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Abstract
In this paper, we consider a nonlinear hyperbolic equation with a nonlocal boundary
condition. We apply the Faedo–Galerkin’s method to establish the local existence and
uniqueness of a weak solution.
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1 Introduction

Boundary value problems with integral conditions are an interesting and important
class of problems; this is due to the importance of nonlocal conditions appearing in the
mathematical modeling of various phenomena of physics, ecology, biology, etc. The
startingwork on the use of nonlocal boundary conditions has been done byCannon [4];
the presence of an integral term in boundary conditions can complicate the application
of classical methods; therefore, several methods have been proposed for overcoming
the difficulties arising from nonlocal conditions as functional methods, approximation
methods (see [1,6,7,11]). Pulkina [17] has dealt with a hyperbolic problem with two
integral conditions and has established the existence and uniqueness of generalized
solutions using the fixed point arguments. The importance of approximation methods
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is that they do not only prove the existence and uniqueness of the solution but they
also allow the construction of algorithms for numerical solutions. Rothe’s method
and Faedo–Galerkin’s method are very effective tools in the study of the approximate
solution and its convergence to the exact solution. The objective of this work is to apply
Faedo–Galerkin’s method to the study of a multidimensional nonlinear hyperbolic
integro-differential equation with integral conditions.

utt + ut − �u = |u|p−2u +
∫ t

0
a(t − τ)u(x, τ )dτ (x, t) ∈ QT (1.1)

u(x, t) =
∫

�

k(x, y)u(y, t)dy x ∈ ∂� (1.2)

u(x, 0) = u0(x), ut (x, 0) = u1(x) (1.3)

where � ⊂ R
N (N ≥ 3) be a bounded domain and 0 < t < T . Let u(t), u′(t) =

ut (t), u′′(t) = utt (t), QT = � × (0, T ], T > 0, p > 2.
Equation (1.1) represents the second-order telegraph equation and models mixture

between diffusion and wave propagation or mass transport equation. It is also used in
signal analysis for transmission and propagation of electrical signals [14].

Equation (1.1) has been studied for initial and Dirichlet conditions by several dif-
ferent methods (see [1,3,15,16,19]), but without a Volterra operator

∫ t

0
a(t − τ)u(x, t)dτ.

Many mathematical models contain integro-differential equations; these equations
arise in many fields like biological models and fluid dynamics. Integro-differential
equations are usually difficult to solve analytically so it is required to obtain an efficient
approximate solution. Let us mention that different methods are used to solve linear
and nonlinear integro-differential equations. Balachandran and Park [2] investigated
an integro-differential equation of Sobolev type with nonlocal condition and proved
the existence of mild and strong solutions using semigroup theory and Schauder fixed
point theorem.Merad et al. [12] studied the solvability of the integro-differential hyper-
bolic equation with purely nonlocal conditions using a priori estimates and Laplace
transform method and obtained the solution using a numerical technique.

This paper is organized as follows: In the next section, we specify notations,
state some assumptions and prove the existence of a solution using Faedo–Galerkin’s
method in Sect. 2.1. Finally, Sect. 2.2 is devoted to establish the uniqueness of solution.

2 Preliminaries andmain results

In this section, we shall introduce some notations that will be considered. Let � be a
bounded domain inRN , N ≥ 3, with a smooth boundary ∂�.Much of our arguments
are based on the functions spacesCm(�),Wm,p = Wm,p(�), L p = W 0,p(�), Hm =
Wm,2(�), 1 ≤ p ≤ ∞, m = 0, 1, . . . . are used. Let 〈., .〉 be either the scalar
product in L2 or the dual pairing of a continuous linear functional and an element
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of a function space. Denote by ‖·‖X the norm in the Banach space X . We denote by
L p (0, T ; X) , 1 ≤ p ≤ ∞, the Banach space of the real functions u : (0, T ) −→ X
measurable, such that

‖u‖LP (0,T ;X) =
(∫ T

0
‖u (t)‖p

X dt

)1/p

< ∞ for 1 ≤ p ≤ ∞

and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u (t)‖X for p = ∞.

On H1, we shall use the following norm:

‖u‖H1 =
(
‖u‖22 + ‖∇u‖22

)1/2

and the compact embedding

‖v‖q ≤ Cq‖v‖H1 , ∀ v ∈ H1, 1 ≤ q ≤ 2N

N − 2
, N ≥ 3. (2.1)

Define a space V :

V =
{
v ∈ H2(�) : v(x) =

∫
�

k(x, y)u(y)dy x ∈ ∂�

}
.

We use the following notation:
k1(x): norm of ∇k(x, y) in L2(�) with respect to y,
i.e., k1(x) = (∫

�
|∇k(x, y)|2dy)1/2 ;

k2(x): norm of k(x, y) in L2(�) with respect to y,
i.e., k2(x) = (∫

�
|k(x, y)|2dy)1/2 .

Next, we make the following assumptions:

(H1): 2 < p ≤ 2N−2
N−2 , N ≥ 3,

(H2): |a(t − τ)| ≤ a2
(H3): For any x ∈ ∂�, k1(x) < ∞, k2(x) < ∞,

(H4):
∫
∂�

k1(x)k2(x)dx ≤ C .

Theorem 2.1 Suppose that (H1) − −(H4) hold and initial data (u0, u1) ∈ H2 × H1

satisfy the compatibility condition

u0(x) =
∫

�

k(x, y)u0(y)dy

The problem (1.1)–(1.3) has a unique local solution

u ∈ L∞(0, T∗; H2), ut ∈ L∞(0, T∗; H1), utt ∈ L∞(0, T∗; L2).
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for T∗ > 0 small enough.

2.1 Existence of solutions

Proof Our main tool to prove the existence in time is the Faedo–Galerkin’s method,
which consists of constructing approximations of the solutions, then we obtain a
priori estimates necessary to guarantee the convergence of approximations. Our proof
is organized as follows. In the first step, we define an approximate problem in bounded
dimension space which has a unique solution. In the second step, we derive the various
a priori estimates. In the third step, we will pass to the limit of the approximations
using the compactness of some embedding in the Sobolev spaces.

Step 1.Approximate solutions:Since V is a subspace of H2(�)which is separable
Hilbert space. Then, there exists a family of subspaces {Vn} such that

(i) Vn ⊂ V (dimVn < ∞), ∀n ∈ N.
(ii) Vn → V , such that there exists a dense subspace ϑ in V and for all v ∈ ϑ , we

can get sequence {vn} ⊆ Vn , and vn → v in V .
(iii) Vn ⊂ Vn+1 and ∪n∈NVn = V .

Wecan choose a countable basis of elements {w j (x), j = 1, 2, . . .},which generate
V and are orthogonal in L2(�). Let Vm be the subspace of V generated by the first
m elements {w1, w2, . . . , wm}, m ∈ N we will try to find an approximate solution of
the problem (1.1)-(1.3) in the form:

um(t) =
m∑
j=1

cmj (t)w j (x), (2.2)

where the coefficient functions
(
cmj(t)

)m
j=1 remain to be determined.

The approximations of the functions u0(x) and u1(x) are denoted, respectively, by

um0(x) =
m∑
j=1

u0 jw j → u0 in H2(�),

um1(x) =
m∑
j=1

u1 jw j → u1 in H1(�),

cmj (0) = u0 j , c′
mj (0) = u1 j ,

where

u0 j =
∫

�

u0w j (x)dx

u1 j =
∫

�

u1w j (x)dx
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Multiplying both sides of equation (1.1) by wl , then by integrating over �, we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈u′′
m(t), wl〉 + 〈u′

m(t), wl〉 + 〈∇um(t),∇wl〉
= 〈|um(t)|p−2um(t), wl

〉 +
∫

∂�

〈∇k(x, y), um(t)〉wlds

+
∫ t

0
a(t − τ)〈um(τ ), wl〉dτ

um(0) = u0, u′
m(0) = u1.

(2.3)

Substituting the approximate solution in Eq. (2.3) yields

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c′′
mj (t)〈w j , wl〉 + c′

mj (t)〈w j , wl〉 + cmj (t)〈∇w j ,∇wl〉
= ψl(t) + cmj (t)

∫
∂�

wl(s)
∫

�

∇k(x, y)w jdyds

+
∫ t

0
a(t − τ)cmj (τ )〈w j , wl〉dτ, 1 ≤ j ≤ m,

cmj (0) = u0 j , c′
mj (0) = u1 j .

where

ψl(t) =
∫

�

∣∣∣
m∑
j=1

cmj (t)w j

∣∣∣p−2 m∑
j=1

cmj (t)w jwldx .

we obtain a system of differential equations of second order respect to the variable t ,
by the theory of ordinary differential equations [5] we see that there exists a unique
global solution cmj ∈ H3[0, T ], and using the embedding Hm[0, T ] ↪→ Cm−1[0, T ],
we deduce that the solution cmj ∈ C2[0, T ]. In turn, this gives a unique um of the
problem (2.3) on some interval [0, Tm] ⊂ [0, T ]. For proving the convergence of
solutions, we need a priori estimates of solutions {um} independent of m and T .

Step 2. A priori estimates:The next estimates prove that the energy of our problem
is bounded to conclude that the maximal time Tm of existence can be extended to T .

The first estimate: multiplying the System (2.3) by
(
cmj (t)

)′ and summing up
with respect to j we conclude that

‖u′
m(t)‖22 + 1

2

d

dt

(
‖∇um(t)‖22 + ‖u′

m(t)‖22
)

= 〈|um(t)|p−2um(t), u′
m(t)

〉
+

∫
∂�

〈∇k(x, y), um(t)〉 u′
m(t)ds +

∫ t

0
a(t − τ)〈um(τ ), u′

m(t)〉dτ
(2.4)
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Integrating by parts with respect to the time variable from 0 to t after some rearrange-
ments, we get

‖u′
m(t)‖22 + 2

∫ t

0
‖u′

m(τ )‖22dτ + ‖∇um(t)‖22
=‖∇um(0)‖22 + ‖u′

m(0)‖22 + 2
∫ t

0

〈
|um(τ )|p−2um(τ ), u′

m(τ )
〉
dτ

+2
∫ t

0

∫
∂�

〈∇k(x, y), um(τ )〉 u′
m(τ )dsdτ +2

∫ t

0

∫ s

0
a(s−τ)〈um(τ ), u′

m(s)〉dτds

=‖∇um(0)‖22 + ‖u′
m(0)‖22 + 2

3∑
j=i

Ii

We choose

ϕm(t) = ‖u′
m(t)‖22 + ‖∇um(t)‖22 + 2

∫ t

0
‖u′

m(τ )‖22dτ

we obtain

ϕm(t) = 2
3∑
j=i

Ii + ϕm(0). (2.5)

The first term on the right-hand side of (2.5) can be estimated as follows:

2I1 = 2
∫ t

0

〈
|um(τ )|p−2um(τ ), u′

m(τ )
〉
dτ ≤ 2

∫ t

0

∥∥∥|um(τ )|p−1
∥∥∥ ‖u′

m(τ )‖dτ

≤
∫ t

0

∥∥∥|um(τ )|p−1
∥∥∥2
2
dτ +

∫ t

0
‖u′

m(τ )‖22dτ

≤
∫ t

0

∥∥∥|um(τ )|p−1
∥∥∥2
2
dτ +

∫ t

0
ϕm(τ )dτ

=
∫ t

0
‖um(τ )‖2p−2

L2p−2dτ +
∫ t

0
ϕm(τ )dτ

≤ C2p−2
2p−2

∫ t

0
‖um(τ )‖2p−2

H1 dτ +
∫ t

0
ϕm(τ )dτ,

(2.6)

since 1 ≤ 2 ≤ 2p − 2 ≤ 2N
N−2 , H

1(�) ↪→ L2p−2(�).

Now, we will estimate the first term in the last inequality of (2.6). By the definition of
ϕm(t), it is easy to check that

‖um(t)‖2
H1 = ‖um(t)‖22 + ‖∇um(t)‖22

=
[
‖u0‖2 +

∫ t

0
‖u′

m(s)‖2ds
]2

+ ‖∇um(t)‖22
≤ 2‖u0‖22 + ϕm(t) + 2t

∫ t

0
ϕm(s)ds.

(2.7)
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Using the following inequality:

(a + b + c)q ≤ 3q−1(aq + bq + cq) for all q ≥ 1, a, b, c ≥ 0.

We have

‖um(t)‖2p−2
H1 ≤

[
2‖u0‖22+ϕm(t)+2t

∫ t

0
ϕm(s)ds

]p−1

≤ 3p−22p−1‖u0‖2p−22 +3p−1(ϕm(t))p−1+3p−22p−1t2p−3
∫ t

0
(ϕm(s))p−1ds.

(2.8)

Combining (2.6) with (2.8), we get

2I1 ≤ CT + CT

∫ t

0
(ϕm(τ ))p−1 dτ +

∫ t

0
ϕm(τ )dτ. (2.9)

Next, we estimate the second and the third terms in the right-hand side of (2.5) as
follows:

2I2 = 2
∫ t

0

∫
∂�

〈∇k(x, y), um(τ )〉 u′
m(τ )dsdτ

For x ∈ ∂�, we have

|〈∇k(x, y), um(τ )〉| =
∣∣∣∣
∫

�

∇k(x, y)um(y, τ )dy

∣∣∣∣ ≤
∫

�

|∇k(x, y)um(y, τ )|dy
≤ ‖∇k(x, y)‖2‖um(τ )‖2 = k1(x)‖um(τ )‖2

and

|u′
m(x, t)| ≤

∫
�

|k(x, y)u′
m(y, t)|dy ≤ ‖k(x, y)‖2‖u′

m(t)‖2 = k2(x)‖u′
m(t)‖2

Then, using Holder’s inequality, (H3)–(H4) and (2.7), we have

2I2 ≤ 2
∫ t

0

∫
∂�

k1(x)k2(x)‖um(τ )‖2‖u′
m(τ )‖2dsdτ

≤ 2
∫ t

0

(∫
∂�

k1(x)k2(x)ds

)
‖um(τ )‖2‖u′

m(τ )‖2dτ

≤ C
∫ t

0
‖um(τ )‖22dτ + C

∫ t

0
‖u′

m(τ )‖22dτ

≤ C2
2C

∫ t

0
‖um(τ )‖2H1dτ + C

∫ t

0
ϕm(τ )dτ

≤ CT + CT

∫ t

0
ϕm(τ )dτ.

(2.10)



528 N. Boumaza, B. Gheraibia

By applying Hölder’s inequality, Young’s inequality, (H2), (2.1) and (2.7), the third
term can be estimated as follows:

2I3 = 2
∫ t

0

∫ s

0
a(s − τ)〈um(τ ), u′

m(s)〉dτds

= 2
∫ t

0

∫
�

u′
m(s)

∫ s

0
a(s − τ)um(τ )dτdxds

≤
∫ t

0
‖u′

m(τ )‖22dτ +
∫ t

0

∫
�

(∫ s

0
a(s − τ)um(τ )dτ

)2

dxds

≤
∫ t

0
ϕm(τ )dτ +

∫ t

0

∫
�

(∫ s

0
(a(s − τ))2dτ

)(∫ s

0
(um(τ ))2dτ

)
dxds

≤
∫ t

0
ϕm(τ )dτ + a22T

2
∫ t

0
‖um(τ )‖22dτ

≤
∫ t

0
ϕm(τ )dτ + a22T

2C2
2

∫ t

0
‖um(τ )‖2H1dτ

≤ CT + CT

∫ t

0
ϕm(τ )dτ.

(2.11)

Combining estimations of all terms, we obtain after some rearrangements

ϕm(t) ≤ CT

(
1 +

∫ t

0
ϕm(τ )dτ +

∫ t

0
(ϕm(τ ))p−1dτ

)
, 0 ≤ t ≤ Tm, (2.12)

where CT always indicates a constant depending on T. Then, by solving a nonlinear
Volterra integral inequality (2.12), because we cannot applied the Granwall’s Lemma
(nonlinear integral inequality), we need the following lemma:

Lemma 2.2 ( [9,16]) There exists a constant T∗ depending on T ( independent of m)
such that

ϕm(t) ≤ DT ∀m ∈ N, ∀ t ∈ [0, T∗]. (2.13)

The second estimate: Now, we are going to estimate u′′
m(0)

Letting t → 0+ in equation (2.3) multiplying the result by c′′
mj (0), we get

{ 〈u′′
m(0), u′′

m(0)〉 + 〈u′
m(0), u′′

m(0)〉 + 〈∇um(0),∇u′′
m(0)〉

= 〈|um(0)|p−2um(0), u′′
m(0)

〉 + ∫
∂�

〈∇k(x, y), um(0)〉u′′
m(0)ds

(2.14)

Then

{ ‖u′′
m(0)‖22 = 〈u1, u′′

m(0)〉 − 〈�u0, u′′
m(0)〉

+ 〈|u0|p−2u0, u′′
m(0)

〉 + |∂�|k1〈u0, u′′
m(0)〉 (2.15)

This implies that

‖u′′
m(0)‖ ≤ ‖u1‖ + ‖�u0‖ +

∥∥∥|u0|p−1
∥∥∥ + K‖u0‖ = M0 for allm (2.16)
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where M0 is a constant depending only on p, u0, u1. Now, by differentiating (2.3)
with respect to t and substituting w j = u′′

m(t), we get

1

2

d

dt

(
‖u′′

m(t)‖22 + ‖∇u′
m(t)‖22

)
+ ‖u′′

m(t)‖22
= (p − 1)

〈|um(t)|p−2u′
m(t), u′′

m(t)
〉

+
∫

∂�

〈∇k(x, y), u′
m(t)〉u′′

m(t)ds + a(0)〈u′′
m(t), u′

m(t)〉
−a(t)〈u′′

m(t), um(0)〉

Integrating with respect to the time variable from 0 to t , we get

‖u′′
m(t)‖22 + ‖∇u′

m(t)‖22 + 2
∫ t

0
‖u′′

m(τ )‖22dτ

= ‖u′′
m(0)‖22 + ‖∇u′

m(0)‖22 + 2(p − 1)
∫ t

0

〈
|um(τ )|p−2u′

m(τ ), u′′
m(τ )

〉
dτ

+2
∫ t

0

∫
∂�

〈∇k(x, y), u′
m(τ )〉u′′

m(τ )dsdτ

+2a(0)
∫ t

0
〈u′′

m(τ ), u′
m(τ )〉dτ − 2

∫ t

0
a(τ )〈u′′

m(τ ), um(0)〉dτ

(2.17)

We put

ψm(t) = ‖u′′
m(t)‖22 + ‖∇u′

m(t)‖22 + 2
∫ t

0
‖u′′

m(τ )‖22dτ

we obtain

ψm(t) = ψm(0) + 2(p − 1)
∫ t

0

〈
|um(τ )|p−2u′

m(τ ), u′′
m(τ )

〉
dτ

+2
∫ t

0

∫
∂�

〈∇k(x, y), u′
m(τ )〉u′′

m(τ )dsdτ

+2a(0)
∫ t

0
〈u′′

m(τ ), u′
m(τ )〉dτ − 2

∫ t

0
a(τ )〈u′′

m(τ ), um(0)〉dτ

= ψm(0) +
4∑

k=1

Jk .

(2.18)

Now, we estimate the last four term in the right side of (2.18). Firstly, it is easy to
check that

‖u′
m(t)‖2

H1 = ‖u′
m(t)‖22 + ‖∇u′

m(t)‖22
=

[
‖u1‖2 +

∫ t

0
‖u′′

m(s)‖2ds
]2

+ ‖∇u′
m(t)‖22

≤ 2‖u1‖22 + ψm(t) + 2t
∫ t

0
ψm(s)ds.

(2.19)
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From
∥∥∥|um(t)|p−2u′

m(t)
∥∥∥ ≤ Dp

[
1 + ‖um(t)‖1/N

H1 + ‖um(t)‖p−2
H1

]
‖u′

m(t)‖H1

≤ DpCT ‖u′
m(t)‖H1

By ([16], Lemmas 2,3 (ii), p.4) and (2.19), we have

J1 = 2(p − 1)
∫ t

0

〈
|um(τ )|p−2u′

m(τ ), u′′
m(τ )

〉
dτ

≤ 2(p − 1)
∫ t

0

∥∥∥um(τ )|p−2u′
m(τ )

∥∥∥ ‖u′′
m(τ )‖dτ

≤ 2(p − 1)DpCT

∫ t

0
‖u′

m(τ )‖H1‖u′′
m(τ )‖dτ

≤ (p − 1)2D2
pC

2
T

∫ t

0
‖u′

m(τ )‖2H1dτ +
∫ t

0
‖u′′

m(τ )‖22dτ

≤ (p − 1)2D2
pC

2
T

[∫ t

0
‖u′

m(τ )‖22dτ +
∫ t

0
‖∇u′

m(τ )‖22dτ
]

+
∫ t

0
‖u′′

m(τ )‖22dτ

≤ CT

(
1 +

∫ t

0
ψm(τ )dτ

)
(2.20)

Using (2.1) and (2.19), we continue to estimate all terms in the right-hand side of
(2.18) as below

J2 = 2
∫ t

0

∫
∂�

〈∇k(x, y), u′
m(τ )〉u′′

m(τ )dsdτ (2.21)

For x ∈ ∂�, we have

∣∣〈∇k(x, y), u′
m(τ )〉∣∣ =

∣∣∣∣
∫

�

∇k(x, y)u′
m(y, t)dy

∣∣∣∣ ≤
∫

�

|∇k(x, y)u′
m(y, t)|dy

≤ ‖∇k(x, y)‖2‖u′
m(t)‖2 = k1(x)‖u′

m(t)‖2
and

|u′′
m(x, t)| ≤

∫
�

|k(x, y)u′′
m(y, t)|dy ≤ ‖k(x, y)‖2‖u′′

m(t)‖2 = k2(x)‖u′′
m(t)‖2

Then

J2 ≤ 2
∫ t

0

∫
∂�

k1(x)k2(x)‖u′
m(τ )‖2‖u′′

m(τ )‖2dsdτ

≤ 2
∫ t

0

(∫
∂�

k1(x)k2(x)ds

)
‖u′

m(τ )‖2‖u′′
m(τ )‖2dτ

≤ C1

∫ t

0
‖u′

m(τ )‖22dτ + C1

∫ t

0
‖u′′

m(τ )‖22dτ

≤ CT + CT

∫ t

0
ψm(τ )dτ,

(2.22)
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and

J3 = 2a(0)
∫ t

0

∫
�

u′′
m(τ )u′

m(τ )dxdτ

≤ a(0)
∫ t

0
‖u′′

m(τ )‖22dτ + a(0)
∫ t

0
‖u′

m(τ )‖22dτ

≤ CT + CT

∫ t

0
ψm(τ )dτ

(2.23)

and

J4 = 2
∫ t

0
a(τ )〈u′′

m(τ ), um(0)〉dτ = 2
∫ t

0

∫
�

a(τ )u′′
m(τ )um(0)dxdτ

≤ 2a2

∫ t

0

∫
�

u′′
m(τ )um(0)dxdτ

≤ Ta2‖um(0)‖22 + a2

∫ t

0
‖u′′

m(τ )‖22dτ

≤ CT + CT

∫ t

0
ψm(τ )dτ

(2.24)

Combining estimations of all terms, we obtain after some rearrangements

ψm(t) ≤ CT

(
1 +

∫ t

0
ψm(τ )dτ

)
(2.25)

where CT always indicates a constant depending on T . Then, by solving Volterra
integral inequality [9], we deduce from (2.25) that

ψm(t) ≤ CT . (2.26)

Step 3. Limiting process: From (2.13) and (2.26), we deduce the existence of a
subsequence of {um} denoted by the same symbol such that

⎧⎪⎨
⎪⎩
um

∗
⇀ u in L∞(0, T∗; H1),

u′
m

∗
⇀ u′ in L∞(0, T∗; H1),

u′′
m

∗
⇀ u′′ in L∞(0, T∗; L2).

(2.27)

By the compactness Lemma of Lions ( [10], p.57), we can deduce from (2.27) the
existence of a subsequence still denoted by {um}, such that

{
um → u strongly in L2(QT∗) and a.e. in QT∗ ,
u′
m → u′ strongly in L2(QT∗) and a.e. in QT∗ .

(2.28)

By means of the continuity of the function t → |t |p−2t , we have

|um |p−2um → |u|p−2u and a.e. in QT∗ . (2.29)
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On the other hand

∥∥|um |p−2um
∥∥2
L2(QT∗ )

=
∫ T∗

0

∫
�

|um(x, t)|2p−2dxdt

=
∫ T∗

0
‖um(x, t)‖2p−2

L2p−2dt

≤
∫ T∗

0

(
C2p−2‖um(x, t)‖H1

)2p−2 dt

≤ C2p−2
2p−2T∗‖um(x, t)‖2p−2

L∞(0,T∗;H1)
≤ CT

(2.30)

Using the Lions Lemma ( [10], Lemma 1.3; p.12), it follows from (2.29) and (2.30)
that

|um |p−2um → |u|p−2u in L2(QT∗) weakly. (2.31)

Passing to the limit in (2.3) by (2.27), (2.28) and (2.31) we have u satisfying the
problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈u′′(t), v〉 + 〈u′(t), v〉 + 〈∇u(t),∇v〉
= 〈|u(t)|p−2u(t), v

〉 +
∫

∂�

〈∇k(x, y), u(t)〉vds

+
∫ t

0
a(t − τ)〈u(τ ), v〉dτ

u(0) = u0, u′(0) = u1.

(2.32)

��

2.2 Uniqueness of the solution

Proof Here, we will prove the uniqueness of solution, for this purpose, let u1, u2 be
two weak solutions of problem (1.1)–(1.3). Then, we set u = u1 − u2 to verify

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈u′′(t), v〉 + 〈∇u(t),∇v〉 + 〈u′(t), v〉
= 〈|u1|p−2u1 − |u2|p−2u2, v

〉
+

∫
∂�

〈∇k(x, y), u(t)〉vds +
∫ t

0
a(t − τ)〈u(τ ), v〉dτ

u(0) = 0, u′(0) = 0.

(2.33)

We take v = u′ = u′
1 − u′

2 and integrating with respect to t , we have

M(t) = ‖u′(t)‖2 + ‖∇u(t)‖2 = −2
∫ t

0
〈u′(τ ), u′(τ )〉dτ

+2
〈
|u1|p−2u1 − |u2|p−2u2, u

′〉

+2
∫ t

0

∫
∂�

〈∇k(x, y), u(τ )〉u′(τ )ds
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+2
∫ t

0

∫ s

0
a(s − τ)〈u(τ ), u′(s)〉dsdτ

=
k∑

i=1

Mi . (2.34)

where

M1 = −2
∫ t

0
〈u′(τ ), u′(τ )〉dτ ≤ 2

∫ t

0
‖u′(τ )‖22dτ ≤ 2

∫ t

0
M(τ )dτ (2.35)

By Lemma 2.3 in [16], we get

M2 = 2
〈|u1|p−2u1 − |u2|p−2u2, u′(τ )

〉
≤ CT

∫ t

0
‖u(τ )‖2H1dτ + CT

∫ t

0
‖u′(τ )‖22dτ

≤ 2(CT + t2)
∫ t

0
M(τ )dτ

(2.36)

and

M3 = 2
∫ t

0

∫
∂�

〈∇k(x, y), u(τ )〉u′(τ )dsdτ

≤ C
∫ t

0
‖u(τ )‖22dτ + C

∫ t

0
‖u′(τ )‖22dτ

≤ 2(CT + t2)
∫ t

0
M(τ )dτ

(2.37)

and

M4 = 2
∫ t

0

∫ s

0
a(s − τ)〈u(τ ), u′(s)〉dsdτ

≤ 2
∫ t

0

∫ s

0
|a(s − τ)|〈u(τ ), u′(s)〉dsdτ

≤ 2a2

∫ t

0

∫
�

u′(s)
∫ s

0
u(τ )dsdτ

≤ a2(1 + T 2)

∫ t

0
M(τ )dτ

(2.38)

Combining (2.35), (2.36), (2.37) and (2.38), we obtain

M(t) ≤ CT

∫ t

0
M(τ )dτ. (2.39)

By Gronwall’s Lemma, it follows from (2.39) that M ≡ 0, i,e. u1 = u2. Then, the
second part of Theorem 2.1 is proved. ��



534 N. Boumaza, B. Gheraibia

References

1. Chen, Baili: Existence of solutions for quasilinear parabolic equations with nonlocal boundary condi-
tions. Electron. J. Diff. Equ. 2011(18), 1–9 (2011)

2. Balachandran, K., Park, J.Y.: Existence of a mild solution of a functional integro-differential equation
with nonlocal condition. Bull. Korean Math. Soc. 38(1), 175–182 (2001)

3. Belin, S.A.: Existence of solutions for one dimensional wave equations with nonlocal conditions.
Electron. J. Diff. Equ. 76, 1–8 (2001)

4. Cannon, J.R.: The solution of the heat equation subject to the specification of energy. Quart. Appl.
Math. 21, 155–160 (1963)

5. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Com-
pany, New York (1955)

6. Dabas, J., Bahuguna, D.: An integro-differential equation with an integral boundary condition. Math.
Comput. Model. 50, 123–131 (2009)

7. Guezane-Lakoud, A., Dabas, J., Bahuguna, D.: Existence and uniqueness of generalized solutions to
a telegraph equation with an integral boundary condition via Galerkin’s method. Int. J. Math. Math.
Sci. 2011, 451492 (2011)

8. Guezane-Lakoud, A., Chaoui, A.: Rothe method applied to semilinear hyperbolic integro-differential
equation with integral conditions. Int. J. Open Problems Complex Anal. 4, 1–14 (2011)

9. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities, vol. 1. Academic Press, New
York (1969)

10. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires.
Dunod/Gauthier-Villars, Paris (1969)

11. Long, N.T., Ngoc, L.T.P.: On a nonlinear wave equation with boundary conditions of two-point type.
J. Math. Anal. Appl. 385(2), 1070–1093 (2012)

12. Merad, A., Ozel, C., Kiliçman, A.: On solvability of the integro-differential hyperbolic equation with
purely nonlocal conditions. Acta Math. Sci. 35B(2), 1–9 (2015)

13. Merad, A., Martín-Vaquero, J.: AGalerkin method for two-dimensional hyperbolic integro-differential
equation with purely integral conditions. Appl. Math. Comput. 291, 386–394 (2016)

14. Metaxas, A.C., Meredith, R.J.: Industrial Microwave. Heating, Peter Peregrinus, London (1993)
15. Ngoc, L.T.P., Hang, L.N.K., Long, N.T.: On a nonlinear wave equation associated with the boundary

conditions involving convolution. Nonlinear Anal. TMA 70(11), 3943–3965 (2009)
16. Phuong Ngoc, L.T., Triet, N.A., Long, N.T.: existence and exponential decay estimates for an N-

dimensional nonlinear wave equation with a nonlocal boundary condition. Boundary Value Problems
2016, 20 (2016)

17. Pulkina, L.S.: A nonlocal problem with integral conditions for hyperbolic equations. Electron. J. Diff.
Eqn. 45, 1–6 (1999)

18. Pulkina, L.S.: A nonlocal problem with an integral condition of the first kind for a multidimensional
hyperbolic equation. Ross. Akad. Nauk 416(5), 597–599 (2007)

19. Truong, L.X., Ngoc, L.T.P., Dinh, A.P.N., Long, N.T.: The regularity and exponential decay of solution
for a linear wave equation associated with two-point boundary conditions. NA Ser. B RealWorld Appl.
11, 1289–1303 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	On the existence of a local solution for an integro-differential equation with an integral boundary condition
	Abstract
	1 Introduction
	2 Preliminaries and main results
	2.1 Existence of solutions
	2.2 Uniqueness of the solution

	References




