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Abstract
This paper is concerned with Hadamard fractional Langevin differential equation
subject to fractional integral and derivative boundary conditions and which involves
three different fractional orders. By using Schaefer’s fixed point theorem and Banach
contraction principle, existence and uniqueness results of solutions for the proposed
equation are obtained. An example demonstrating the consistency to the theoretical
findings is also presented.
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1 Introduction

Fractional differential equations have attracted the attention ofmany researcherswork-
ing in different disciplines. The existing literature on the topic not only covers its
theoretical aspects, but also describes its wide range of real applications. The tools of
fractional calculus, in particular, are effectively used and applied in modeling many
engineering and scientific processes and phenomena; see for instance the monographs
[6,16,26], and references therein.

Boundary value problems of fractional differential equations have been exten-
sively studied over the last years. Many interesting results regarding the existence-
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uniqueness, stability and controllability of solutions have been elaborated by many
researchers. However, most of the considered problems have been treated in the frame
of fractional derivatives of Riemann–Liouville and Caputo types [1,7,9,11,12,21–
23,27,29]. The Hadamard derivative is another type of derivatives of non-integer order
[14]. Indeed, it differs from the Riemann–Liouville and Caputo derivatives in the sense
that the kernel of the integral (in the definition of Hadamard derivative) contains a
logarithmic function of arbitrary exponent [8,10]. The qualitative investigations with
respect to Hadamard derivative have gained less attention compared to the analysis in
terms of Riemann–Liouville and Caputo settings; see [2,3,13,19,20].

Langevin equation is an important equation of mathematical physics that is used
in modeling the phenomena occurring in fluctuating environment such as Brownian
motion. The classical form of this equationwas derived in terms of ordinary derivatives
by Paul Langevin in [17]. Langevin equation is also known as a stochastic differential
equation as it governs the fast motion of microscopic variables (degrees of freedom)
of the dynamical systems. Recently, fractional Langevin equations have been studied
by some scholars. In [4], the authors studied a nonlinear Langevin equation involving
two fractional orders in different intervals with three-point boundary conditions. The
contraction mapping principle and Krasnoselskii’s fixed point theorem are applied
to prove the existence of solutions for the problem. In [5], the authors developed the
existence theory for a nonlinear Langevin equation involving Caputo fractional deriva-
tives of different orders and Riemann–Liouville fractional integral supplemented with
nonlocal multi-point and multi-strip boundary conditions. They make use methods of
functional analysis to obtain the existence anduniqueness results for the givenproblem.
In [18], Li et al. investigated the infinite-point boundary value problem of fractional
Langevin equations. Bymeans of the nonlinear alternative andLeray–Schauder degree
theory, they obtained some existence results for the boundary value problem. Zhou
and Qiao in [30], discussed a class of fractional Langevin equations with integral and
anti-periodic boundary conditions by using some fixed point theorems and the Leray–
Schauder degree theory. The reader is invited to consult the papers [28,31] for further
study on fractional Langevin equations. On the other hand, the study of fractional
Langevin equations in frame of Hadamard derivative has comparably been seldom;
see the papers [15,25] in which the authors discussed Sturm–Liouville and Langevin
equations via Hadamard fractional derivatives and systems of fractional Langevin
equations of Riemann–Liouville and Hadamard types, respectively.

Inspired by the above discussion, we consider the existence and uniqueness of
solutions for the following Hadamard fractional Langevin equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dβ (Dα + λ) u(t) = f (t, u(t),Dγ u(t)), t ∈ J = [1, T ],
u(1) = 0,

u(T ) + λ

�(α)

∫ T
1

(
log T

s

)α−1 u(s)
s ds = 0,

Dαu(ξ) + λu(ξ) = 0, ξ ∈]1, T ],

(1.1)

where 1 < β < 2, β − 1 < α < 1, 0 < γ < β + α − 2, λ > 0, Dν denotes the
Hadamard fractional derivative of order ν ∈ {α, β, γ } and f : [1, T ]×R×R → R is
a continuous function. It is to be noted that Eq. (1.1) is subject to fractional integral and
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derivative boundary conditions and involves three different fractional orders defined
on different intervals. Our approach is new and the current results are totally different
from the ones obtained in [15,25].

This paper is organized as follows: in Sect. 2, we present some necessary definitions
and lemmas that are needed in the subsequent sections. In Sect. 3, we adopt some fixed
point theorems to prove the existence of solutions for problem (1.1). An illustrative
example is presented in Sect. 4.

2 Essential preliminaries

In this section, we introduce some notations and definitions of fractional calculus and
present preliminary results needed in our proofs later. For more details, the reader is
recommended to refer to the monograph [10].

Definition 2.1 TheHadamard fractional derivative of orderα for a function g is defined
by

Dαg(t) = 1

�(n − α)

(

t
d

dt

)n ∫ t

1

(

log
t

s

)n−α−1 g(s)

s
ds, n = [α] + 1,

provided the integral exists.

Definition 2.2 The Hadamard fractional integral of order α for a function g is defined
by

I αg(t) = 1

�(α)

∫ t

1

(

log
t

s

)α−1 g(s)

s
ds, α > 0,

provided the integral exists.

The following two properties of the above derivative and integral operators follow.

Lemma 2.3 If α, β > 0, then

(

Dα
a

(

log
t

a

)β−1
)

(x) = �(β)

�(β − α)

(
log

x

a

)β−α−1
,

and

(

I α
a

(

log
t

a

)β−1
)

(x) = �(β)

�(β + α)

(
log

x

a

)β+α−1
,

where a > 0 is the starting point in the interval.
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Lemma 2.4 Let α > 0 and u ∈ C[1,+∞) ∩ L1[1,+∞), then the Hadamard frac-
tional differential equation

Dαu(t) = 0,

has a solution

u(t) =
n∑

k=1

ck(log t)
α−k,

and, further, the following formulas hold

Dα I pu(t) = I p−αu(t), p > α,

and

I αDαu(t) = u(t) −
n∑

k=1

ck(log t)
α−k,

where ck ∈ R, k = 1, 2, . . . , n and n − 1 < α < n.

In what follows, we present the solution representation associated to problem (1.1).

Lemma 2.5 Let 1 < β < 2, β − 1 < α < 1, λ > 0, h ∈ C[1, T ] and log T
log ξ

�= β+α−1
β−1 .

Then the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dβ (Dα + λ) u(t) = h(t), t ∈ (1, T ),

u(1) = 0,
u(T ) + λIαu(T ) = 0,
Dαu(ξ) + λu(ξ) = 0, ξ ∈]1, T ],

(2.1)

is equivalent to the integral equation

u(t) + λI αu(t) = I α+βh(t) + μ(t)I βh(ξ) + ν(t)I α+βh(T ), (2.2)

where

μ(t) = �(β)

�(β + α − 1)

[
log(t/T )

[
(β − 1) log T − (β + α − 1) log ξ

]

]
(log t)β+α−2

(log ξ)β−2 ,

and

ν(t) = (β + α − 1) log ξ − (β − 1) log t
[
(β − 1) log T − (β + α − 1) log ξ

]

(
log t

log T

)β+α−2

.
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Proof Applying the integrator operator I β to (2.1) and using the result of Lemma 2.4,
we get

(Dα + λ
)
u(t) = c1(log t)

β−1 + c2(log t)
β−2 + I βh(t), t ∈ (1, T ]. (2.3)

We apply again the operator Iα and use the results of Lemmas 2.3 and 2.4, to get the
general solution representation of problem (2.1)

u(t) = I α+βh(t) − λI αu(t) + c0(log t)
α−1

+ c1�(β)

�(β + α)
(log t)β+α−1 + c2�(β − 1)

�(β + α − 1)
(log t)β+α−2 , (2.4)

where c0, c1, c2 ∈ R.By using the boundary conditions in problem (2.1) and the above
equation, we observe that c0 = 0, and

c1�(β)

�(β + α)
(log T )β+α−1 + c2�(β − 1)

�(β + α − 1)
(log T )β+α−2 + I α+βh(T ) = 0.

Moreover, we obtain

c1(log ξ)β−1 + c2(log ξ)β−2 + I βh(ξ) = 0.

Solving the last two equations in c1 and c2, we end up with

c1 = (β + α − 1)�(β − 1) (log T )β+α−2 I βh(ξ) − �(β + α)(log ξ)β−2 I α+βh(T )

�(β − 1) (log T )β+α−2 (log ξ)β−2
[
(β − 1) log T − (β + α − 1) log ξ

] ,

and

c2 = �(β) (log T )β+α−1 I βh(ξ) − �(β + α)(log ξ)β−1 I α+βh(T )

�(β − 1) (log T )β+α−2 (log ξ)β−2
[
(β + α − 1) log ξ − (β − 1) log T

] .

Substituting c1 and c2 in (2.4), we get the desired solution representation (2.2). Besides
and by the help of the results in Lemmas 2.3 and 2.4, one can easily figure out that
Eq. (2.2) solves problem (2.1). This finishes the proof. ��

We will need the following properties for the functions μ and ν defined in Lemma
2.5.

Lemma 2.6 The functions μ and ν are continuous functions on J and satisfy the
following properties:

(1) μmax = max
1≤t≤T

|μ(t)| = �(β)
�(β+α)

(log T )β+α

(log ξ)β−2

∣
∣
∣ 1
(β−1) log T−(β+α−1) log ξ

∣
∣
∣ ,

(2) νmax = max
1≤t≤T

|ν(t)| = (β+α−1) log ξ
|(β−1) log T−(β+α−1) log ξ | ,

(3) Dγ μ(t) = �(β)
�(β+α−γ )

[
(β+α−1) log t−(β+α−γ−1) log T

(β−1) log T−(β+α−1) log ξ

]
(log t)β+α−γ−2

(log ξ)β−2 ,



308 A. Berhail et al.

(4) μ
γ
max = max

1≤t≤T
|Dγ μ(t)| = �(β)

�(β+α−γ )
(log T )β+α−γ−1

(log ξ)β−2

∣
∣
∣

γ
(β−1) log T−(β+α−1) log ξ

∣
∣
∣ ,

(5) Dγ ν(t) = �(β+α)
�(β+α−γ )

[
(β+α−γ−1) log ξ−(β−1) log t
(β−1) log T−(β+α−1) log ξ

]
(log t)β+α−γ−2

(log T )β+α−2 ,

(6) ν
γ
max = max

1≤t≤T
|Dγ ν(t)| = �(β+α)

�(β+α−γ )
1

(log T )γ

∣
∣
∣

(β+α−γ−1) log ξ
(β−1) log T−(β+α−1) log ξ

∣
∣
∣ .

The proofs of the above statements are straightforward and can be achieved via
simple computations.

3 Existence and uniqueness results

Let C := C([1, T ], R) be a Banach space of all continuous functions defined on [1, T ]
endowed with the usual supremum norm. Let

F = {u : u ∈ C, Dγ u ∈ C}.

Then F is a Banach space equipped with the norm

‖u‖F = max

{

sup
1≤t≤T

|u(t)| , sup
1≤t≤T

∣
∣Dγ u(t)

∣
∣

}

.

By virtue of Lemma 2.5, we may define the operator 	 by

	u(t) = 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1

f (s, u(s),Dγ u(s))
ds

s

− λ

�(α)

∫ t

1

(

log
t

s

)α−1 u(s)

s
ds

+ μ(t)

� (β)

∫ ξ

1

(

log
ξ

s

)β−1

f (s, u(s),Dγ u(s))
ds

s

+ υ(t)

� (α + β)

∫ T

1

(

log
T

s

)α+β−1

f (s, u(s),Dγ u(s))
ds

s
.

It can be easily shown that

Dγ (	u(t)) = 1

� (α + β − γ )

∫ t

1

(

log
t

s

)α+β−γ−1

f (s, u(s),Dγ u(s))
ds

s

− λ

�(α − γ )

∫ t

1

(

log
t

s

)α−γ−1 u(s)

s
ds

+Dγ μ(t)

� (β)

∫ ξ

1

(

log
ξ

s

)β−1

f (s, u(s),Dγ u(s))
ds

s

+ Dγ υ(t)

� (α + β)

∫ T

1

(

log
T

s

)α+β−1

f (s, u(s),Dγ u(s))
ds

s
,
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where Dγ μ(t), and Dγ ν(t) are described in Lemma 2.6. The continuity of the func-
tional f would imply the continuity of 	u(t) andDγ (	u(t)), for each t ∈ J . Hence
the operator 	 maps the Banach space F into itself.

In what follows, we employ fixed point theorems to prove the main results of this
paper. For more details about fixed point theorems and functional analysis, the reader
may refer to the book of Smart [24]. Throughout the remaining part of this paper, we
assume that the following conditions hold.

(H1) There exists a constant L > 0 such that

| f (t, u, v)| ≤ L, for any t ∈ [1, T ] , u, v ∈ R.

(H2) There exists a constant N > 0, M > 0 such that

| f (t, u1, v1) − f (t, u2, v2)| ≤ N |u1 − u2| + M |v1 − v2| ,

for any t ∈ [1, T ] , u1, v1, u2, v2 ∈ R, and let d = max
1≤t≤T

| f (t, 0, 0)| .

Lemma 3.1 Let (H1) hold. Then 	 : F → F is completely continuous operator.

Proof We first show that 	 : F → F is uniformly bounded: For any bounded set
U ⊂ F , there exists r > 0 such thatU = {u ∈ F, ‖u‖ ≤ r} . Then for any u ∈ U , we
obtain

|	u(t)| ≤ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1 ∣
∣ f (s, u(s), Dγ u(s))

∣
∣ ds

s

+ λ

�(α)

∫ t

1

(

log
t

s

)α−1

|u(s)| ds
s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 ∣
∣ f (s, u(s), Dγ u(s))

∣
∣ ds

s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 ∣
∣ f (s, u(s), Dγ u(s))

∣
∣ ds

s
.

By using (H1), we get

|	u(t)| ≤ L (log t)α+β

� (α + β + 1)
+ λ ‖u‖ (log t)α

�(α + 1)
+ μmaxL (log ξ)β

� (β + 1)
+ υmaxL (log T )α+β

� (α + β + 1)
.

Similarly, we obtain

∣
∣Dγ (	u(t))

∣
∣ ≤ L (log t)α+β−γ

� (α + β − γ + 1)
+ λ ‖u‖ (log t)α−γ

�(α − γ + 1)

+μ
γ
maxL (log ξ)β

� (β + 1)
+ υ

γ
maxL (log T )α+β

� (α + β + 1)
.
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Hence, we get

‖	u‖ ≤ L (log T )α+β−γ max

(
(log T )γ

� (α + β + 1)
,

1

� (α + β − γ + 1)

)

+ L (log ξ)β

� (β + 1)
max

(
μmax, μ

γ
max

) + L (log T )α+β

� (α + β + 1)
max

(
υmax, υ

γ
max

)

+λ (log T )α−γ max

(
1

�(α − γ + 1)
,

(log T )γ

�(α + 1)

)

r ,

which implies that 	(U ) is uniformly bounded.
Next, we show that 	 : F → F is equicontinuous: for any t1, t2 ∈ [1, T ] ,

1 ≤ t1 < t2 ≤ T and u ∈ U , we deduce

|(	u) (t2) − (	u) (t1)| ≤ 1

� (α + β)

∫ t1

1

[(

log
t2
s

)α+β−1

−
(

log
t1
s

)α+β−1
]

∣
∣ f (s, u(s),Dγ u(s))

∣
∣ ds

s

+ 1

� (α + β)

∫ t2

t1

(

log
t2
s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s))

∣
∣ ds

s

+ λ

�(α)

∫ t1

1

[(

log
t2
s

)α−1

−
(

log
t1
s

)α−1
]

|u(s)|
s

ds

+ λ

�(α)

∫ t2

t1

(

log
t2
s

)α−1 |u(s)|
s

ds

+|μ(t2) − μ(t1)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 ∣
∣ f (s, u(s),Dγ u(s))

∣
∣ ds

+|υ(t2) − υ(t1)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s))

∣
∣ ds.

Therefore, we have

|(	u) (t1) − (	u) (t2)| ≤ L

� (α + β)

∫ t1

1

[(

log
t2
s

)α+β−1

−
(

log
t1
s

)α+β−1
]
ds

s

+ L

� (α + β)

∫ t2

t1

(

log
t2
s

)α+β−1 ds

s

+λ ‖u‖
�(α)

∫ t1

1

[(

log
t2
s

)α−1

−
(

log
t1
s

)α−1
]
ds

s

+λ ‖u‖
�(α)

∫ t2

t1

(

log
t2
s

)α−1 ds

s

+ L |μ(t2) − μ(t1)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 ds

s
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+|υ(t2) − υ(t1)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 ds

s

≤ L

� (α + β + 1)

[

(log t2)
α+β − (log t1)

α+β + 2

(

log
t2
t1

)α+β
]

+ λr

�(α + 1)

[

(log t2)
α+β − (log t1)

α+β + 2

(

log
t2
t1

)α+β
]

+ L |μ(t2) − μ(t1)|
� (β + 1)

(log ξ)β + |υ(t2) − υ(t1)|
� (α + β + 1)

(log T )α+β .

Similarly, we obtain

∣
∣Dγ (	u(t2)) − Dγ (	u(t1))

∣
∣ ≤ L

� (α + β − γ + 1)

[
(log t2)

α+β−γ − (log t1)
α+β−γ

+2

(

log
t2
t1

)α+β−γ
]

+ λr

�(α − γ + 1)

[

(log t2)
α−γ − (log t1)

α−γ + 2

(

log
t2
t1

)α−γ
]

+ L |Dγ μ(t2) − Dγ μ(t1)|
� (β + 1)

(log ξ)β

+|Dγ υ(t2) − Dγ υ(t1)|
� (α + β + 1)

(log T )α+β .

From Lemma 2.6, we conclude that |μ(t2) − μ(t1)| , and |υ(t2) − υ(t1)| converge
to 0, as |t2 − t1| → 0. In similar manner, |Dγ μ(t2) − Dγ μ(t1)| → 0, and
|Dγ υ(t2) − Dγ υ(t1)| → 0 as |t2 − t1| → 0. Hence |(	u) (t1) − (	u) (t2)| and
|Dγ (	u(t2)) − Dγ (	u(t1))| converge to 0 as |t2 − t1| → 0, which implies that
	(U ) is equicontinuous. Thus by the Arzela–Ascoli theorem 	 : F → F is com-
pletely continuous. The proof is completed. ��

Theorem 3.2 Let (H1) hold. If

κ = λ (log T )α−γ max

(
1

�(α − γ + 1)
,

(log T )γ

�(α + 1)

)

< 1,

then problem (1.1) has at least one solution.

Proof Lemma 3.1, we proved that the operator 	 : F → F is completely continuous
by . It remains to use Schaefer’s fixed point theorem to prove that the set

� = {u ∈ F : u = ζ	u, ζ ∈ [0, 1]} ,

is bounded. Let u ∈ F and t ∈ [1, T ] such that u(t) = ζ	u(t), for some ζ ∈ [0, 1].
We deduce as in the proof of Lemma 3.1 that
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‖u‖ = ‖ζ	u‖ ≤ ‖	u‖
≤ L (log T )α+β−γ max

(
(log T )γ

� (α + β + 1)
,

1

� (α + β − γ + 1)

)

+ L (log ξ)β

� (β + 1)
max

(
μmax, μ

γ
max

) + L (log T )α+β

� (α + β + 1)
max

(
υmax, υ

γ
max

)

+λ (log T )α−γ max

(
1

�(α − γ + 1)
,

(log T )γ

�(α + 1)

)

‖u‖ .

It follows that

‖u‖ ≤ ω + κ ‖u‖ ,

where

ω = L (log T )α+β−γ max

(
(log T )γ

� (α + β + 1)
,

1

� (α + β − γ + 1)

)

+ L (log ξ)β

� (β + 1)
max

(
μmax, μ

γ
max

) + L (log T )α+β

� (α + β + 1)
max

(
υmax, υ

γ
max

)
.

Hence, we get

‖u‖ ≤ ω

1 − κ
,

which means that � is bounded set in F . Therefore, by the Schaefer’s fixed point
theorem, we conclude that problem (1.1) has at least one solution in F . The proof is
completed. ��

For the sake of convenience, we set

�1 = (log T )α+β

� (α + β + 1)
+ μmax (log ξ)β

� (β + 1)
+ υmax (log T )α+β

� (α + β + 1)
,

�2 = (log T )α+β−γ

� (α + β − γ + 1)
+ μ

γ
max (log ξ)β

� (β + 1)
+ υ

γ
max (log T )α+β

� (α + β + 1)
.

Theorem 3.3 Let (H2) hold. If

� = max

{

N�1 + λ (log T )α

�(α + 1)
, M�1, N�2 + λ (log T )α−γ

�(α − γ + 1)
, M�2

}

< 1,

then problem (1.1) has a unique solution in F.
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Proof By (H2), for any u, v ∈ F and t ∈ [1, T ] , we conclude that

|(	u) (t) − (	v) (t)| ≤ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s))

− f (s, v(s),Dγ v(s))
∣
∣ ds

s

+ λ

�(α)

∫ t

1

(

log
t

s

)α−1

|u(s) − v(s)| ds
s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 ∣
∣ f (s, u(s),Dγ u(s)) − f (s, v(s),Dγ v(s))

∣
∣ ds

s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s))

− f (s, v(s),Dγ v(s))
∣
∣ ds

s

≤ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1 (
N |u(s) − v(s)| + M

∣
∣Dγ u(s)

−Dγ v(s))
∣
∣
) ds

s
+ λ

�(α)

∫ t

1

(

log
t

s

)α−1

|u(s) − v(s)| ds
s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1

(N |u(s) − v(s)|

+M
∣
∣Dγ u(s) − Dγ v(s))

∣
∣
) ds

s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 (
N |u(s) − v(s)| + M

∣
∣Dγ u(s)

−Dγ v(s))
∣
∣
) ds

s

≤
(

N (log t)α+β

� (α + β + 1)
+ λ (log t)α

�(α + 1)

+ N |μ(t)| (log ξ)β

� (β + 1)
+ N |υ(t)| (log T )α+β

� (α + β + 1)

)

× sup
1≤s≤T

|u(s) − v(s)|

+M

(
(log t)α+β

� (α + β + 1)
+ |μ(t)| (log ξ)β

� (β + 1)
+ |υ(t)| (log T )α+β

� (α + β + 1)

)

× sup
1≤s≤T

∣
∣Dγ u(s) − Dγ v(s)

∣
∣ .

Similarly, we obtain

∣
∣Dγ (	u) (t) − Dγ (	v) (t)

∣
∣ ≤

(
N (log t)α+β−γ

� (α + β − γ + 1)
+ λ (log t)α−γ

�(α − γ + 1)
+ N |Dγ μ(t)| (log ξ)β

� (β + 1)

+ N |Dγ υ(t)| (log T )α+β

� (α + β + 1)

)

sup
1≤s≤T

|u(s) − v(s)|
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+M

(
(log t)α+β−γ

� (α + β − γ + 1)
+ |Dγ μ(t)| (log ξ)β

� (β + 1)

+|Dγ υ(t)| (log T )α+β

� (α + β + 1)

)

× sup
1≤s≤T

∣
∣Dγ u(s) − Dγ v(s)

∣
∣ .

Taking the supremum of the last two estimates, and then the maximum of the four
components, we deduce that

‖	u − 	v‖ ≤ � ‖u − v‖ .

Since � < 1, then 	 is a contraction on F . It follows from the Banach contraction
mapping theorem that 	 has a unique fixed point in F . The proof is completed. ��

Consider again the setU = {u ∈ F : ‖u‖ ≤ r} , for some r > 0, thenU is a closed
ball in the Banach space F , hence it is also a Banach space. The restriction of 	 on
U is still a contraction by Theorem 3.3. Then, the BVP (1.1) has a unique solution in
U if 	(U ) ⊆ U .

Theorem 3.4 Let (H2) hold. If

� = max

{

N�1 + λ (log T )α

�(α + 1)
, M�1, N�2 + λ (log T )α−γ

�(α − γ + 1)
, M�2

}

< 1,

then problem (1.1) has a unique solution in U.

Proof By (H2), for any u ∈ U and t ∈ [1, T ] , we conclude that

|(	u) (t)| ≤ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s)) − f (s, 0, 0)

∣
∣ ds

s

+ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1

| f (s, 0, 0)| ds
s

+ λ

�(α)

∫ t

1

(

log
t

s

)α−1

|u(s)| ds
s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 ∣
∣ f (s, u(s),Dγ u(s)) − f (s, 0, 0)

∣
∣ ds

s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1

| f (s, 0, 0)| ds
s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 ∣
∣ f (s, u(s),Dγ u(s)) − f (s, 0, 0)

∣
∣ ds

s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1

| f (s, 0, 0)| ds
s

.
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It follows that

|(	u) (t)| ≤ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1 (
N |u(s)| + M

∣
∣Dγ u(s))

∣
∣
) ds

s

+ 1

� (α + β)

∫ t

1

(

log
t

s

)α+β−1

| f (s, 0, 0)| ds
s

+ λ

�(α)

∫ t

1

(

log
t

s

)α−1

|u(s)| ds
s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1 (
N |u(s)| + M

∣
∣Dγ u(s))

∣
∣
) ds

s

+|μ(t)|
� (β)

∫ ξ

1

(

log
ξ

s

)β−1

| f (s, 0, 0)| ds
s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1 (
N |u(s)| + M

∣
∣Dγ u(s))

∣
∣
) ds

s

+ |υ(t)|
� (α + β)

∫ T

1

(

log
T

s

)α+β−1

| f (s, 0, 0)| ds
s

.

Thus, we have

|(	u) (t)| ≤
(

N�1 + λ (log t)α

�(α + 1)

)

sup
1≤s≤T

|u(s)| + M�1 sup
1≤s≤T

∣
∣Dγ u(s)

∣
∣ + d�1.

Similarly, we obtain

∣
∣Dγ (	u) (t)

∣
∣≤

(

N�2+ λ (log T )α−γ

�(α − γ +1)

)

sup
1≤s≤T

|u(s)|+M�2 sup
1≤s≤T

∣
∣Dγ u(s)

∣
∣+d�2.

Therefore, we obtain

‖	u‖ ≤ �r + d max{�1, �2} ≤ �r + (1 − �)r = r ,

whenever r >
d max{�1,�2}

1−�
. This completes the proof. ��

4 An example

Consider the following Hadamard fractional Langevin equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D1.5
(D0.8 + 1

3

)
u(t) = f (t, u(t),D0.2u(t)), t ∈ [1, e]

u(1) = 0,

u(e) + 1/3
�(0.8)

∫ e
1

(
log e

s

)−0.2 u(s)
s ds = 0,

D0.8u(2) + 1
3u(2) = 0,

(4.1)
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where β = 1.5, α = 0.8 and λ = 1
3 . Let

f (t, u, v) = log t

2t

|u|
2 + |u| + |v|

10(1 + t)2(|v| + 4)
.

Using the given data, we observe that

| f (t, u, v)| ≤ 21

40
,

and

| f (t, u1, v1) − f (t, u2, v2)| ≤ 1

4
|u1 − u2| + 1

10
|v1 − v2| ,

for any t ∈ [1, e]. Then f satisfies (H1) and (H2) with L = 21
40 , N = 1

4 , and
M = 1

10 . Moreover, we find that κ 
 0.28 < 1. Hence, the conditions of Theorem
3.2 are satisfied; thus, we conclude that there exists at least one solution for problem
(4.1) in [1, e].

On other hand, we find that μmax = 1.6408, νmax = 4, μ
γ
max = 0.86, ν

γ
max = 3.7,

�1 = 2.03, and �2 = 2.127. After simple computations, we get � = 0.907 < 1.
Therefore, all conditions of Theorem 3.3 are satisfied. Thus, problem (4.1) has a
unique solution in [1, e].

Conclusion

The Langevin equation has been proposed to describe dynamical processes in a fractal
medium in which the fractal and memory properties with a dissipative memory kernel
are incorporated. However, it has been realized that the classical Langevin equation
failed to describe the complex systems. Thus, the consideration of Langevin equation
in frame of fractional derivatives becomes compulsory. As a result of this interest,
several results have been revealed and different versions of Langevin equations have
been under study. Following this trend, we considered different version of Langevin
equation in frame of Hadamard derivative. We consider the main equation subject
to fractional integral and derivative boundary conditions and within three different
fractional orders. We claim that the results of this paper are new and have not been
considered before. The main results are proved by the implementation of Schaefer’s
fixed point theorem and Banach contraction principle. We present an example to
demonstrate the consistency to the theoretical findings.
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