cap V(\mathbb{R})$. As in the proof of inequality [\(3.7\)](#page-11-0) (see the proof of Lemma [3.1\)](#page-10-0), it can be shown that there exists $n_0 \in \mathbb{N}$ such that

$$
||a - b_{n_0}||_{\mathcal{M}_{L^p(\mathbb{R}, w)}} < \frac{\varepsilon}{2C_{p,q}}, \quad ||a - b_{n_0}||_{\mathcal{M}_{L^q(\mathbb{R}, w)}} < \frac{\varepsilon}{2C_{p,q}}, \quad (3.13)
$$

where $b_n = a\psi_n$ and ψ_n is given by ([3.2](#page-10-0)) for every $n \in \mathbb{N}$. It follows from (3.12), (3.13) and Theorem [2.1](#page-7-0) that

$$
||a - b_{n_0}||_{\mathcal{M}_{X(\mathbb{R},w)}} = ||W^0(a - b_{n_0})||_{\mathcal{B}(X(\mathbb{R},w))}
$$

\n
$$
= ||wW^0(a - b_{n_0})w^{-1}I||_{\mathcal{B}(X(\mathbb{R}))}
$$

\n
$$
\leq C_{p,q} \max \left\{ ||wW^0(a - b_{n_0})w^{-1}I||_{\mathcal{B}(L^p(\mathbb{R}))}, ||wW^0(a - b_{n_0})w^{-1}I||_{\mathcal{B}(L^q(\mathbb{R}))} \right\}
$$

\n
$$
= C_{p,q} \max \left\{ ||W^0(a - b_{n_0})||_{\mathcal{B}(L^p(\mathbb{R},w))}, ||W^0(a - b_{n_0})||_{\mathcal{B}(L^q(\mathbb{R},w))} \right\}
$$

\n
$$
= C_{p,q} \max \left\{ ||a - b_{n_0}||_{\mathcal{M}_{L^p(\mathbb{R},w)}}, ||a - b_{n_0}||_{\mathcal{M}_{L^q(\mathbb{R},w)}} \right\} < \varepsilon/2.
$$
\n(3.14)

As in the proof of inequality (3.11) (see the proof of Lemma [3.1](#page-10-0)), it can be shown that there exists $\delta_0 > 0$ such that

$$
||b_{n_0} * \varphi_{\delta_0} - b_{n_0}||_{\mathcal{M}_{L^p(\mathbb{R},w)}} < \frac{\varepsilon}{2C_{p,q}}, \quad ||b_{n_0} * \varphi_{\delta_0} - b_{n_0}||_{\mathcal{M}_{L^q(\mathbb{R},w)}} < \frac{\varepsilon}{2C_{p,q}}, \quad (3.15)
$$

where $\varphi \in C_c^{\infty}(\mathbb{R})$ is a non-negative even function satisfying [\(2.3\)](#page-9-0) and the functions φ_{δ} are defined for all $\delta > 0$ by ([2.4](#page-9-0)). Arguing as in the proof of ([3.14](#page-12-0)), we deduce from [\(3.12\)](#page-12-0), [\(3.15](#page-12-0)) and Theorem [2.1](#page-7-0) that

$$
||b_{n_0} * \varphi_{\delta_0} - b_{n_0}||_{\mathcal{M}_{X(\mathbb{R}, w)}} < \varepsilon/2. \tag{3.16}
$$

It follows from (3.14) (3.14) (3.14) and (3.16) that for every function a in the intersection $C_0(\mathbb{R}) \cap V(\mathbb{R})$ and every $\varepsilon > 0$ there exists a function $b_{n_0} * \varphi_{\delta_0} \in C_c^{\infty}(\mathbb{R})$ such that $\|a - b_{n_0} * \varphi_{\delta_0}\|_{\mathcal{M}_{X(\mathbb{R},w)}} \leq \varepsilon$. Therefore, $a \in \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R}))$. Hence the contract of \Box

Now we are in a position to prove the main result of this section.

Theorem 3.3 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X\lt1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. Consider the set

$$
C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}}) := \left\{ a \in C_{X(\mathbb{R},w)}(\dot{\mathbb{R}}) : a(\infty) = 0 \right\}.
$$
 (3.17)

Then

$$
C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}})=\text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R})).
$$
\n(3.18)

Proof Let $a \in C_{X(\mathbb{R},w)}(\mathbb{R})$ be such that $a(\infty) = 0$. Fix $\varepsilon > 0$. By the definition of the algebra $C_{X(\mathbb{R},w)}(\mathbb{R})$, there exists a function $b \in C(\mathbb{R}) \cap V(\mathbb{R})$ such that

$$
||a-b||_{\mathcal{M}_{X(\mathbb{R},w)}} < \varepsilon/3.
$$
\n(3.19)

It follows from this observation and the continuous embedding of $\mathcal{M}_{X(\mathbb{R},w)}$ into $L^{\infty}(\mathbb{R})$ (see Theorem [2.4\)](#page-8-0) that

$$
|b(\infty)| = |a(\infty) - b(\infty)| \le ||a - b||_{L^{\infty}(\mathbb{R})} \le ||a - b||_{\mathcal{M}_{X(\mathbb{R}, w)}} < \varepsilon/3. \tag{3.20}
$$

Take $c = b - b(\infty) \in C_0(\mathbb{R}) \cap V(\mathbb{R})$. By Lemma [3.2](#page-12-0), there exists a function $d \in$ $C_c^{\infty}(\mathbb{R}) \subset \mathcal{M}_{X(\mathbb{R},w)}$ such that

$$
||c - d||_{\mathcal{M}_{X(\mathbb{R},w)}} < \varepsilon/3.
$$
 (3.21)

Combining inequalities (3.19) – (3.21) , we see that

$$
||a-d||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq ||a-b||_{\mathcal{M}_{X(\mathbb{R},w)}} + |b(\infty)| + ||c-d||_{\mathcal{M}_{X(\mathbb{R},w)}} < \varepsilon.
$$

Hence

$$
C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}}) \subset \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R})).
$$
\n(3.22)

Let us prove the reverse embedding. Take $a \in \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R}))$. Then there exists a sequence $\{a_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R})$ such that

$$
\lim_{n\to\infty}||a_n-a||_{\mathcal{M}_{X(\mathbb{R},w)}}=0.
$$

Since $C_c^{\infty}(\mathbb{R}) \subset C(\dot{\mathbb{R}}) \cap V(\mathbb{R})$, the above equality and the continuous embedding of the algebra $\mathcal{M}_{X(\mathbb{R},w)}$ into the algebra $L^{\infty}(\mathbb{R})$ (see Theorem [2.4](#page-8-0)) imply that $a \in$ $C_{X(\mathbb{R},w)}(\dot{\mathbb{R}})$ and

$$
|a(\infty)| = \lim_{n \to \infty} |a_n(\infty) - a(\infty)| \le \lim_{n \to \infty} ||a_n - a||_{L^{\infty}(\mathbb{R})}
$$

$$
\le \lim_{n \to \infty} ||a_n - a||_{\mathcal{M}_{X(R,w)}} = 0.
$$

Thus

$$
\text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(C_c^{\infty}(\mathbb{R})) \subset C_{0,X(\mathbb{R},w)}(\mathbb{R}). \tag{3.23}
$$

Combining ([3.22](#page-13-0)) and (3.23), we arrive at [\(3.18\)](#page-13-0).

4 Continuous and slowly oscillating Fourier multipliers

4.1 Continuous Fourier multipliers on one and two-point compactifications of the real line

For a function
$$
f \in C(\overline{\mathbb{R}})
$$
, let

$$
J_f(x) := \begin{cases} f(-\infty) & \text{if } x \in (-\infty, -1), \\ \frac{1}{2} [f(-\infty)(1-x) + f(+\infty)(1+x)] & \text{if } x \in [-1, 1], \\ f(+\infty) & \text{if } x \in (1, +\infty). \end{cases}
$$
(4.1)

It is easy to see that

$$
||J_f||_{V(\mathbb{R})} = \max \{|f(-\infty)|, |f(+\infty)|\} + |f(+\infty) - f(-\infty)|. \tag{4.2}
$$

Therefore $J_f \in C(\mathbb{R}) \cap V(\mathbb{R})$ and $f - J_f \in C_0(\mathbb{R})$.

The next lemma extends $[29, \text{Lemma } 3.1(i)]$ $[29, \text{Lemma } 3.1(i)]$ from the setting of Lebesgue spaces to the setting of rearrangement-invariant Banach function spaces with Muckenhoupt weights.

Lemma 4.1 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_X}(\mathbb{R})$. Then

$$
C_{X(\mathbb{R},w)}(\mathbb{R}) = C_{X(\mathbb{R},w)}(\mathbb{\overline{R}}) \cap C(\mathbb{R}). \tag{4.3}
$$

Proof The proof is analogous to the proof of $[29, 100]$ $[29, 100]$ (see also $[23, 100]$ $[23, 100]$ $[23, 100]$) Lemma 3.2]). It is obvious that $C_{X(\mathbb{R},w)}(\mathbb{R}) \subset C_{X(\mathbb{R},w)}(\mathbb{R})$. On the other hand, it follows from Theorem [2.4](#page-8-0) that $C_{X(\mathbb{R},w)}(\mathbb{R}) \subset C(\mathbb{R})$. Therefore,

$$
C_{X(\mathbb{R},w)}(\mathbb{R}) \subset C_{X(\mathbb{R},w)}(\overline{\mathbb{R}}) \cap C(\mathbb{R}). \tag{4.4}
$$

To prove the opposite embedding, let us consider an arbitrary function $a \in$ $C_{X(\mathbb{R},w)}(\mathbb{R})$ such that $a(+\infty) = a(-\infty)$. Let $\{a_n\}_{n \in \mathbb{N}} \subset C(\mathbb{R}) \cap V(\mathbb{R})$ be a sequence such that $||a_n - a||_{\mathcal{M}_{X(\mathbb{R},w)}} \to 0$ as $n \to \infty$. According to Theorem [2.4,](#page-8-0) the sequence ${a_n}_{n \in \mathbb{N}}$ converges to a uniformly on R. Hence, in particular, $a_n(\pm \infty) \rightarrow a(\infty)$ as $n \to \infty$. Let the functions $b_n := J_{a_n - a(\infty)}$ be defined by [\(4.1](#page-14-0)) with $a_n - a(\infty)$ in place of f. By the Stechkin-type inequality (1.4) and equality (4.2) (4.2) (4.2) , we have

$$
||b_n||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq c_{X(\mathbb{R},w)} ||J_{a_n - a(\infty)}||_{V(\mathbb{R})}
$$

= $c_{X(\mathbb{R},w)}$ max { $|a_n(-\infty) - a(\infty)|$, $|a_n(+\infty) - a(\infty)|$ }
+ $c_{X(\mathbb{R},w)}|a_n(+\infty) - a_n(-\infty)|$.

Therefore, $||b_n||_{\mathcal{M}_{X(\mathbb{R},w)}} \to 0$ as $n \to \infty$ and thus,

$$
\lim_{n\to\infty}||a_n-b_n-a||_{\mathcal{M}_{X(\mathbb{R},w)}}=0.
$$

Since $a_n - b_n \in C(\mathbb{R}) \cap V(\mathbb{R})$, the latter equality implies that $a \in C_{X(\mathbb{R},w)}(\mathbb{R})$. Thus

$$
C_{X(\mathbb{R},w)}(\overline{\mathbb{R}}) \cap C(\dot{\mathbb{R}}) \subset C_{X(\mathbb{R},w)}(\dot{\mathbb{R}}). \tag{4.5}
$$

Combining embeddings (4.4) – (4.5) , we arrive at equality (4.3) .

4.2 Embedding of the algebra $C_{X(\mathbb{R},w)}(\dot{\mathbb{R}})$ into the algebra $SO_{X(\mathbb{R},w)}$ of slowly oscillating Fourier multipliers

Let $C_b(\mathbb{R}) := C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. For a bounded measurable function $f : \mathbb{R} \to \mathbb{C}$ and a set $J \subset \mathbb{R}$, let

$$
osc(f, J) := \underset{x, y \in J}{\text{ess sup }} |f(x) - f(y)|.
$$

Let SO be the C^{*}-algebra of all slowly oscillating functions at ∞ defined by

$$
SO:=\bigg\{f\in C_b(\mathbb{R}): \lim_{x\to+\infty} \text{osc}(f,[-x,-x/2]\cup [x/2,x])=0\bigg\}.
$$

Consider the differential operator $(Df)(x) = xf'(x)$ and its iterations defined by $D^0 f = f$ and $D^j f = D(D^{j-1}f)$ for $j \in \mathbb{N}$. Let

$$
SO^{3} := \left\{ a \in SO \cap C^{3}(\mathbb{R}) : \lim_{x \to \infty} (D^{j}a)(x) = 0, j = 1, 2, 3 \right\},\
$$

where $C^3(\mathbb{R})$ denotes the set of all three times continuously differentiable functions. It is easy to see that $SO³$ is a commutative Banach algebra under pointwise operations and the norm

$$
||a||_{SO^3} := \sum_{j=0}^3 \frac{1}{j!} ||D^j a||_{L^{\infty}(\mathbb{R})}.
$$

It follows from [\[21](#page-26-0), Corollary 2.6] that if $X(\mathbb{R})$ is a separable rearrangement-invariant Banach function space with the Boyd indices α_X , β_X such that $0<\alpha_X$, $\beta_X<1$ and $w \in A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_Y}(\mathbb{R})$, then there exists a constant $c_{X(\mathbb{R},w)} \in (0,\infty)$ such that for all $a \in SO^3$,

$$
||a||_{\mathcal{M}_{X(\mathbb{R},w)}} \leq c_{X(\mathbb{R},w)} ||a||_{SO^3}.
$$

The continuous embedding $SO^3 \subset \mathcal{M}_{X(\mathbb{R},w)}$ allows us to define the algebra $SO_{X(\mathbb{R},w)}$ of slowly oscillating Fourier multipliers as the closure of $SO³$ with respect to the multiplier norm:

$$
SO_{X(\mathbb{R},w)}:=\mathrm{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}\big(SO^3\big).
$$

The following result is analogous to $[28,$ $[28,$ Lemma 3.6].

Lemma 4.2 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that a weight w belongs to $A_{1/\alpha_X}(\mathbb{R}) \cap A_{1/\beta_Y}(\mathbb{R})$. Then $C_{X(\mathbb{R},w)}(\mathbb{R}) \subset SO_{X(\mathbb{R},w)}$.

Proof Let $a \in C_{X(\mathbb{R},w)}(\mathbb{R})$. Fix $\varepsilon > 0$. Then there exists $b \in C(\mathbb{R}) \cap V(\mathbb{R})$ such that

$$
\|a - b\|_{\mathcal{M}_{X(\mathbb{R},w)}} < \varepsilon/2. \tag{4.6}
$$

Then $b - b(\infty) \in C_0(\mathbb{R}) \cap V(\mathbb{R})$. By Lemma [3.2](#page-12-0),

$$
b-b(\infty)\in \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}\big(C_c^\infty(\mathbb{R})\big).
$$

Then there exists $c \in C_c^{\infty}(\mathbb{R})$ such that

$$
||b - b(\infty) - c||_{\mathcal{M}_{X(\mathbb{R}, w)}} < \varepsilon/2.
$$
\n(4.7)

It follows from inequalities (4.6) and (4.7) that

$$
||a-(c+b(\infty))||_{\mathcal{M}_{X(\mathbb{R},w)}}<\varepsilon.
$$

Since $c + b(\infty) \in C_c^{\infty}(\mathbb{R}) + \mathbb{C} \subset SO^3$, we get $a \in \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(SO^3) = SO_{X(\mathbb{R},w)}$. \Box

5 Almost periodic Fourier multipliers and their products with continuous Fourier multipliers vanishing at infinity

5.1 The algebra $AP_{X(\mathbb{R},w)}$ of almost periodic Fourier multipliers

For $\lambda \in \mathbb{R}$, let T_{λ} denote the translation operator defined by

$$
(T_{\lambda}f)(x) = f(x - \lambda), \quad x \in \mathbb{R}.
$$

Lemma 5.1 Let $X(\mathbb{R})$ be a rearrangement-invariant Banach function space and $w : \mathbb{R} \to [0, \infty]$ be a weight such that $w \in X_{loc}(\mathbb{R})$ and $1/w \in X'_{loc}(\mathbb{R})$. Suppose that $\lambda \in \mathbb{R}$. Then the translation operator T_{λ} is bounded on the Banach function space $X(\mathbb{R}, w)$ if and only if the function

$$
v_{\lambda}(x) := \frac{w(x+\lambda)}{w(x)}, \quad x \in \mathbb{R},
$$

belongs to the space $L^{\infty}(\mathbb{R})$. In that case $||T_{\lambda}||_{B(X(\mathbb{R},w))} = ||v_{\lambda}||_{L^{\infty}(\mathbb{R})}$.

Proof The operator T_{λ} is bounded on the space $X(\mathbb{R}, w)$ if and only if the operator $wT_{\lambda}w^{-1}I = T_{\lambda}(v_{\lambda}I)$ is bounded on the space $X(\mathbb{R})$. Moreover, their norms coincide. It is easy to see that for every $f \in X(\mathbb{R})$, the function $T_{\lambda}f$ is equimeasurable with f, whence $||T_{\lambda}f||_{X(\mathbb{R})} = ||f||_{X(\mathbb{R})}$. Therefore,

$$
||T_\lambda||_{\mathcal{B}(X(\mathbb{R},w))} = ||T_\lambda(\nu_\lambda I)||_{\mathcal{B}(X(\mathbb{R}))} = ||\nu_\lambda I||_{\mathcal{B}(X(\mathbb{R}))}.
$$

By [\[31](#page-27-0), Theorem 1], the multiplication operator $v_{\lambda}I$ is bounded on the space $X(\mathbb{R})$ if and only if $v_{\lambda} \in L^{\infty}(\mathbb{R})$ and $||v_{\lambda}I||_{\mathcal{B}(X(\mathbb{R}))} = ||v_{\lambda}||_{L^{\infty}(\mathbb{R})}$. Thus, $\|T_{\lambda}\|_{\mathcal{B}(X(\mathbb{R},w))}=\|\nu_{\lambda}\|_{L^{\infty}(\mathbb{R})}.$

As a consequence of the previous result, we show that for all $\lambda \in \mathbb{R}$, the exponential functions $e_{\lambda}(x) = e^{i\lambda x}$, $x \in \mathbb{R}$, are Fourier multipliers on separable rearrangement-invariant Banach function spaces with weights in the sublclass $A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$ of the class of Muckenhoupt weights.

Corollary 5.2 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X\leq\beta_X\leq1$. Suppose that a weight w belongs to $A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Then for every $\lambda \in \mathbb{R}$, the function e_λ belongs to $\mathcal{M}_{X(\mathbb{R},w)}$ and $||e_\lambda||_{\mathcal{M}_{Y(\mathbb{R},w)}}=||v_\lambda||_{L^\infty(\mathbb{R})}.$

Proof It follows from the definition of the classes $A_{1/\alpha_X}^0(\mathbb{R})$ and $A_{1/\beta_X}^0(\mathbb{R})$ that the function $v_\lambda(x) = \frac{w(x+\lambda)}{w(x)}$, $x \in \mathbb{R}$, is bounded for every $\lambda \in \mathbb{R}$. By Lemma [2.3\(](#page-8-0)a), $w \in$ $X_{loc}(\mathbb{R})$ and $1/w \in X'_{loc}(\mathbb{R})$. Then, by Lemma 5.1, the operator T_{λ} is bounded on the Banach function space $X(\mathbb{R}, w)$ and

$$
||T_\lambda||_{\mathcal{B}(X(\mathbb{R},w))} = ||\nu_\lambda||_{L^\infty(\mathbb{R})}, \quad \lambda \in \mathbb{R}.
$$

It remains to observe that $T_{\lambda} = W^0(e_{\lambda})$. Thus $e_{\lambda} \in \mathcal{M}_{X(\mathbb{R},w)}$ and

$$
||e_\lambda||_{\mathcal{M}_{X(\mathbb{R},w)}}=||W^0(e_\lambda)||_{\mathcal{B}(X(\mathbb{R},w))}=||v_\lambda||_{L^\infty(\mathbb{R})},\quad \lambda\in\mathbb{R},
$$

which completes the proof. \Box

Corollary [5.2](#page-17-0) implies that if $X(\mathbb{R})$ is a separable rearrangement-invariant Banach function spaces and $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$, then $APP \subset \mathcal{M}_{X(\mathbb{R},w)}$. We define the algebra $AP_{X(\mathbb{R},w)}$ of almost periodic Fourier multipliers by

$$
AP_{X(\mathbb{R},w)}:=\mathrm{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}\big(APP\big).
$$

It is natural to refer to the weights in $A_{1/\alpha_X}^0 \cap A_{1/\beta_X}^0$ as suitable Muckenhoupt weights. The class of suitable Muckenhoput weights contains many nontrivial weights as the following example shows.

For δ , $v, \eta \in \mathbb{R}$, consider the weight

$$
w(x) := \begin{cases} \exp(\delta + v \sin(\eta \log(\log |x|))) & \text{if} \quad |x| \ge e, \\ \exp(\delta) & \text{if} \quad |x| < e. \end{cases}
$$

Let $r \in (1,\infty)$. It was shown in [[27,](#page-27-0) Example 4.2] that if

$$
-1/r < \delta - |v|\sqrt{\eta^2 + 1} \le \delta + |v|\sqrt{\eta^2 + 1} < 1 - 1/r,
$$

then $w \in A_r^0(\mathbb{R})$. Hence if $0 \lt \alpha_X \le \beta_X \lt 1$ and

$$
-\alpha_X \langle \delta - |v| \sqrt{\eta^2 + 1} \le \delta + |v| \sqrt{\eta^2 + 1} < 1 - \beta_X,
$$

then $w \in A_{1/\alpha_X}^0(\mathbb{R}) \cap A_{1/\beta_X}^0(\mathbb{R})$.

5.2 Products of almost periodic Fourier multipliers and continuous Fourier multipliers vanishing at infinity

The next lemma generalizes [\[29](#page-27-0), Lemma 3.1(iii)] from the setting of Lebesgue spaces to the setting of rearrangement-invariant Banach function spaces with suitable Muckenhoupt weights.

Lemma 5.3 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0\langle x, \beta_X\langle 1]$. Suppose that w belongs to $A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$ and $C_{0,X(\mathbb{R},w)}(\mathbb{R})$ is defined by (3.[17\)](#page-13-0). If $a \in AP_{X(\mathbb{R},w)}$ and $\psi \in C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}}),$ then $a\psi \in C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}}).$

Proof By Theorem [3.3](#page-13-0), there exists a sequence $\{\psi_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R})$ such that

$$
\lim_{n \to \infty} \|\psi_n - \psi\|_{\mathcal{M}_{X(\mathbb{R},w)}} = 0. \tag{5.1}
$$

By the definition of the algebra $AP_{X(\mathbb{R},w)}$, there exists a sequence $a_n \in APP$ such that

$$
\lim_{n \to \infty} ||a_n - a||_{\mathcal{M}_{X(\mathbb{R},w)}} = 0. \tag{5.2}
$$

Then $a_n \psi_n \in C_c^{\infty}(\mathbb{R}) \subset C(\mathbb{R}) \cap V(\mathbb{R})$ for every $n \in \mathbb{N}$. Moreover, ([5.1\)](#page-18-0)–(5.2) imply that

$$
\lim_{n\to\infty}||a_n\psi_n-a\psi||_{\mathcal{M}_{X(\mathbb{R},w)}}=0.
$$

Hence $a\psi \in C_{X(\mathbb{R},w)}(\mathbb{R})$. In view of the continuous embedding of $\mathcal{M}_{X(\mathbb{R},w)}$ into $L^{\infty}(\mathbb{R})$ (see Theorem [2.4\)](#page-8-0) and the above equality, we obtain

$$
|(a\psi)(\infty)| = \lim_{n \to \infty} |(a_n\psi_n)(\infty) - (a\psi)(\infty)| \le \lim_{n \to \infty} ||a_n\psi_n - a\psi||_{L^{\infty}(\mathbb{R})}
$$

$$
\le \lim_{n \to \infty} ||a_n\psi_n - a\psi||_{\mathcal{M}_{X(R,w)}} = 0.
$$

Thus $(a\psi)(\infty) = 0$ and $a\psi \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$.

6 Proof of the main result

6.1 The algebra A_{μ}

For a real-valued monotonically increasing function $u \in C(\overline{\mathbb{R}})$ such that

$$
u(-\infty) = 0 \quad u(+\infty) = 1,\tag{6.1}
$$

consider the set

$$
\mathcal{A}_u := \big\{ a = (1-u)a_l + ua_r + a_0 : a_l, a_r \in AP_{X(\mathbb{R},w)}, a_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R}) \big\}.
$$

Lemma 6.1 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. If $u \in C(\overline{\mathbb{R}})$ is a real-valued monotonically increasing function such that $u(-\infty) = 0$ and $u(+\infty) = 1$, then the set \mathcal{A}_u is an algebra and the mappings a $\mapsto a_l$ and a $\mapsto a_r$ are algebraic homomorphisms of A_u onto $AP_{X(\mathbb{R},w)}$.

Proof If $a, b \in A_u$, then

$$
a = (1 - u)al + uar + a0, \quad b = (1 - u)bl + ubr + b0
$$

with some $a_l, a_r, b_l, b_r \in AP_{X(\mathbb{R},w)}$ and $a_0, b_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$. Therefore

$$
a + b = (1 - u)(al + bl) + u(ar + br) + (a0 + b0)
$$
 (6.2)

and

 $\textcircled{2}$ Springer

$$
ab = (1 - u)^{2} a_{l}b_{l} + u^{2} a_{r}b_{r} + (1 - u)u(a_{l}b_{r} + a_{r}b_{l})
$$

+
$$
((1 - u)a_{l} + ua_{r})b_{0} + ((1 - u)b_{l} + ub_{r})a_{0} + a_{0}b_{0}
$$

$$
= (1 - u)a_{l}b_{l} + ua_{r}b_{r} + c_{0}, \qquad (6.3)
$$

where

$$
c_0 = (u - u^2) [(a_l b_r + a_r b_l) - (a_l b_l + a_r b_r)]
$$

+
$$
((1 - u)a_l + ua_r)b_0 + ((1 - u)b_l + ub_r)a_0 + a_0b_0.
$$
 (6.4)

Since $1 - u, u \in C(\mathbb{R}) \cap V(\mathbb{R}) \subset C_{X(\mathbb{R},w)}(\mathbb{R})$ and $a_0, b_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$, it follows from Lemma [4.1](#page-14-0) that

$$
(1-u)a_0, ua_0, (1-u)b_0, ub_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R}).
$$

Then, by Lemma [5.3](#page-18-0),

$$
(1-u)a_l b_0, ua_r b_0, (1-u)b_l a_0, ub_r a_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R}). \tag{6.5}
$$

Since $u - u^2 \in C(\overline{\mathbb{R}}) \cap V(\mathbb{R}) \subset C_{X(\mathbb{R},w)}(\overline{\mathbb{R}})$ and $u(\pm \infty) - u^2(\pm \infty) = 0$, by Lemma [4.1](#page-14-0), $u - u^2 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$. Then, in view of Lemma [5.3,](#page-18-0) we also conclude that

$$
(u - u2) [(albr + arbl) - (albl + arbr)] \in C_{0,X(\mathbb{R},w)}(\mathbb{R}).
$$
 (6.6)

It follows from (6.4) to (6.6) that $c_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$. In view of this observation and equalities ([6.2](#page-19-0))–([6.3](#page-19-0)), we see that $a + b$, $ab \in A_u$. Therefore, A_u is an algebra. It is clear that the mappings $a \mapsto a_l$ and $a \mapsto a_r$ are algebraic homomorphisms of A_u onto $AP_{X(\mathbb{R},w)}$.

6.2 The multiplier norm of $a = (1 - u)a_r + ua_r + a_0 \in A_u$ dominates the multiplier norms of a_r and a_l

In this section we will prepare the proof of the fact that the algebraic homomorphisms $A_u \to AP_{X(\mathbb{R},w)}$ given by $a \to a_l$ and $a \to a_r$ are actually Banach algebra homomorphisms of norm 1. To this end, we will show that for $a \in A_u$,

$$
||a_r||_{\mathcal{M}_{X(\mathbb{R},w)}} \le ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}, \quad ||a_l||_{\mathcal{M}_{X(\mathbb{R},w)}} \le ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}.
$$
\n(6.7)

For $a \in L^{\infty}(\mathbb{R})$ and $h \in \mathbb{R}$, we define

$$
a^h(x) := a(x+h), \quad x \in \mathbb{R}.
$$

The following consequence of Kronecker's theorem (see, e.g., [\[10](#page-26-0), Theorem 1.12]) plays a crucial role in the proof of inequalities (6.7).

Lemma 6.2 If $a_1, \ldots, a_k \in APP$ is a finite collection of almost periodic polynomials, then there exists a sequence ${h_n}_{n\in\mathbb{N}}$ of real numbers such that $h_n \to +\infty$ as $n \rightarrow \infty$ and

$$
\lim_{n\to\infty}||a_m^{\pm h_n}-a_m||_{L^\infty(\mathbb{R})}=0
$$

for each $m \in \{1, \ldots, k\}$.

For the sign "+", the proof of the above lemma is given in $[10, \text{Lemma } 10.2]$ $[10, \text{Lemma } 10.2]$, for the sign "–", the proof is analogous.

We start the proof of inequalities ([6.7](#page-20-0)) for $a = (1 - v)a_1 + va_r + a_0$ with a nice function v in place of u and nice functions a_l , a_r and a_0 .

Lemma 6.3 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Let $v \in C(\overline{\mathbb{R}})$ be any real-valued monotonically increasing function such that there exists a point $x_0 > 0$ such that $v(x) = 0$ for $x < -x_0$ and $v(x) = 1$ for $x > x_0$. If $a_l, a_r \in APP, a_0 \in C_c^{\infty}(\mathbb{R})$, and

$$
a = (1 - v)a_l + va_r + a_0,
$$
\n(6.8)

then inequalities (6.7) (6.7) hold.

Proof The idea of the proof is borrowed from the proof of $[27,$ $[27,$ Theorem 3.1]. By Lemma [6.2](#page-20-0), there is a sequence ${h_n}_{n \in \mathbb{N}}$ of real numbers such that $h_n \to +\infty$ as $n \to \infty$ and

$$
\lim_{n \to \infty} ||a_r^{h_n} - a_r||_{L^{\infty}(\mathbb{R})} = 0, \quad \lim_{n \to \infty} ||(a'_r)^{h_n} - a'_r||_{L^{\infty}(\mathbb{R})} = 0,
$$
\n(6.9)

$$
\lim_{n \to \infty} ||a_l^{-h_n} - a_l||_{L^{\infty}(\mathbb{R})} = 0, \quad \lim_{n \to \infty} ||(a_l')^{-h_n} - a_l'||_{L^{\infty}(\mathbb{R})} = 0.
$$
 (6.10)

Let us show that

$$
\text{s-lim}_{n\to\infty} e_{h_n} W^0(a) e_{-h_n} I = W^0(a_r), \quad \text{s-lim}_{n\to\infty} e_{-h_n} W^0(a) e_{h_n} I = W^0(a_l) \tag{6.11}
$$

on the space $X(\mathbb{R}, w)$. As

$$
e_{\pm h_n}W^0(a)e_{\mp h_n}I=W^0(a^{\pm h_n}),
$$

we have to prove that for every $f \in X(\mathbb{R}, w)$,

$$
\lim_{n \to \infty} ||W^0(a^{h_n} - a_r)f||_{X(\mathbb{R}, w)} = 0,
$$
\n(6.12)

$$
\lim_{n \to \infty} ||W^0(a^{-h_n} - a_l)f||_{X(\mathbb{R}, w)} = 0.
$$
\n(6.13)

Since the operators $W^0(a^{h_n} - a_r)$ and $W^0(a^{-h_n} - a_l)$ are uniformly bounded in $n \in \mathbb{Z}$ N and the set $\mathcal{S}_0(\mathbb{R})$ is dense in the space $X(\mathbb{R}, w)$ in view of Lemma [2.3,](#page-8-0) applying $[34,$ $[34,$ Lemma 1.4.1], we conclude that it is enough to prove equalities (6.12) – (6.13) for all $f \in \mathcal{S}_0(\mathbb{R})$.

Fix $f \in \mathcal{S}_0(\mathbb{R})$. Then, by a smooth version of Urysohn's lemma (see, e.g., [[17,](#page-26-0) Proposition 6.5]), there is a function $\psi \in C_c^{\infty}(\mathbb{R})$ such that $0 \le \psi \le 1$, supp $\mathcal{F}f \subset$ supp ψ and $\psi|_{\text{supp}\mathcal{F}_f} = 1$. Therefore, for all $n \in \mathbb{N}$,

$$
W^{0}(a^{h_n}-a_r)f=\mathcal{F}^{-1}(a^{h_n}-a_r)\psi\mathcal{F}f, \quad W^{0}(a^{-h_n}-a_l)f=\mathcal{F}^{-1}(a^{-h_n}-a_l)\psi\mathcal{F}f
$$

and

$$
\left\|W^{0}(a^{h_n}-a_r)f\right\|_{X(\mathbb{R},w)} \leq \left\|(a^{h_n}-a_r)\psi\right\|_{\mathcal{M}_{X(\mathbb{R},w)}}\left\|f\right\|_{X(\mathbb{R},w)},\tag{6.14}
$$

$$
\left\|W^{0}(a^{-h_{n}}-a_{l})f\right\|_{X(\mathbb{R},w)} \leq \left\|(a^{-h_{n}}-a_{l})\psi\right\|_{\mathcal{M}_{X(\mathbb{R},w)}}\left\|f\right\|_{X(\mathbb{R},w)}.\tag{6.15}
$$

Since $v(x) = 1$ for $x > x_0$ and $v(x) = 0$ for $x < -x_0$ and $a_0 \in C_c^{\infty}(\mathbb{R})$, there exists $N \in \mathbb{N}$ such that for all $x \in \text{supp}\psi$ and $n > N$,

$$
v(x + h_n) = 1
$$
, $v(x - h_n) = 0$, $a_0(x \pm h_n) = 0$.

Hence, for all $n > N$ and $x \in \mathbb{R}$,

$$
(a^{h_n}(x) - a_r(x))\psi(x) = (a_r^{h_n}(x) - a_r(x))\psi(x), \qquad (6.16)
$$

$$
(a^{-h_n}(x) - a_l(x))\psi(x) = (a_l^{-h_n}(x) - a_l(x))\psi(x).
$$
 (6.17)

It is clear that the functions on the right-hand sides of (6.16) – (6.17) belong to $C_c^{\infty}(\mathbb{R})$. Therefore, by the Stechkin-type inequality [\(1.4\)](#page-3-0), for all $n > N$,

$$
\begin{split}\n\left\| (a^{h_n} - a_r) \psi \right\|_{\mathcal{M}_{X(\mathbb{R},w)}} &= \left\| (a_r^{h_n} - a_r) \psi \right\|_{\mathcal{M}_{X(\mathbb{R},w)}} \\
&\leq c_{X(\mathbb{R},w)} \left\| (a_r^{h_n} - a_r) \psi \right\|_{V(\mathbb{R})} \\
&= c_{X(\mathbb{R},w)} \left\| (a_r^{h_n} - a_r) \psi \right\|_{L^{\infty}(\mathbb{R})} \\
&+ c_{X(\mathbb{R},w)} \int_{\mathbb{R}} |(a_r^{h_n})'(x) - a'_r(x)| |\psi(x)| dx \\
&+ c_{X(\mathbb{R},w)} \int_{\mathbb{R}} |a_r^{h_n}(x) - a_r(x)| |\psi'(x)| dx \\
&\leq c_{X(\mathbb{R},w)} (\|\psi\|_{L^{\infty}(\mathbb{R})} + \|\psi'\|_{L^1(\mathbb{R})}) \left\| a_r^{h_n} - a_r \right\|_{L^{\infty}(\mathbb{R})} \\
&+ c_{X(\mathbb{R},w)} \|\psi\|_{L^1(\mathbb{R})} \left\| (a_r^{h_n})' - a'_r \right\|_{L^{\infty}(\mathbb{R})}\n\end{split} \tag{6.18}
$$

and, analogously,

$$
\| (a^{-h_n} - a_l) \psi \|_{\mathcal{M}_{X(\mathbb{R}, w)}} \le c_{X(\mathbb{R}, w)} (\|\psi\|_{L^{\infty}(\mathbb{R})} + \|\psi'\|_{L^1(\mathbb{R})}) \|a_l^{-h_n} - a_l\|_{L^{\infty}(\mathbb{R})} + c_{X(\mathbb{R}, w)} \|\psi\|_{L^1(\mathbb{R})} \| (a_l^{-h_n})' - a'_l \|_{L^{\infty}(\mathbb{R})}.
$$
(6.19)

Combining (6.14) – (6.15) and (6.18) – (6.19) with (6.9) (6.9) (6.9) – (6.10) (6.10) (6.10) , we see that equalities [\(6.12\)](#page-21-0)–[\(6.13\)](#page-21-0) hold for every $f \in \mathcal{S}_0(\mathbb{R})$. Therefore, ([6.11](#page-21-0)) are fulfilled for every $f \in X(\mathbb{R}, w)$. Hence, by the Banach-Steinhaus theorem (see, e.g., [[34,](#page-27-0) Theorem 1.4.2]),

$$
||a_r||_{\mathcal{M}_{X(\mathbb{R},w)}} = ||W^0(a_r)||_{\mathcal{B}(X(\mathbb{R},w))} \leq \liminf_{n \to \infty} ||e_{h_n} W^0(a)e_{-h_n} I||_{\mathcal{B}(X(\mathbb{R},w))}
$$

$$
\leq ||W^0(a)||_{\mathcal{B}(X(\mathbb{R},w))} = ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}
$$

and, analogously,

$$
||a_{l}||_{\mathcal{M}_{X(\mathbb{R},w)}} = ||W^{0}(a_{l})||_{\mathcal{B}(X(\mathbb{R},w))} \le \liminf_{n \to \infty} ||e_{-h_{n}} W^{0}(a)e_{h_{n}} I||_{\mathcal{B}(X(\mathbb{R},w))}
$$

$$
\le ||W^{0}(a)||_{\mathcal{B}(X(\mathbb{R},w))} = ||a||_{\mathcal{M}_{X(\mathbb{R},w)}},
$$

which completes the proof of (6.7) .

Now we extend the previous result for functions a of the form (6.8) (6.8) (6.8) with general $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and $a_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$, keeping the nice function v as above.

Lemma 6.4 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Let $v \in C(\overline{\mathbb{R}})$ be any real-valued monotonically increasing function such that there exists a point $x_0 > 0$ such that $v(x) = 0$ for $x < -x_0$ and $v(x) = 1$ for $x > x_0$. If $a_l, a_r \in AP_{X(\mathbb{R},w)}$, $a_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$, where $C_{0,X(\mathbb{R},w)}(\mathbb{R})$ is defined by (3.17) (3.17) , and a is given by equality (6.8) (6.8) , then inequalities (6.7) (6.7) (6.7) hold.

Proof By the definition of $AP_{X(\mathbb{R},w)}$, there are sequences $\{a_i^{(n)}\}_{n\in\mathbb{N}}, \{a_r^{(n)}\}_{n\in\mathbb{N}}$ in APP such that

$$
\lim_{n \to \infty} ||a_l^{(n)} - a_l||_{\mathcal{M}_{X(\mathbb{R},w)}} = 0, \quad \lim_{n \to \infty} ||a_r^{(n)} - a_r||_{\mathcal{M}_{X(\mathbb{R},w)}} = 0.
$$
 (6.20)

On the other hand, by Theorem [3.3,](#page-13-0) there is a sequence $\{a_0^{(n)}\}_{n\in\mathbb{N}}$ in $C_c^{\infty}(\mathbb{R})$ such that

$$
\lim_{n \to \infty} ||a_0^{(n)} - a_0||_{\mathcal{M}_{X(\mathbb{R}, w)}} = 0. \tag{6.21}
$$

For $n \in \mathbb{N}$, consider the functions

$$
a^{(n)} := (1 - v)a_l^{(n)} + va_r^{(n)} + a_0^{(n)}.
$$
\n(6.22)

It follows from equalities (6.20) – (6.22) and Lemma [6.3](#page-21-0) that

$$
||a_{l}||_{\mathcal{M}_{X(\mathbb{R},w)}} = \lim_{n \to \infty} ||a_{l}^{(n)}||_{\mathcal{M}_{X(\mathbb{R},w)}} \le \lim_{n \to \infty} ||a^{(n)}||_{\mathcal{M}_{X(\mathbb{R},w)}},
$$

$$
||a_{r}||_{\mathcal{M}_{X(\mathbb{R},w)}} = \lim_{n \to \infty} ||a_{r}^{(n)}||_{\mathcal{M}_{X(\mathbb{R},w)}} \le \lim_{n \to \infty} ||a^{(n)}||_{\mathcal{M}_{X(\mathbb{R},w)}} = ||a||_{\mathcal{M}_{X(\mathbb{R},w)}},
$$

which completes the proof of inequalities (6.7) (6.7) (6.7) .

Now we observe that the algebra A_u does not depend on the particular choice of a real-valued monotonically increasing function $u \in C(\overline{\mathbb{R}})$ satisfying conditions [\(6.1\)](#page-19-0).

Lemma 6.5 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that

 $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Let $u, v \in C(\overline{\mathbb{R}})$ be two real-valued monotonically increasing functions such that

$$
u(-\infty) = v(-\infty) = 0, \quad u(+\infty) = v(+\infty) = 1.
$$

Then $A_u = A_v$.

Proof If $a \in A_u$, then $a = (1 - u)a_l + ua_r + a_0$ for some $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and $a_0 \in C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}})$. On the other hand, $a = (1 - v)a_1 + va_r + b_0$ with

$$
b_0 = (v - u)a_1 + (u - v)a_r + a_0 = (u - v)(a_r - a_1) + a_0.
$$

Since the functions u, v are monotonically increasing, we have $u, v \in V(\mathbb{R})$. Hence $u - v \in V(\mathbb{R}) \cap C(\mathbb{R})$ and

$$
u(+\infty)-v(+\infty)=u(-\infty)-v(-\infty)=0.
$$

Thus $u - v \in C(\mathbb{R}) \cap V(\mathbb{R}) \subset C_{X(\mathbb{R},w)}(\mathbb{R})$ and $(u - v)(\infty) = 0$. Since the function $a_r - a_l$ belongs to $AP_{X(\mathbb{R}, w)}$, it follows from Lemma [5.3](#page-18-0) that

$$
(u-v)(a_r-a_l)\in C_{0,X(\mathbb{R},w)}(\mathbb{R}).
$$

Then $b_0 \in C_{0,X(\mathbb{R},w)}(\mathbb{R})$ and $a \in A_v$. Therefore $A_u \subset A_v$. It can be shown analogously that $A_v \subset A_u$. Thus $A_u = A_v$.

Combining Lemmas [6.4](#page-23-0)–[6.5](#page-23-0), we arrive at the main result of this subsection.

Theorem 6.6 Let $X(\mathbb{R})$ be a separable rearrangement-invariant Banach function space with the Boyd indices satisfying $0<\alpha_X$, $\beta_X<1$. Suppose that $w \in A^0_{1/\alpha_X}(\mathbb{R}) \cap A^0_{1/\beta_X}(\mathbb{R})$. Let $u \in C(\overline{\mathbb{R}})$ be a real-valued monotonically increasing function such that $u(-\infty) = 0$ and $u(+\infty) = 1$. If $a \in A_u$, that is,

$$
a = (1 - u)a_1 + ua_r + a_0
$$
 with $a_l, a_r \in AP_{X(\mathbb{R}, w)}, a_0 \in C_{0,X(\mathbb{R}, w)}(\mathbb{R}),$

where $C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}})$ is defined by (3.[17\)](#page-13-0), then inequalities ([6](#page-20-0).7) hold.

6.3 Proof of Theorem [1.2](#page-4-0)

The idea of the proof is borrowed from the proof of [[10,](#page-26-0) Theorem 1.21]. If $a \in AP_{X(\mathbb{R},w)}$, then $a = (1 - u)a + ua + 0$, whence $a \in \mathcal{A}_u$. If $f \in C_{X(\mathbb{R},w)}(\mathbb{R})$, then the function $f_0 = f - (1 - u)f(-\infty) - uf(+\infty)$ belongs to $C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}})$. Therefore $f = (1 - u)f(-\infty) + uf(+\infty) + f_0 \in \mathcal{A}_u$. These observations imply that

$$
SAP_{X(\mathbb{R},w)} \subset \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(\mathcal{A}_u). \tag{6.23}
$$

On the other hand, it is obvious that

$$
\text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(\mathcal{A}_u) \subset SAP_{X(\mathbb{R},w)}.\tag{6.24}
$$

Combining (6.23) (6.23) (6.23) – (6.24) (6.24) (6.24) , we arrive at the equality

$$
SAP_{X(\mathbb{R},w)} = \text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(\mathcal{A}_u). \tag{6.25}
$$

By Theorem [6.6,](#page-24-0) for every $a = (1 - u)a_r + ua_r + a_0 \in A_u$ with $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and $a_0 \in C_0$ $_{X(\mathbb{R},w)}(\mathbb{R})$, one has

$$
||a_r||_{\mathcal{M}_{X(\mathbb{R},w)}} \le ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}, \quad ||a_r||_{\mathcal{M}_{X(\mathbb{R},w)}} \le ||a||_{\mathcal{M}_{X(\mathbb{R},w)}}.
$$
 (6.26)

Consequently, if $\{(1-u)a_i^{(n)} + ua_r^{(n)} + a_0^{(n)}\}$ $\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{A}_u , where $\{a_l^{(n)}\}$ $\big\}_{n\in\mathbb{N}}, \big\{a_r^{(n)}\big\}_{n\in\mathbb{N}}$ are sequences in $AP_{X(\mathbb{R},w)}$ and $\big\{a_0^{(n)}\big\}_{n\in\mathbb{N}}$ $\}_{n\in\mathbb{N}}$ is a sequence in $C_{0,X(\mathbb{R},w)}(\mathbb{R})$, then $\{a_l^{(n)}\}$ $\int_{n\in\mathbb{N}}$ and $\{a_r^{(n)}\}_{n\in\mathbb{N}}$ are Cauchy sequences in $AP_{X(\mathbb{R},w)}$. Consequently, $\{a_0^{(n)}\}$ $\big\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $C_{0,X(\mathbb{R},w)}(\mathbb{R})$. Since $AP_{X(\mathbb{R},w)}$ is closed by its definition and $C_{0,X(\mathbb{R},w)}(\mathbb{R})$ is closed in view of Theorem [3.3](#page-13-0), we conclude that the limits

$$
a_l := \lim_{n \to \infty} a_l^{(n)}, \quad a_r = \lim_{n \to \infty} a_r^{(n)}
$$

belong to $AP_{X(\mathbb{R},w)}$ and that the limit

$$
a_0 := \lim_{n \to \infty} a_0^{(n)}
$$

belongs to $C_{0,X(\mathbb{R},w)}(\dot{\mathbb{R}})$. Therefore, the limit

$$
\lim_{n \to \infty} \left((1 - u) a_l^{(n)} + u a_r^{(n)} + a_0^{(n)} \right)
$$

belongs to \mathcal{A}_u . Thus

$$
\text{clos}_{\mathcal{M}_{X(\mathbb{R},w)}}(\mathcal{A}_u) = \mathcal{A}_u. \tag{6.27}
$$

It follows from (6.25) and (6.27) that $\mathcal{A}_u = SAP_{X(\mathbb{R},w)}$. In particular, every function $a \in SAP_{X(\mathbb{R},w)}$ is of the form

$$
a = (1 - u)al + uar + a0
$$
 (6.28)

with $a_l, a_r \in AP_{X(\mathbb{R},w)}$ and $a_0 \in C_{0,X(\mathbb{R},w)}$. We infer from (6.26) that the representation (6.28) is unique for the function u. Moreover, the proof of Lemma [6.5](#page-23-0) shows that $a_l, a_r \in AP_{X(\mathbb{R},w)}$ are independent of the particular choice of the function u. By Lemma [6.1](#page-19-0), the mappings $a \mapsto a_l$ and $a \mapsto a_r$ are algebraic homomorphisms of $A_u =$ $SAP_{X(\mathbb{R},w)}$ onto $AP_{X(\mathbb{R},w)}$. In view of (6.26), these homomorphisms are Banach algebra homomorphisms of the Banach algebra $SAP_{X(\mathbb{R},w)}$ onto the Banach algebra $AP_{X(\mathbb{R},w)}$ and the norms of these homomorphisms are not greater than one. For every function $a \in AP_{X(\mathbb{R},w)}$, we have equalities in (6.26) because

$$
a = (1 - u)a + ua + 0 = al = ar.
$$

Thus, the norms of the homomorphisms $a \mapsto a_l$ and $a \mapsto a_l$ are equal to one.

References

- 1. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)
- 2. Bogveradze, G., Castro, L.P.: On the Fredholm index of matrix Wiener–Hopf plus/minus Hankel operators with semi-almost periodic symbols. Oper. Theor. Adv. Appl. 181, 143–158 (2008)
- 3. Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: The spectrum is discontinuous on the manifold of Toeplitz operators. Arch. Math. 75, 46–52 (2000)
- 4. Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: Toeplitz operators with frequency modulated semialmost periodic symbols. J. Fourier Anal. Appl. 7, 523–535 (2001)
- 5. Böttcher, A., Grudsky, S.M., Spitkovsky, I.M.: On the essential spectrum of Toeplitz operators with semi-almost periodic symbols. Oper. Theor. Adv. Appl. 142, 59–77 (2003)
- 6. Bo¨ttcher, A., Grudsky, S.M., Spitkovsky, I.M.: Block Toeplitz operators with frequency-modulated semi-almost periodic symbols. Int. J. Math. Math. Sci. 34, 2157–2176 (2003)
- 7. Böttcher, A., Karlovich, Y.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Birkhäuser, Basel (1997)
- 8. Böttcher, A., Karlovich, Y.I., Spitkovsky, I.M.: Toeplitz operators with semi-almost periodic symbols on spaces with Muckenhoupt weight. Integral Equ. Oper. Theory 18, 261–276 (1994)
- 9. Böttcher, A., Karlovich, Y.I., Spitkovsky, I.M.: Toeplitz operators with semi-almost-periodic matrix symbols on Hardy spaces. Acta Appl. Math. 65(1–3), 115–136 (2001)
- 10. Böttcher, A., Karlovich, Y.I., Spitkovsky, I.M.: Convolution Operators and Factorization of Almost Periodic Matrix Functions. Birkhäuser, Basel (2002)
- 11. Boyd, D.W.: Indices of function spaces and their relationship to interpolation. Can. J. Math. 21, 1245–1254 (1969)
- 12. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
- 13. Duduchava, R.V.: Integral Equations with Fixed Singularities. Teubner, Leipzig (1979)
- 14. Duduchava, R.V., Saginashvili, A.I.: Convolution integral equations on a half-line with semi-almost periodic presymbols. Differ. Equ. 17, 207–216 (1981)
- 15. Fernandes, C.A., Karlovich, A.Y., Karlovich, Y.I.: Noncompactness of Fourier convolution operators on Banach function spaces. Ann. Funct. Anal. AFA 10, 553–561 (2019)
- 16. Fernandes, C.A., Karlovich, A.Y., Karlovich, Y.I.: Fourier convolution operators with symbols equivalent to zero at infinity on Banach function spaces. Submitted. Preprint is available at [arXiv:](http://arxiv.org/abs/1909.13538) [1909.13538](http://arxiv.org/abs/1909.13538) [math.FA] (2019)
- 17. Folland, G.B.: A Guide to Advanced Real Analysis. The Mathematical Association of America, Washington, DC (2009)
- 18. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Springer, New York (2014)
- 19. Grudsky, S.M.; The Riemann boundary value problem with semi-almost periodic discontinuities in the space $L_p(\Gamma, \varrho)$. In: Integral and Differential Equations and Approximate Solutions, Elista, Kalmytsk. Gos. Univ., pp. 54–68, in Russian (1985)
- 20. Hörmander, L.: Estimates for translation invariant operators in L^p spaces. Acta Math. 104, 93–140 (1960)
- 21. Karlovich, A.Y.: Commutators of convolution type operators on some Banach function spaces. Ann. Funct. Anal. AFA 6, 191–205 (2015)
- 22. Karlovich, A.Y.: Banach algebra of the Fourier multipliers on weighted Banach function spaces. Concr. Oper. 2, 27–36 (2015)
- 23. Karlovich, A.Y.: Algebras of continuous Fourier multipliers on variable Lebesgue spaces. Submitted. Preprint is availabale at [arXiv:1903.09696](http://arxiv.org/abs/1903.09696) [math.CA] (2019)
- 24. Karlovich, A., Shargorodsky, E.: When does the norm of a Fourier multiplier dominate its L^{∞} norm? Proc. Lond. Math. Soc. 118, 901–941 (2019)
- 25. Karlovich, A.Y., Spitkovsky, I.M.: On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces. J. Math. Anal. Appl. 384, 706–725 (2011)
- 26. Karlovich, A.Y., Spitkovsky, I.M.: The Cauchy singular integral operator on weighted variable Lebesgue spaces. Oper. Theor. Adv. Appl. 236, 275–291 (2014)
- 27. Karlovich, Y.I., Loreto Herna´ndez, J.: Wiener–Hopf operators with semi-almost periodic matrix symbols on weighted Lebesgue spaces. Integral Equ. Oper. Theor. 62, 85–128 (2008)
- 28. Karlovich, Y.I., Loreto Hernández, J.: Wiener-Hopf operators with slowly oscillating matrix symbols on weighted Lebesgue spaces. Integral Equ. Oper. Theory 64, 203–237 (2009)
- 29. Karlovich, Y.I., Spitkovsky, I.M.: (Semi)-Fredholmness of convolution operators on the spaces of Bessel potentials. Oper. Theor. Adv. Appl. 71, 122–152 (1994)
- 30. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. Function Spaces. Springer, Berlin, II (1979)
- 31. Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indag. Math. 51, 323–338 (1989)
- 32. Nolasco, A.P., Castro, L.P.: A Duduchava–Saginashvili's type theory for Wiener–Hopf plus Hankel operators. J. Math. Anal. Appl. 331, 329–341 (2007)
- 33. Nolasco, A.P., Castro, L.P.: A stronger version of the Sarason's type theorem for Wiener–Hankel operators with SAP Fourier symbols. Bull. Greek Math. Soc. 54, 59–77 (2007)
- 34. Roch, S., Santos, P., Silbermann, B.: Non-Commutative Gelfand Theories. A Tool-kit for Operator Theorists and Numerical Analysts. Springer, Berlin (2011)
- 35. Saginashvili, A.I.: Singular integral equations with coefficients having discontinuities of semi-almost-periodic type. Trudy Tbilis. Mat. Inst. Razmadze 66, 84–95, in Russian (1980). English translation: Transl., Ser. 2, Am. Math. Soc. 127, 49–59 (1985)
- 36. Sarason, D.: Toeplitz operators with semi-almost periodic symbols. Duke Math. J. 44, 357–364 (1977)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.