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Abstract

Let X(R) be a separable rearrangement-invariant space and w be a suitable Muck-
enhoupt weight. We show that for any semi-almost periodic Fourier multiplier a on
X(R,w) = {f : fw € X(R)} there exist uniquely determined almost periodic Fourier
multipliers a;,a, on X(R,w), such that

a=(1—u)a; + ua, + ap,

for some monotonically increasing function u with u(—o0) = 0, u(+o0) = 1 and
some continuous and vanishing at infinity Fourier multiplier ap on X(R, w). This
result extends previous results by Sarason (Duke Math J 44:357-364, 1977) for
L?>(R) and by Karlovich and Loreto Herndndez (Integral Equ Oper Theor 62:85—
128, 2008) for weighted Lebesgue spaces L” (R, w) with weights in a suitable sub-
class of the Muckenhoupt class A,(R).
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1 Introduction

Let C(R) be the C*-algebra of all continuous functions on the two-point
compactification of the real line R = [—o0, +00] and

C(R) = {f € C(R) : f(—o0) =f(+00)},

where R = R U {oo} is the one-point compactification of the real line. Let APP
denote the set of all almost periodic polynomials, that is, finite sums of the form

> sea Ciei, Where
e;(x) =™, xeR,

¢; € Cand A C Ris a finite subset of R. The smallest closed subalgebra of L*(R)
that contains APP is denoted by AP and called the algebra of (uniformly) almost
periodic functions. Sarason [36] introduced the algebra of semi-almost periodic
functions as the smallest closed subalgebra of L>°(R) that contains AP and C(R):

It is not difficult to see that AP and SAP are C*-subalgebras of L°(R).

Theorem 1.1 (Sarason [36], see also [10, Theorem 1.21]) Let u € C(R) be any
function for which u(—oc0) =0 and u(+o00) = 1. If a € SAP, then there exist

ap,ar € AP and ap € C(R) such that ag(co) =0 and
a= (1 —u)a + ua, + ap. (1.1)

The functions a;, a, are uniquely determined by a and independent of the particular
choice of u. The maps a—a; and a—a, are C*-algebra homomorphisms of SAP onto
AP.

The uniquely determined function a; (resp. a,) is called the left (resp. right)
almost periodic representative of the semi-almost periodic function a.
Let F : L*(R) — L*(R) denote the Fourier transform:

(FF)(x) == F(x) == /R f(t)e™dr, xeR,

and let 7' : L?(R) — L*(R) be the inverse of F,

F 00 =57 [ s s 1eR

It is well known that the Fourier convolution operator
Wa) := FlaF (1.2)

is bounded on the space L*(R) for every a € L*(R).
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Semi-almost periodic Fourier multipliers on rearrangement-invariant. . . 1137

Let X(R) be a separable Banach function space (see Sect. 2.1 for the definition
and some properties of Banach function spaces). Then L?(R) N X(R) is dense in
X(R) (see, e.g., [15, Lemma 2.1]). A function a € L*°(R) is called a Fourier
multiplier on X(R) if the convolution operator W°(a) defined by (1.2) maps the set
L2(R) N X(R) into the space X(R) and extends to a bounded linear operator on
X(R). The function a is called the symbol of the Fourier convolution operator
WO(a). The set Mg of all Fourier multipliers on X(R) is a unital normed algebra
under pointwise operations and the norm:

Ha”Mx(R):: ||W0(a)||B(X(IR))’

where B(X(R)) denotes the Banach algebra of all bounded linear operators on the
space X(R).

Note that the Lebesgue spaces L”(R), 1 < p < oo, constitute the simplest example
of Banach function spaces. Motivated by the work of Duduchava and Saginashvili
[14], Karlovich and Spitkovsky [29] (see also [10, Section 19.1]) introduced the
algebra SAPp,r) of semi-almost periodic Fourier multipliers on the Lebesgue
spaces LP(R), 1<p<oo, and proved an analogue of Sarason’s Theorem 1.1 for
SAPpr) (see [29, Lemma 3.1(iv)] and [10, Proposition 19.3]).

We should mention that, after Sarason’s pioneering paper [36], various classes of
Toeplitz and convolution type operators involving semi-almost periodic functions
were studied on various function spaces, for instance, by Saginashvili [35], Grudsky
[19]; Bottcher et al. [3—6, 8—10]; Nolasco and Castro [32, 33]; Bogveradze and
Castro [2]; the second author and Spitkovsky [25].

Let M(R) denote the set of all measurable complex-valued Lebesgue measurable
functions on R. As usual, we identify two functions on R which are equal almost
everywhere. A measurable function w: R — [0, 00] is called a weight if the set
w1 ({0,00}) has measure zero. For 1 <p<oo, the Muckenhoupt class A,(R) is

defined as the class of all weights w: R — [0,00] such that w € L} (R), w™! €
” (R) and

S%G%KMQNOWG%[WW@myM<m, (1.3)

where 1/p + 1/p’ = 1 and the supremum is taken over all intervals I C R of finite
length 1. Since w € IF._(R) and w~! € I/

loc loc

(R,w) == {f € M(R) : fiw € L(R)}

(R), the weighted Lebesgue space

is a separable Banach function space (see, e.g., [26, Lemma 2.4]) with the norm:

1l ) = (/R [F (x)[Pw? (x) dx)l/p.

Note that if w € A,(R), then it may happen that the function e, does not belong to
MU(R,W) for some A € R. Hence,order to generalize Theorem 1.1 to the setting of
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1138 C. A. Fernandes, A. Yu. Karlovich

weighted Lebesgue spaces L”(R, w), one has to restrict the study to a narrower class
of weights. For 1 <p < oo, let

OR) = & ,VNZW('JF/I)
AAM,{ capR) + v ="

For a weight w EAg([R), Karlovich and Loreto Herndndez defined the algebra

€ L*(R) for all A€ [R{}.

SAPp(r, Of semi-almost periodic Fourier multipliers on the weighted Lebesgue
space LP(R,w) and proved an analogue of Theorem 1.1 in this setting (see [27,
Theorem 3.1]). The aim of this paper is to extend this result to the setting of
separable rearrangement-invariant Banach function spaces with suitable Mucken-
houpt weights.

It is well known that the Lebesgue spaces L (R), 1 <p < oo, fall in the class of
rearrangement-invariant Banach function spaces. Other classical examples of
rearrangement-invariant Banach function spaces are Orlicz spaces L?(R) and
Lorentz spaces [P7(R), 1<p,g<oco. For a rearrangement-invariant Banach
function space X(R), its Boyd indices oy, iy are important interpolation charac-
teristics. In particular, o;» = f;, = 1/p for 1 <p <oo. In general, 0 <ax < fiy <1
and it may happen that oy < ffy. We postpone formal definitions of rearrangement-
invariant Banach function spaces and their Boyd indices until Sects. 2.2-2.3 and
refer to [1, Chap. 3] and [30, Chap. 2] for the detailed study of these concepts.

Let X(R) be a separable rearrangement-invariant Banach function space with the
Boyd indices oy, fy satisfying 0 <oy, fiy <1. Suppose that a weight w belongs to
Al/xx (R) n Al/ﬁx (R) Then

X(R,w) := {f € M(R) : fw € X(R)}

is a separable Banach function space (see Lemma 2.3(b) below). Suppose that
a: R — C is a function of finite total variation V(a) given by

n
V(a) == sup}_ la(x) — alxi-1),
k=1
where the supremum is taken over all partitions of R of the form
—0<X<xX1 < <X, < + 0

with n € N. The set V(R) of all functions of finite total variation on R with the
norm

llally := llallp~ @) + V(a)

is a unital non-separable Banach algebra. It follows from [21, Corollary 2.2] that
there exists a constant cx(g,,) € (0,00) such that for all a € V(R),

lall vy, < x@allally - (1.4)

This inequality is usually called a Stechkin-type inequality (see, e.g., [13,

@ Springer



Semi-almost periodic Fourier multipliers on rearrangement-invariant. . . 1139

Theorem 2.11] and [10, Theorem 17.1] for the case of Lebesgue spaces and
Lebesgue spaces with Muckenhoupt weights, respectively). Let CX(R‘W)([R.{) and
Cx(r.w)(R) denote the closures of C(R) N V(R) and C(R) N V(R) with respect to
the norm of My g, respectively.

If we A(l’/lxx([R{) ﬁA?/ﬁX([R), then APP C Mx(r,,) (see Corollary 5.2 below).

Because of this observation, we will refer to AY o (R) NAY 15, (R) as the class of
suitable Muckenhoupt weights. By APx(g,) we denote the closure of APP with
respect to the norm of Myg,,). Finally, let SAPx,, be the smallest closed

subalgbera of My, that contains the algebras APxr,, and Cx(g,w) (R):
SAPX(R,W) = a]gMX([R.w) {APX(R,w)a CX(R,W) (ﬁ)}

In this paper we present a self-contained proof of the following result.

Theorem 1.2 (Main result) Let X(R) be a separable rearrangement-invariant
Banach function space with the Boyd indices satisfying 0 <wy, Py <1. Suppose that

we A?/“X(R) N A?/ﬁX(R). Let u € C(R) be any real-valued monotonically increas-
ing function such that u(—oo) = 0 and u(+00) = 1. Then for every function a €
SAPx () there exist functions aj,a, € APy, and a function ay € CX(R,W)(R)
such that ap(co) = 0 and (1.1) holds. The functions aj, a, are uniquely determined
by the function a and are independent of the particular choice of the function u. The
maps a—a; and a—a, are continuous Banach algebra homomorphisms of SAPx (R,
onto APx(w, of norm 1.

The paper is organized as follows. In Sect. 2, we collect definitions and
properties of rearrangement-invariant Banach functions spaces and their Boyd
indices oy, fiy. Further, we discuss properties of weighted rearrangement-invariant
spaces X(R,w) and state several results about general Fourier multipliers on
X(R,w) for weights w belonging to the intersection of the Muckenhoupt classes
Al/“X(R) mAl/ﬁX(R)-

In Sect. 3, we show that, under the assumption w € A, /,, (R) N A /5 (R), the set
of continuous Fourier multipliers vanishing at infinity on the space X(R,w)
coincides with the closure of the set of all smooth compactly supported functions
with respect to the norm of My,

Relying on the results of the previous section, in Sect. 4, we show that

CX<R7W)(R) = Cx(Rw) (R)N C(R) and that the algebra CX(RW)(R) is contained in the
algebra SOx () of slowly oscillating Fourier multipliers (see [21]).

In Sect. 5, we show that if w GA?/W(R) ﬁA‘l)/ﬁX([R), then the set of almost
periodic polynomials APP is contained in Myg,). We give an example of a
nontrivial weight in AY / (RN A9 /5, (R) (based on an example from [27]). Further,

we show that the product of an almost periodic Fourier multiplier and a continuous
Fourier multiplier vanishing at infinity is a continuous Fourier multiplier vanishing
at infinity.
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1140 C. A. Fernandes, A. Yu. Karlovich

Section 6 is devoted to the proof of the main result. We show that the set A, of
functions of the form (1.1) with @, a, € APx(n,, and ag € CX<R,W)(R) such that

ap(oo) = 0 forms an algebra, and that the mappings a—a; and a—a, are algebraic
homomorphisms of .4, onto APyg,,. We prove that

larlpag, < lallaess Narllagn,, <Nl a€Aw  (15)

which implies that the algebra A, is closed. Since the closure of .4, with respect to
the norm of My, coincides with SAPy ), we conclude that A, is equal to
SAPx(Rr,w)- Moreover, inequalities (1.5) mean that a—a; and a—a, are Banach
algebra homomorphisms of SAPx(g,) onto APy, of norm 1.

2 Preliminaries
2.1 Banach function spaces

Let Ry := (0,00) and S € {R;, R}. The set of all Lebesgue measurable complex-
valued functions on S is denoted by M(S). Let M ™ (S) be the subset of functions in
M (S) whose values lie in [0, cc]. The Lebesgue measure of a measurable set E C S
is denoted by IEl and its characteristic function is denoted by yy. Following [1,
Chap. 1, Definition 1.1], a mapping p: MM (S) — [0,00] is called a Banach
function norm if, for all functions f, g,f, (n € N) in MM (S), for all constants a >0,
and for all measurable subsets E of S, the following properties hold:

(AD) p(f) =0 f =0 ae, plaf)=ap(f), p(f+g)<p(f)+pr(e),
A2)0<g<f ae. = p(g)<p(f) (the lattice property),
A3)0<f, 1f ae. = p(fy) 1 p(f) (the Fatou property),
Ad) |E| <00 = p(1g) <oo,
)

(
(
(
(AS |E\<oo:>/f ) dx < Cep(f)

with Cr € (0,00) which may depend on E and p but is independent of f. When
functions differing only on a set of measure zero are identified, the set X(S) of all
functions f € M(S) for which p(|f|) <oo is called a Banach function space. For
each f € X(S), the norm of f is defined by

£ llx(s):= PCFD)-

Under the natural linear space operations and under this norm, the set X(S) becomes
a Banach space (see [1, Chap. 1, Theorems 1.4 and 1.6]). If p is a Banach function
norm, its associate norm p’ is defined on M (S) by

o0 i=sup{ [ retax  rem ©). pin <1}, M (s),

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach function

@ Springer



Semi-almost periodic Fourier multipliers on rearrangement-invariant. . . 141

space X'(R) determined by the Banach function norm p’ is called the associate
space (Kothe dual) of X(S). The associate space X'(S) is naturally identified with a
subspace of the (Banach) dual space [X(S)]".

2.2 Rearrangement-invariant Banach function spaces

Suppose that S € {R, R, }. Let My(S) and My (S) be the classes of a.e. finite
functions in MM(S) and M*(S), respectively. The distribution function y; of a
function f € My(S) is given by

w(i) = {xes: x> 2, i>o0,

Two functions f, g € My(S) are said to be equimeasurable if 1,(1) = u,(4) for all
A >0. The non-increasing rearrangement of f € My(S) is the function defined by

(@) =inf{i: (1) <t}, 1>0.

We here use the standard convention that inf () = +o0.

A Banach function norm p : M (S) — [0, 00] is called rearrangement-invariant
if for every pair of equimeasurable functions f,g € M (S) the equality p(f) = p(g)
holds. In that case, the Banach function space X(S) generated by p is said to be a
rearrangement-invariant Banach function space (or simply rearrangement-invariant
space). Lebesgue, Orlicz, and Lorentz spaces are classical examples of rearrange-
ment-invariant Banach function spaces (see, e.g., [1] and the references therein).
By [1, Chap. 2, Proposition 4.2], if a Banach function space X(S) is rearrangement-
invariant, then its associate space X'(S) is rearrangement-invariant, too.

2.3 Boyd indices

Suppose X(R) is a rearrangement-invariant Banach function space generated by a
rearrangement-invariant Banach function norm p. In this case, the Luxemburg
representation theorem [1, Chap. 2, Theorem 4.10] provides a unique rearrange-
ment-invariant Banach function norm p over the half-line R; equipped with the
Lebesgue measure, defined by

ph) = sup{ RGO IOE 1},

and such that p(f) = p(f*) for all f € M (R). The rearrangement-invariant Banach
function space generated by p is denoted by X(R,).
For each ¢ > 0, let E, denote the dilation operator defined on Mi(R) by

(Ef)(s) =f(st), O0<s<oo.

With X(R) and X(R.) as above, let hx(r) denote the operator norm of E, as an
operator on X(R, ). By [1, Chap. 3, Proposition 5.11], for each # > 0, the operator

@ Springer



1142 C. A. Fernandes, A. Yu. Karlovich

E, is bounded on X(R, ) and the function hy is increasing and submultiplicative on
(0, 00). The Boyd indices of X(R) are the numbers oy and fy defined by

log hx (¢ log hx (¢
ox := sup el X()7 = inf —£x X(>

(0,1 logt X e(lx)  logt

By [1, Chap. 3, Proposition 5.13], 0 < oy < fiy < 1. The Boyd indices are said to be
nontrivial if oy, fy € (0,1). The Boyd indices of the Lebesgue space I[7(R),
1 <p < o0, are both equal to 1/p. Note that the Boyd indices of a rearrangement-
invariant space may be different [1, Chap. 3, Exercises 6, 13].

The next theorem follows from the Boyd interpolation theorem [11, Theorem 1]
for quasi-linear operators of weak types (p, p) and (g, g). Its proof can also be found
in [1, Chap. 3, Theorem 5.16] and [30, Theorem 2.b.11].

Theorem 2.1 Let 1 <g<p<oo and X(R) be a rearrangement-invariant Banach
function space with the Boyd indices oy, By satisfying 1/p<ox, fx<1/q. Then
there exists a constant C,, € (0,00) such that if a linear operator T : M(R) —
IM(R) is bounded on the Lebesgue spaces [P (R) and L1(R), then it is also bounded
on the rearrangement-invariant Banach function space X(R) and

1T sexry) < Cpg MX LT M| 5o () 1T (o) }- (2.1)

Notice that estimate (2.1) is not stated explicitly in [1, 11, 30]. However, it can be
extracted from the proof of the Boyd interpolation theorem.

2.4 Weighted Banach function spaces
Let X(R) be a Banach function space generated by a Banach function norm p. We
say that f € Xjoc(R) if fyz € X(R) for any measurable set E C R of finite measure.

Lemma 2.2 [26, Lemma 2.4] Let X(R) be a Banach function space generated by a
Banach function norm p, let X'(R) be its associate space, and let w : R — [0, 00| be
a weight. Suppose that w € Xjoc(R) and 1/w € X] (R). Then

p,(f) == p(fw), feM(R),

is a Banach function norm and
X(R,w) = {f € MR) : fw € X(R)}

is a Banach function space generated by the Banach function norm p,,. The space
X'(R,w™!) is the associate space of X(R,w).
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2.5 Density of nice functions in separable rearrangement-invariant Banach
function spaces with Muckenhoupt weights

Recall that the (noncentered) Hardy-Littlewood maximal function Mf of a function
f € Ll .(R) is defined by

(Mf)(x) := sup— / FO)|dy, xeR,
I>x |I |
where the supremum is taken over all intervals I C R of finite length containing the
point x.
Let S(R) be the Schwartz space of rapidly decreasing smooth functions and let us
denote by So(R) the set of all functions f € S(R) such that their Fourier transforms
Ff have compact supports.

Lemma 23 Let X(R) be a separable rearrangement-invariant Banach function
space and X'(R) be its associate space. Suppose that the Boyd indices of X(R)
satisfy 0<ay, fy <1 and w € Ay, (R) N A5, (R). Then

(a) w € Xioe(R) and 1/w € X| . (R);

(b) the Banach function space space X(R,w) is separable;

(c) the Hardy-Littlewood maximal operator M is bounded on the Banach function
space X(R,w) and on its associate space X'(R,w™!);

(d) the set So(R) is dense in the Banach function space X(R,w).

Proof Parts (a) and (c) are proved in [21, Section 4.3]. Part (b) follows from part
(a), Lemma 2.2 and [26, Lemmas 2.7 and 2.11]. Part (d) is a consequence of parts
(b), (¢) and [16, Theorem 4]. Ul

2.6 The Banach algebra My ) of Fourier multipliers

The following result plays an important role in this paper.

Theorem 2.4 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, Py <l. Suppose that a weight w
belongs to Ay, (R) VA5 (R). If a € My, then

lall ey < llall g, - (22)
The constant 1 on the right-hand side of (2.2) is best possible.

This theorem follows from Lemma 2.3(b) and [15, Theorem 2.4] (which was
deduced from [24, Corollary 4.2]).

Inequality (2.2) was established earlier in [22, Theorem 1] with some constant on
the right-hand side that depends on the space X (R, w).

Since (2.2) is available, an easy adaptation of the proof of [18, Proposi-
tion 2.5.13] leads to the following (we refer to the proof of [22, Corollary 1] for
details).

@ Springer



1144 C. A. Fernandes, A. Yu. Karlovich

Corollary 2.5 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, Py <l. Suppose that a weight w
belongs to Ay, (R) N Ay g, (R). Then the set of the Fourier multipliers My, is a
Banach algebra under pointwise operations and the norm || - || M

As usual, we denote by C2°(R) the set of all infinitely differentiable functions
with compact support.

Theorem 2.6 Suppose that a non-negative even function @ € CX°(R) satisfies the
condition

/ ox)dx=1 (2.3)
R
and the function @g is defined for 6 > 0 by

@s5(x) == 0""p(x/d), x€R. (2.4)

Let X(R) be a separable rearrangement-invariant Banach function space with the
Boyd indices satisfying 0<oy, fxy<1. Suppose that a weight w belongs to
A1) (R)NA g (R). If a € My, then for every 6 > 0,

||a * (p‘SHMX([R,w) S ||a||MX([R_W)' (25)

Proof The proof is analogous to the proof of [23, Theorem 2.6]. It follows from
Lemma 2.3(c) and [26, Theorems 3.8(a) and 3.9(c)] that if the weight w belongs to
A]/xX(R) ﬁAl/ﬁx([RE), then

1
su W Xa, w) I X(a '(R,w— <o0.
7oo<a£b<oob _ a|| ( ,b)”X([R{, )|| ( ,b)”X(R 1

Therefore, by [24, Lemma 1.3], the Banach function space X(R,w) satisfies the
hypotheses of [24, Theorem 1.3]. It is shown in its proof (see [24, Section 4.2]) that
for every 6 > 0 and every f € S(R) N X(R,w),

17 aFf g

17" (@ 05) Fflx ) < Sup{ Lif € Xs(R, W)}|V||X(R.w)>

W llx )
where

Xs(R,w) := (S(R) N X(R, w))\{0}.
Then, for every § > 0,

17 (a * 05) FF Il gz
su
Ny

).fe XS([F\R,W)} < llallpyy,,, - (2.6)

By Lemma 2.3(b), the Banach function space X (R, w) is separable. Then it follows
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from [1, Chap. 1, Corollary 5.6] and [24, Theorems 2.3 and 6.1] that for every
0 > 0, the left-hand side of inequality (2.6) coincides with the multiplier norm
la * sl Myay, Which completes the proof of inequality (2.5). O

3 Continuous Fourier multipliers vanishing at infinity
3.1 The case of Lebesgue spaces with Muckenhoupt weights

The closure of a subset & of a Banach space £ in the norm of £ will be denoted by
closg ().
Let Co(R) be the set of all functions f € C(R) such that f(occ) = 0.

Lemma 3.1 Ler 1 <p<oc and w € A,(R). Then

Co(R) NV(R) C clospy,,,, (CX(R)).

Proof The idea of the proof is borrowed from [20, Theorem 1.16] (see also [23,
Theorem 3.1]). If w € A,(R), then w'™ € A, 15, (R) whenever || and |5,/ are
sufficiently small (see, e.g., [7, Theorem 2.31]). If p>2, then one can find
sufficiently small d;, 0, > 0 and a number 6 € (0,1) such that

I 1-0 n 0

p 2 p(l+d)
If 1 <p<?2, then one can find a sufficiently small number d, > 0, a number d; <0
with sufficiently small |d,|, and a number 6 € (0, 1) such that all conditions in (3.1)

are fulfilled.
Let us use the following abbreviations:

MP = MU’(RW)’ MP(' = M[/’“*"H(R,w‘*f‘zy
B, :=B(L’(R,w)), B, = BP0 (R, wi+oz)),

, w= 1170W(1+62)0, WIJN52 S Ap(1+5|)(R)' (31)

For n € N, let
1 if |x| <n,
V,(x) =< n+1—|x| if n<lx|<n+1, (3.2)
0 if x| >n+1.

Then 1, has compact support and ||y, = 3. By the Stechkin-type inequality
(1.4),

||lpn||/\/l,,() SCO’

where ¢y is three times ¢p0+s) (g 1+5), and the latter constant is the constant from
(L.4).
Let a € Co(R) N V(R). Fix ¢ > 0. For n € N, take b, := ay,,. Then

@ Springer



1146 C. A. Fernandes, A. Yu. Karlovich

lim = by ) = 0 (33)

and b, € Cy(R) has compact support. Taking into account the Stechkin-type
inequality (1.4), we get

lla = ballpg,, < llallag,, (14 Wallag, ) < (14 co)eollallym) (3.4)

Py Py

and

allg, < lallg, 1Wllag, <3lallyge- (3.5)

It follows from (3.1) and the Stein—Weiss interpolation theorem (see, e.g., [1, Chap.
3, Theorem 3.6]) that

lla — anMp = |W(a—b, )”Bp
0
< [W(a = ba) 5y |W0(a = )5, (3.6)
0
= [la— bn||L°°(R)Ha — bl

My,

Combining (3.3), (3.4) and (3.6), we see that there exists ny € N such that
Ha_bno||M,,<3/2- (3.7)

Let ¢ € C°(R) be a non-negative even function satisfying (2.3) and for 6 > 0 let
the function ¢4 be defined by (2.4). By Theorem 2.6 and inequality (3.5), for every
0>0,

16n * @5 s, < M1Bn [l aa,, <cgllallygy- (3.8)
It follows from [12, Propositions 4.18, 4.20-4.21] that b,, * 95 € C>°(R) and
(}i‘g [6ny * @5 = bug| o (m) = O (3.9

In view of (3.1) and the Stein-Weiss interpolation theorem (see, e.g., [1, Chap. 3,
Theorem 3.6]), we see that

||bn0 * Qs — bnoHM,,
= HWO(bno *P5— bno)
0
WO by + 05 — no)HBLz WO (Bay @5 = by )35

Po

(3.10)
= [|bn, * @5 — bno“Lw(R)ano * Qs — Ilo“MFU

1-0 0
< |[bny * @5 — bno||L°°(R)(||bno * (P(SHM,,O + ”bﬂoHM,,(,) :

Combining (3.8)—(3.10), we conclude that there exists dp > 0 such that
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16y * @5, = bugl| a1, <2/2- (3.11)

Hence, it follows from (3.7) and (3.11) that for every function a in the intersection
Co(R) N V(R) and every & > 0 there exists a function by, * ¢; € C°(R) such that

@ = buy * @5,ll A, <& Therefore, a € clos , (C2(R)). O

3.2 The case of rearrangement-invariant spaces with Muckenhoupt weights

The following lemma is an extension of the previous result to the case of
rearrangement-invariant Banach function spaces with Muckenhoupt weights.

Lemma 3.2 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, Py <l. Suppose that a weight w
belongs to A/, (R) VA5 (R). Then

Co(R) NV(R) C clospyy,,, (CZ(R)).

Proof Since ax, By € (0,1) and w € A;/, (R)NA;/5 (R), it follows from [7,
Theorem 2.31] that there exist p and ¢ such that

l<g<l/px<1jax<p<oo, we€A,(R)NALR). (3.12)

Let C,, € (0, 00) be the constant from estimate (2.1). Fix & > 0 and take a function
a € Co(R) N V(R). As in the proof of inequality (3.7) (see the proof of Lemma 3.1),
it can be shown that there exists ny € N such that

& &
”a - bno”/\/lu;(m.w) < Fwa ||Cl - bﬂo”MLq(n;e_“,-) < rp’qv (313)

where b, = ays,, and y,, is given by (3.2) for every n € N. It follows from (3.12),
(3.13) and Theorem 2.1 that

lla = bugl py e,y = IWO(a = byl pix (o))
= [[wW’(a — bno)W711||B(x(R))
<Gy maX{ IwW® (@ = by, )Wl g1 ) [IWW° (@ — bno)W711\|B(Lq(R>)}
= Cpgmax{ W@ = bu,) 020> 1W (@ = b sy |

= Cra max{Ha B b"OHMw(R,w)’ la = bnOHML‘i(R.w) } <&/2.

(3.14)

As in the proof of inequality (3.11) (see the proof of Lemma 3.1), it can be shown
that there exists d¢ > 0 such that
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€
2C,,’

&
1Bny * @5y = bug | a5, < 1B * @3y = Onollatyyge,y < 56— (3.15)
P9

where ¢ € C2°(R) is a non-negative even function satisfying (2.3) and the functions
¢; are defined for all 6 > 0 by (2.4). Arguing as in the proof of (3.14), we deduce
from (3.12), (3.15) and Theorem 2.1 that

1By * @5, = b ll g, <8/2- (3.16)

It follows from (3.14) and (3.16) that for every function a in the intersection
Co(R) N V(R) and every & > O there exists a function b,, * @5 € C>°(R) such that

lla — by, * @5, ”Mm,w) <e. Therefore, a € clos iy, (C*(R)). O

Now we are in a position to prove the main result of this section.

Theorem 3.3 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, Py <1. Suppose that a weight w
belongs to A, (R) N Ay (R). Consider the set

Cox(rm) (R) == {a € Cxww(R) : a(co) = 0}. (3.17)
Then

Cox(rw) (R) = clospyy,, (C(R)). (3.18)

Proof Let a € Cx(g,,)(R) be such that a(co) = 0. Fix & > 0. By the definition of
the algebra Cy(g,,)(R), there exists a function » € C(R) N V(R) such that

la = bll g, <2/3. (3.19)

It follows from this observation and the continuous embedding of My, into
L>*(R) (see Theorem 2.4) that

[b(00)| = la(o0) = b(oo)| < [la = b| () < lla = bl p,,,, <8/3- (3.20)

Row)

Take ¢ = b — b(o0) € Co(R) N V(R). By Lemma 3.2, there exists a function d €
CX(R) C Mx(r,w such that

Hc—dHMX(R_W)<8/3. (3.21)
Combining inequalities (3.19)—(3.21), we see that
la = dll gy, < lla = bll g, + 16(00)] + lle = dll .., <.

Hence
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CO,X(R,W)(R) C CIOSMX(FR,W) (CLOO(R)) (322)

Let us prove the reverse embedding. Take a € closy,, (C(R)). Then there
exists a sequence {a,},.n C C2°(R) such that

Jim llan @l yg,, =0

Since C*(R) C C(R) N V(R), the above equality and the continuous embedding of
the algebra My, into the algebra L>(R) (see Theorem 2.4) imply that a €
Cx(rw)(R) and
la(00)| = Tim |ay(00) — a(00)| < Tim [la, — all e
< lim la, — all vy, =

Thus

clos Ay, (C(R)) C Cox(ram) (R). (3.23)
Combining (3.22) and (3.23), we arrive at (3.18). O

4 Continuous and slowly oscillating Fourier multipliers

4.1 Continuous Fourier multipliers on one and two-point compactifications
of the real line

For a function f € C(R), let

f(—o0) if xé€(—o0,—1),
Ix) = 4 S -o0)(1 =) (o)1 4] i xe L1, @)
f(+00) if  xe(l,+00).

It is easy to see that
17 llvy = max {|f(=00)l, [f (+-00) |} + |f (+-00) = f(=o0)]. (4.2)

Therefore J; € C(R) N V(R) and f — J; € Co(R).

The next lemma extends [29, Lemma 3.1(i)] from the setting of Lebesgue spaces
to the setting of rearrangement-invariant Banach function spaces with Muckenhoupt
weights.

Lemma 4.1 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0<oyx, fy<l. Suppose that
w €A/ (R)NA 5 (R). Then
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Cxrw)(R) = Cx(aw) (R) N C(R). (4.3)

Proof The proof is analogous to the proof of [29, Lemma 3.1(i)] (see also [23,
Lemma 3.2]). It is obvious that CX(R.W)(R) C Cx(rw)(R). On the other hand, it
follows from Theorem 2.4 that CX<R7W)(R) C C(R). Therefore,

Cxrw)(R) C Cx(aw)(R) N C(R). (4.4)

To prove the opposite embedding, let us consider an arbitrary function a €

Cx(r,w)(R) such that a(+00) = a(—o0). Let {a, } .y C C(R) N V(R) be a sequence
such that ||a, — al| My 0 as n — oo. According to Theorem 2.4, the sequence

{an},en converges to a uniformly on R. Hence, in particular, a,(+00) — a(o0) as
n — oo. Let the functions b, := J, _4(~) be defined by (4.1) with a, —a(co) in
place of f. By the Stechkin-type inequality (1.4) and equality (4.2), we have

Bl gy, < ext War—ato v
= cx(ryw) Max {|a,(—o0) — a(o0)|, |a,(+00) — a(oc)| }

+ CX(R,W)|an(+OO) - an(—oo)\.

Therefore, ”b"”MmW) — 0 as n — oo and thus,
V}Lnolo llan — bn — a”MX(R.W) =0.

Since a, — b, € C(R) N V(R), the latter equality implies that a € CX(R,W)(R). Thus

Cx(ra) (R) NC(R) C Cxro(R). (4.5)

Combining embeddings (4.4)-(4.5), we arrive at equality (4.3). O

4.2 Embedding of the algebra Cy 4 (R) into the algebra SOy ) of slowly
oscillating Fourier multipliers

Let Cy»(R) := C(R) N L*(R). For a bounded measurable function f : R — C and a
set J C R, let

osc(f,J) :=ess sup |f(x) —f()|.

x,yeJ

Let SO be the C*-algebra of all slowly oscillating functions at co defined by

SO := {f € Cp(R) : XEHlDOosc(f, [—x, —x/2] U [x/2,x]) = O}.

Consider the differential operator (Df)(x) = xf’(x) and its iterations defined by
D% = f and D'f = D(D'"'f) for j € N. Let
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SO = {a €S0N C3(R) : lim (Da)(x) =0, j = 1,2,3},

X—00

where C*(R) denotes the set of all three times continuously differentiable functions.
It is easy to see that SO® is a commutative Banach algebra under pointwise oper-
ations and the norm

3
1 .
lallses := Zﬁ ||D]a||L°°(R)'

J=0

It follows from [21, Corollary 2.6] that if X(R) is a separable rearrangement-in-
variant Banach function space with the Boyd indices oy, iy such that 0 <oy, fy <1
andw € A/, (R) N A5, (R), then there exists a constant cx(g ) € (0, 00) such that

for all a € SO?,

||‘1HMX(R_W) < cxw)llallsos-

The continuous embedding SO® C Mx(m,w) allows us to define the algebra SOx(Rrw)

of slowly oscillating Fourier multipliers as the closure of SO® with respect to the
multiplier norm:

SOx (@) = oSy, (SO°).
The following result is analogous to [28, Lemma 3.6].

Lemma 4.2 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, By <l1. Suppose that a weight w

belongs to A/, (R) N A5 (R). Then Cx(r ) (R) C SOx ().
Proof Leta € CX(R_’W)([R'%). Fix ¢ > 0. Then there exists b € C(R) N V(R) such that
la — b”MX(IR,wJ <g/2. (4.6)
Then b — b(c0) € Co(R) N V(R). By Lemma 3.2,
b—b(x0) € clos vy, (CSO(R))

Then there exists ¢ € C2°(R) such that

|6 — b(o0) — c||MX(Rw) <g/2. (4.7
It follows from inequalities (4.6) and (4.7) that

la— (¢ +b(00) sy, <

Since ¢ + b(o0) € C*(R)+C C SO, we get a € clospyy,,, (SO°) = SOxw ). O
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5 Almost periodic Fourier multipliers and their products
with continuous Fourier multipliers vanishing at infinity

5.1 The algebra APy ) of almost periodic Fourier multipliers

For 1 € R, let T, denote the translation operator defined by
(Tf)(x) =f(x—2), xeR

Lemma 5.1 Let X(R) be a rearrangement-invariant Banach function space and
w: R — [0, 00] be a weight such that w € Xoc(R) and 1/w € X| .(R). Suppose that
A € R. Then the translation operator T) is bounded on the Banach function space
X(R,w) if and only if the function

v, (x) ::M, x € R,
w(x)
belongs to the space L*(R). In that case ||T;||gxww) = 1Vill1=(r)-

Proof The operator T is bounded on the space X (R, w) if and only if the operator
wT;w='I = T,(v;I) is bounded on the space X(R). Moreover, their norms coincide.
It is easy to see that for every f € X(R), the function Tf is equimeasurable with f,
whence [|T;f|xr) = [[fllx(w)- Therefore,

1Tl sx @y = IT2viDllgxwy) = IV ll pxcwy)-

By [31, Theorem 1], the multiplication operator v,I is bounded on the space X(R) if
and only if v, €L*(R) and  |[villlgxw) = Villpxr)y  Thus,

I T2 sox oy = 1Vall e g)- O

As a consequence of the previous result, we show that for all 1€ R, the
exponential functions e;(x) = ¢, x € R, are Fourier multipliers on separable
rearrangement-invariant Banach function spaces with weights in the sublclass
A}, (R)NAJ 5 (R) of the class of Muckenhoupt weights.

Corollary 5.2 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy < fy <1. Suppose that a weight w

belongs to A‘])/aX(R) HA?/ﬂX(R). Then for every ). € R, the function e; belongs to

My and |leill py,, = IVall ()

Proof 1t follows from the definition of the classes AY I (R) and A? ; (R) that the
*X /Bx

function v;(x) = Wff&; ) x € R, is bounded for every 4 € R. By Lemma 2.3(a), w €

Xioe(R) and 1/w € X{ .(R). Then, by Lemma 5.1, the operator T is bounded on the
Banach function space X(R,w) and
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1Tl sx @y = Villi~@w), 4 € R

It remains to observe that 7; = W%(e;). Thus e; € My, and

||€AHMX(R,,‘,) = HWO(EA)”B(X(RM)) = ||V2||Lx(R)v LER,
which completes the proof. U

Corollary 5.2 implies that if X(R) is a separable rearrangement-invariant Banach
function spaces and w € A7, (R) N A, (R), then APP C My(g,.). We define the
algebra APy, of almost periodic Fourier multipliers by

APX(RW) = ClosMx(R,w) (APP)

It is natural to refer to the weights in A? Jax ﬁA? /g, A suitable Muckenhoupt

weights. The class of suitable Muckenhoput weights contains many nontrivial
weights as the following example shows.
For d,v,n € R, consider the weight

( exp (6 + vsin(nlog(log|x|))) if  |x|>e,
w(x) =
exp(d) if  |x|<e.

Let r € (1,00). It was shown in [27, Example 4.2] that if

—1/r<d =PV + 1<+ VP +1<1—1/r,

then w € A°(R). Hence if 0 <oy < iy <1 and

—ay <0 — [V + 1<+ V2 + 1<1 — By,

then w € AY, (R) NA} ; (R).

5.2 Products of almost periodic Fourier multipliers and continuous Fourier
multipliers vanishing at infinity

The next lemma generalizes [29, Lemma 3.1(iii)] from the setting of Lebesgue
spaces to the setting of rearrangement-invariant Banach function spaces with
suitable Muckenhoupt weights.

Lemma 53 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0 <oy, fx <1. Suppose that w belongs to

A?/“X(R) mA(l)/ﬁx(R) and CO,X(R,W)(R) .is defined by (3.17). If a € APxw,, and

¥ € Coxmw)(R), then afy € Cox(mw)(R).

Proof By Theorem 3.3, there exists a sequence {{/,},.ny C C°(R) such that
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gim 4, = ]y, =0 (5.1)
By the definition of the algebra APy ,, there exists a sequence a, € APP such that

lim |la, — a||MX(R‘w) =0. (5.2)

n—oo

Then a,y, € C*(R) C C(R) N V(R) for every n € N. Moreover, (5.1)—(5.2) imply
that

nh—>rrolc ||aﬂwn - alﬁ“/\/lx(R,w) =0.

Hence ay € Cx(g,)(R). In view of the continuous embedding of Mxg,, into
L>*(R) (see Theorem 2.4) and the above equality, we obtain

(@) (00)| = lim [(an,)(o0) — (ah)(c0)| < lim flanih, — avr|| (g

< lim [la, — apllyy,,, =0

Thus (ay)(00) = 0 and ay € Co x(r ) (R). O

6 Proof of the main result

6.1 The algebra A,

For a real-valued monotonically increasing function u € C(R) such that
u(—0) =0 wu(+o00) =1, (6.1)
consider the set

A, = {a =1 —u)a; +ua, +ao : a,a, € APx (), ao € CO,X(RAVW)(R)}'

Lemma 6.1 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0<oyx, fy<l. Suppose that

we A?/“X(R) ﬂA?/ﬁx([R). If ue C(R) is a real-valued monotonically increasing
function such that u(—oo) = 0 and u(+00) = 1, then the set A, is an algebra and
the mappings a—a; and a—a, are algebraic homomorphisms of A, onto APx ().

Proof If a,b € A,, then
a=(1—u)a+ua,+ay, b= (1—u)b+ ub, + by

with some a;,a,, b;, b, € APx(r, and ag, by € Cox(rw)(R). Therefore

a+b=1—u)(a+ b))+ ula+b;)+ (ap + bo) (6.2)

and
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ab = (1 — u)*ab; + wPa,b, + (1 — w)u(ab, + a.by)
+ ((1 —u)a; + ua,)bo + ((1 —u)b + ub,)ao + apby (6.3)
= (1 — w)aib; + ua,b, + cy,
where

co=(u— uz) [(alb,. + a.b;)) — (ab; + a, ,)]

6.4
+ ((1 —u)a1+ua,)b()+ ( (1 —u)b; + ub, )a0+a0b0. (64)

Since 1 —u,u € C(R)NV(R) C Cx(raw) (R) and ag, by € Coxmw)(R), it follows
from Lemma 4.1 that
(1 — w)ag, uag, (1 — u)by, uby € CO‘X(R‘W)(R)-
Then, by Lemma 5.3,
(1 — w)arbg, ua,bg, (1 — u)bag, ub,ay € CQYX(R_W)(R). (6.5)

Since u—u* € C(R)NV(R) C Cyww(R) and wu(+o0) — u?(£o0) =0, by
Lemma 4.1, u — u* € Coﬁx(Rﬁw)(R)- Then, in view of Lemma 5.3, we also conclude
that

(u— ) [(ab, + a,by) — (aiby + a,b,)] € Coxa(R). (6.6)

It follows from (6.4) to (6.6) that ¢y € CO‘,X(R,W)([R.R). In view of this observation and
equalities (6.2)—(6.3), we see that a + b,ab € A,. Therefore, A, is an algebra. It is

clear that the mappings a—a; and a—a, are algebraic homomorphisms of .4, onto
APx(Rw)- O

6.2 The multiplier norm of a=(1-u)a, +ua, +a, € A, dominates
the multiplier norms of a, and g,

In this section we will prepare the proof of the fact that the algebraic
homomorphisms A, — APy, given by a—a; and a—a, are actually Banach
algebra homomorphisms of norm 1. To this end, we will show that for a € A,,
larlagg, < lallptge Natllagge, < el (6.7)
For a € L*(R) and h € R, we define
d'"(x) :=a(x+h), xeR.

The following consequence of Kronecker’s theorem (see, e.g., [10, Theorem 1.12])
plays a crucial role in the proof of inequalities (6.7).

Lemma 6.2 If ay,...,ax € APP is a finite collection of almost periodic polyno-
mials, then there exists a sequence {h,}, . of real numbers such that h, — +o0 as
n — oo and
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fim (a7 — ey = 0
n—oQ

foreachm € {1,....k}.

For the sign “+”, the proof of the above lemma is given in [10, Lemma 10.2],
for the sign “-”, the proof is analogous.

We start the proof of inequalities (6.7) for a = (1 — v)a; + va, + ap with a nice
function v in place of u and nice functions a;,a, and ap.

Lemma 6.3 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying O0<oy, fx<l1. Suppose that
wE A?/aX(R) N A?/ﬁx([R). Let v € C(R) be any real-valued monotonically increas-

ing function such that there exists a point xo > 0 such that v(x) = 0 for x< — xg
and v(x) = 1 for x > xo. If a;,a, € APP, ap € CX(R), and

a=(1-v)a;+va, + ag, (6.8)
then inequalities (6.7) hold.

Proof The idea of the proof is borrowed from the proof of [27, Theorem 3.1]. By
Lemma 6.2, there is a sequence {h,},.y of real numbers such that s, — +oco as
n — oo and

Iim [l — v ey =0, lim [|(@))" — ) <(m) =0, (6.9)
Tim la " = ey = 0, lim (@)™ = afl~ ) = 0. (6.10)

Let us show that
s-lime;, WP (a)e_;, 1 = Wo(a,), s-lime_, WO(a)e, I = W' (a)) (6.11)

n—oo n—oo

on the space X(R,w). As
ewn, WO (a)esn, I = WO(a*™),

we have to prove that for every f € X(R,w),

,}LTOHWO(“h" - “r)fo(R,w): 0, (6.12)
nlig,noloHWO(aihn o al)fHX([R,w): 0. (613)

Since the operators W°(a" — a,) and W°(a~" — ;) are uniformly bounded in n €
N and the set So(R) is dense in the space X(R, w) in view of Lemma 2.3, applying
[34, Lemma 1.4.1], we conclude that it is enough to prove equalities (6.12)—(6.13)
for all f € Sp(R).

Fix f € Sp(R). Then, by a smooth version of Urysohn’s lemma (see, e.g., [17,
Proposition 6.5]), there is a function y € C°(R) such that 0 <y <1, suppFf C
suppys and x//|suppff = 1. Therefore, for all n € N,
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WO (" —a,)f = F Y d" —a)WFf, W'(a" —a)f =F "a ™ —a)yFf

and

WO — anf |y <@ = allpg Wl (6.14)

||W0(a7h” — al)f|‘X(R7w) < ||(aih" - al)lﬁ”/le(m,) Hf”x(u;e,w)- (6.15)

Since v(x) = 1 for x > xp and v(x) = 0 for x< — xp and ap € C°(R), there exists
N € N such that for all x € suppy and n > N,

vix+h,) =1, vix—h,) =0, ap(xxh,) =0.
Hence, for all n > N and x € R,
(@" (%) = ar(x)) P (x) = (@l (x) = ar(x)) ¥ (x), (6.16)
(@ (x) = ar()p(x) = (™ (x) — a(x)) P (x). (6.17)

It is clear that the functions on the right-hand sides of (6.16)—(6.17) belong to
C>°(R). Therefore, by the Stechkin-type inequality (1.4), for all n > N,

H (ah” - ar)lpHMx(ma.w) - || (alrln a ar)l//HMX(RW)
< x|l (@ —a)y

= x| (@ = @)
x| 1@)/(@) a0 (o) ds (6.18)
x| la() = a ) 10/ (9)] ds

< CX(R.W)(HWHL»O(R) + ||‘V||L1([R)) ||a£'" - ar”L‘x‘(R)

|v<u;z)

+ex@m W llp @ 1 (@) = @] )
and, analogously,
a7 = @, S Wl + W sl =l
+ cxem Wl )| (a,™) = a;HLw(R)'

Combining (6.14)—(6.15) and (6.18)—(6.19) with (6.9)—(6.10), we see that equalities
(6.12)—(6.13) hold for every f € So(R). Therefore, (6.11) are fulfilled for every
f € X(R,w). Hence, by the Banach-Steinhaus theorem (see, e.g., [34,
Theorem 1.4.2]),
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llarl pyge,y = WO (@)l sy < liminf llen, WO(@)e |l sx )
< W) |y = lall vy,

and, analogously,

il piyee,, = WO (@)l 3¢ (Ra0)) < liminf [[e_, WO (a)en, I || goxrm)

< HWO(")”B(X(R,W)) = Ha”qu«,w)v
which completes the proof of (6.7). Ul

Now we extend the previous result for functions a of the form (6.8) with general

ap,ar € APx(wr,y) and ap € C07X(R,W)(R), keeping the nice function v as above.
Lemma 6.4 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0<oyx, fy<l. Suppose that
we A?/“X(R) ﬂA?/ﬁX(R). Let v € C(R) be any real-valued monotonically increas-
ing function such that there exists a point xo > 0 such that v(x) = 0 for x< — xg
and v(x) = 1 for x > xo. If a;,a, € APy, ao € CO,X(R,W)(R)a where CO,X(R,W)(R)
is defined by (3.17), and a is given by equality (6.8), then inequalities (6.7) hold.

Proof By the definition of APy, there are sequences (@} e {a" }en i
APP such that

tim [|af" —af =0, lim [laf —a],, =0 (6.20)

On the other hand, by Theorem 3.3, there is a sequence {af)">}
that

n in C°(R) such

ne

: (n) _
nlirglc llag” — a0||MX(Rw> =0. (6.21)
For n € N, consider the functions
a" = (1 - v)a}n) +va™ + a(()"). (6.22)

It follows from equalities (6.20)—(6.22) and Lemma 6.3 that

_ 1 (n) : -
Hal”Mx(u«.w) - nhlgo Hal HMX(R.W) S nanDlo Ha<") HMX(FR.W) - ||a||MX(Rw)’
Har”/\/lx(ww) = nlilgo Haﬁ,l)HMX(R,w) S r}Lnolo Ha(") HMX([R.W) - Ha”MX(R.W)’
which completes the proof of inequalities (6.7). U

Now we observe that the algebra A, does not depend on the particular choice of a

real-valued monotonically increasing function u € C(R) satisfying conditions (6.1).

Lemma 6.5 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying 0<oyx, fy<l. Suppose that
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WEA?/“X(R)HA?/I;X(R). Let u,v € C(R) be two real-valued monotonically

increasing functions such that
u(—o00) =v(—00) =0, u(+oo)=v(+o0)=1.
Then A, = A,.

Proof If a € A,, then a = (1 — u)a; + ua, + ay for some a,a, € APx,, and

ay € Coxmw)(R). On the other hand, a = (1 — v)a; + va, + by with
bo= v —wa+ (u—va, +ap = (u—v)(a, —a) + ao.
Since the functions u, v are monotonically increasing, we have u,v € V(R). Hence
u—veV(R)NCR) and
u(+00) — v(+00) = u(—o00) — v(—o0) = 0.

Thus u —v e C(R)NV(R) C CX(RW)(R) and (u — v)(oc0) = 0. Since the function
a, — a; belongs to APy, it follows from Lemma 5.3 that
(w—v)(a, —a) € CO,X(R,W)(R)-
Then by € Co,x([r@,m(R) and a € A,. Therefore A, C A,. It can be shown analo-
gously that A, C A,. Thus A, = A,. O
Combining Lemmas 6.4-6.5, we arrive at the main result of this subsection.

Theorem 6.6 Let X(R) be a separable rearrangement-invariant Banach function
space with the Boyd indices satisfying O<oyx, fx<l1. Suppose that
weE A?/aX(R) ﬂA‘l)/ﬁx(R). Let u € C(R) be a real-valued monotonically increasing

function such that u(—oc) = 0 and u(+o0) = 1. If a € A,, that is,
a=(1—-u)a+ua,+ay with a;,a. € APy, a0 € CO,X([R{,W)<R)7

where Co,x(R,w)(R) is defined by (3.17), then inequalities (6.7) hold.

6.3 Proof of Theorem 1.2

The idea of the proof is borrowed from the proof of [10, Theorem 1.21]. If

a € APx(g,), then a = (1 — u)a + ua + 0, whence a € A,. If f € Cx(r,)(R), then

the function fy = f — (1 — u)f(—00) — uf (4-00) belongs to Cy x(r ) (R). Therefore
=0 =u)f(—00) +uf(+0) + fo € A,. These observations imply that

SAPx(Rw) C €lospyp,, (A,). (6.23)

On the other hand, it is obvious that
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CIOSMX(R,W) (Au) C SAPX(IR,W)- (624)
Combining (6.23)—(6.24), we arrive at the equality
SAPX(R-W> = CIOSMX(R,W) (-Au) (625)

By Theorem 6.6, for every a = (1 — u)a, + ua, +aop € A, with a;,a, € APy,

and ag € Co x(r,w)(R), one has

g, < lllaggs Narllagg, < lallagge, (6.26)

(n) (n)

Consequently, if {(1 —u)a)" + ua, (n)

+ag’},on is a Cauchy sequence in A,
where {a,(")}neN, {a£">}neN are sequences in APyg,,) and {a(()")}neN is a sequence
in Cox(mw) (R), then {a§”>} and {aﬁ")}

Consequently, {a(()")} is a Cauchy sequence in Cyx(r,)(R). Since APy (g, is

are Cauchy sequences in APy,

neN neN

neN
closed by its definition and CO,X(R,W)(R) is closed in view of Theorem 3.3, we
conclude that the limits

a; = lim al(”), a, = lim "
n—oo n—oQ

belong to APy, and that the limit

ap == lim 4"
n—oo

belongs to Co x(r,w)(R). Therefore, the limit

lim ((1— u)a?"> + ua™ + a(()"))

n—oo

belongs to A,. Thus
clos py e, (Au) = Ay (6.27)

It follows from (6.25) and (6.27) that A, = SAPx(w,w)- In particular, every function
a € SAPx(p,) is of the form

a=(1—u)a;+ua, + ap (6.28)

with a;,a, € APxg) and ag € Coxr)- We infer from (6.26) that the represen-
tation (6.28) is unique for the function u. Moreover, the proof of Lemma 6.5 shows
that a;, a, € APx(m,, are independent of the particular choice of the function u. By
Lemma 6.1, the mappings a—a; and a—a, are algebraic homomorphisms of 4, =
SAPy(rw) onto APxp,,). In view of (6.26), these homomorphisms are Banach
algebra homomorphisms of the Banach algebra SAPxn,, onto the Banach algebra
APx(m,) and the norms of these homomorphisms are not greater than one. For every
function a € APx(p,), we have equalities in (6.26) because
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a=(1-ua+ua+0=aq =a,.

Thus, the norms of the homomorphisms a—a; and a—a; are equal to one. O
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