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Abstract
This paper investigates the existence ofweak solutions of biquasilinear boundary value
problem for a coupled elliptic–parabolic systemof divergence formwith discontinuous
leading coefficients. The mathematical framework addressed in the article considers
the presence of an additional nonlinearity in the model which reflects the radiative
thermal boundary effects in some applications of interest. The results are obtained
via the Rothe–Galerkin method. Only weak assumptions are made on the data and the
boundary conditions are allowed to be on a general form. Themajor contribution of the
current paper is the explicit expressions for the constants appeared in the quantitative
estimates that are derived. These detailed and explicit estimates may be useful for the
study on nonlinear problems that appear in the real-world applications. In particular,
they clarify the smallness conditions. In conclusion, we illustrate how the above results
may be applied to the thermoelectrochemical phenomena in an electrolysis cell. This
problem has several applications as, for instance, to optimize the cell design and
operating conditions.
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S Soret coefficient (thermal diffusion) (m2 s−1 K−1)
t Transference number (dimensionless)
u Ionic mobility (m2 V−1 s−1)
z Valence (dimensionless)

αS Seebeck coefficient (V K−1)
φ Electric potential (V)
π Peltier coefficient (V)
σ Electrical conductivity (S m−1)
θ Absolute temperature (K)

1 Introduction

The main gap between theory and practice has been the assumption of some simplifi-
cations. Among them, they are the constant coefficients of the time derivative term in
parabolic equations, or its independence on the space variable (commonly the density).
In the real-world applications, there are three terms that destroy the regularity of the
solutions. The first quasilinear term classically stands for the spatial gradient of the
solution, the second one stands for the time derivative, and the third one appears from
the power-type boundary condition. This power-type boundary condition represents
the radiative heat transfer existent on a part of boundary. We mention to Ref. [26] for
the transient radiative heat transfer equations in the one-dimensional slab.

Quantitative estimates take the characteristics of the coefficients into account, but
usually include constants that hide some intrinsic characteristics of the domain. We
seek for the complete explicitness of the constants that are involved on the quanti-
tative estimates, and their effectiveness. We emphasize that their sharpness remains
as an open problem. The main purpose is the analysis of a weak formulation of the
corresponding boundary- and initial-value elliptic–parabolic problem. To that aim,
we approximate the problem via implicit time discretization, by the classical Rothe
method.

We point out that, in addition to the fact that Galerkin and Rothe methods are
convenient tools for the theoretical analysis of elliptic and evolution problems [3,12,
21,28], it is of particular interest from the numerical point of view [17,23,24]. Different
versions of the primal discontinuousGalerkinmethods to treat the coupling of flow and
transport and the coupling of transport and reaction have recently gained popularity
because they are easier to implement than most traditional finite element methods,
from a computer science point of view (see [29] and the references therein). Lipschitz
continuity property is commonly assumed as a data character, which simplifies the
Rothe method [15,27].

The paper [10] deals with modeling of quasilinear thermoelectric phenomena,
including the Peltier and Seebeck effects. In Ref. [6], the spatial distribution of the
variables such as the electrolyte temperature, which is subject to local cell conditions,
is studied. To optimize cell operations is the aim for the long-term sustainability of
the aluminum smelting industry.

The heat transfer modeling on electrochemical devices is gaining interest in the
literature, as, for instance, the thermoelectrochemical cells (TECs) are of low cost and
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it is an effective approach to harvest waste thermal energy [5,14,20]. Here, no internal
interfaces are considered in the model, which amounts to neglecting possible material
heterogeneities as done in Refs. [7–9]. These works deal with weak solutions related to
thermoelectrochemical devices with radiative effects in a part of the boundary, involv-
ing the cross effects. A particular feature is the mixture of some kind of (nonlinear)
Neumann and Robin boundary conditions. Also, quantitative estimates are stated for
the norm (steady state in Ref. [7] and unsteady state in Ref. [8]) under appropriate
assumptions on the data, where the constants are given explicitly. Within this state
of mind, we close this paper by applying the theoretical coupled elliptic–parabolic
system to the thermoelectrochemical phenomena.

The structure of the paper is as follows. We begin by introducing the functional
framework, the data under consideration and the main theorem in Sect. 2. The main
ingredient of the proof is the Rothe method presented in Sect. 3. Section 4 deals with
the existence proof of the corresponding elliptic problem. The idea of the proof is
based on classical Galerkin approximation argument (Sect. 4.1). In Sect. 5, we derive
a priori estimates for the approximate problem, getting compactness properties that
allow the existence proof of the main theorem via the passage to the limit as the time
step vanishes. As a consequence of the main theoretical result, the existence of a weak
solution to a thermoelectrochemical problem is stated in Sect. 6.

2 Statement of the problem

Let [0, T ] ⊂ R be the time interval with T > 0 being an arbitrary (but preassigned)
time. Let Ω be a bounded domain (that is, connected open set) in R

n (n ≥ 2). Its
boundary ∂Ω is constituted by three pairwise disjoint open (n − 1)-dimensional sets,
namely the electrode surface Γ , the wall surface Γw, and the remaining outer surface
Γo, such that ∂Ω = Γ ∪ Γ w ∪ Γ o. Observe that the electrode surface Γ consists
of the anode Γa and the cathode Γc. Figure 1 displays two schematic geometrical
representations of the domainΩ and of its boundary ∂Ω to identify the various subsets
into which the boundary is decomposed and, as a consequence, to better understand
the physical significance of the enforced boundary conditions. Hence, further, we set
QT = Ω×]0, T [ and ΣT = ∂Ω×]0, T [.

We are interested in the following boundary value problem in the sense of distri-
butions. Find the functions (u, φ) : QT → R

I+2, with I being an integer number, that
solve

B(uI+1)∂tu − ∇ · (A(u)∇u) = ∇ · (F(u)∇φ); (1)

−∇ · (σ (u)∇φ) = ∇ · (G(u)∇u) in QT , (2)

with the following meaning of notation, for j = 1, . . . , I + 1,

∇ · (A(u)∇u) =
n∑

k=1

∂k

(
I+1∑

l=1

a j,l(u)∂kul

)
;
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Fig. 1 Schematic 2D representation of two cells of one compartment (not in scale). a An electrolytic cell.
b TEC device design: heating bottom plate and two electrodes symmetrically placed [19]

∇ · (F(u)∇φ) =
n∑

k=1

∂k(Fj (u)∂kφ);

∇ · (G(u)∇u) =
n∑

k=1

∂k

(
I+1∑

l=1

Gl(u)∂kul

)
.

Here A and B are (I + 1)2-matrices such that

(A) the leading matrix A is supposed to be uniformly elliptic, of quadratic-growth,
and with real-valued L∞ components;

(B) B is the diagonal matrix with non-zero components

b j, j =
{
1 if 1 ≤ j ≤ I
b if j = I + 1.

Only (I + 1) parabolic equation is in fact known as the doubly nonlinear elliptic–
parabolic equation which has been investigated by several authors when Dirichlet
conditions are taken into account on the boundary (we refer, for example, to the works
[4,27] and the references cited therein for some details).

The Kirchhoff transformation could be applied to the (I+ 1) parabolic equation to
be useful in the time discretization because

b(u)∂t u = ∂t

(∫ u

b(z)dz

)
, (3)

although it is not truly useful as change variable because the function b depends on
the space variable and ∇ (∫ u b(r)dr

)
may be ill defined.
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The boundary conditions are in the concise form:

(A(u)∇u + F(u)∇φ) · n + b(uI+1)

u = h; (4)

(σ (u)∇φ + G(u)∇u) · n = gχΓ on ΣT , (5)

with n denoting the outward unit normal to the boundary ∂Ω , and

b j =
{
0 if 1 ≤ j ≤ I
γ if j = I + 1.

Here, the boundary coefficient γ stands for the Robin-type boundary effects on Γ ,
and for the power-type boundary effects on Γw. The functions h and g stand for the
boundary sources.

Finally, let the initial condition be

u(·, 0) = u0 in Ω. (6)

In the framework of Sobolev and Lebesgue functional spaces, we use the following
spaces of test functions:

V (Ω) = {v ∈ H1(Ω) :
∫

Ω

vdx = 0};

V (∂Ω) = {v ∈ H1(Ω) :
∫

∂Ω

vds = 0};
V(Ω) = {v ∈ H1(Ω) : v|Γw ∈ L(Γw)};

V(QT ) = {v ∈ L2(0, T ; H1(Ω)) : v|Γw×]0,T [ ∈ L(Γw×]0, T [)}

with their usual norms,  > 1. Hereafter, we use the notation “ds” for the surface
element in the integrals on the boundary as well as any subpart of the boundary ∂Ω .
Notice that V(Ω) ≡ H1(Ω) if  < 2∗, where 2∗ is the critical trace continuity
constant, i.e., 2∗ = 2(n − 1)/(n − 2) if n > 2 and 2∗ > 1 is arbitrary if n = 2.

The problem (1), (2) is in fact a system of I+ 2 partial differential equations and it
may be decomposed into one system of I parabolic equations, one parabolic equation
with a quasilinear time derivative, and one third elliptic equation.

Definition 1 We say that a function (u, φ) is a weak solution to the problem (1), (2),
(4)–(6), if it satisfies (6) and the variational formulation, with u = uI+1,

∫ T

0
〈∂t ui , vi 〉dt +

I+1∑

j=1

∫

QT

ai, j (u)∇u j · ∇vidxdt

= −
∫

QT

Fi (u)∇φ · ∇vidxdt +
∫

ΣT

hividsdt, i = 1, . . . , I; (7)
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∫ T

0
〈b(u)∂t u, v〉dt +

I+1∑

j=1

∫

QT

aI+1, j (u)∇u j · ∇vdxdt +
∫

ΣT

γ (u)uvdsdt

= −
∫

QT

FI+1(u)∇φ · ∇vdxdt +
∫

ΣT

hI+1vdsdt; (8)

∫

Ω

σ(u)∇φ · ∇wdx = −
I+1∑

j=1

∫

Ω

G j (u)∇u j · ∇wdx +
∫

Γ

gwds, a.e. in ]0, T [,(9)

for all vi ∈ L2(0, T ; V (Ω)), v ∈ V(QT ), and w ∈ V (∂Ω).

The symbol 〈·, ·〉 denotes the duality pairing 〈·, ·〉X ′×X , with X being a Banach space.
The notation X ′ denotes the dual space of X , and X ′ is equippedwith the usual induced
norm ‖ f ‖X ′ = sup{〈 f , u〉, u ∈ X : ‖u‖X ≤ 1}.

The set of hypothesis is as follows.

(H1) The vector-valued functions F and G, from Ω × R
I+1 into R

I+1, are assumed
to be Carathéodory, i.e., measurable with respect to x ∈ Ω and continuous with
respect to other variables, such that they verify

∃F#
j > 0 : |Fj (x, e)| ≤ F#

j , (10)

∃G#
j > 0 : |G j (x, e)| ≤ G#

j , (11)

for all j = 1, . . . , I + 1, for a.e. x ∈ Ω , and for all e ∈ R
I+1.

(H2) The coefficient b is assumed to be a Carathéodory function from Ω × R to R.
Moreover, there exist b#, b# > 0 such that

b# ≤ b(x, e) ≤ b#, (12)

for a.e. x ∈ Ω , and for all e ∈ R.
(H3) The leading coefficient A has its components ai, j : Ω × R

I+1 → R being
Carathéodory functions. Moreover, they satisfy

(ai )# := min
(x,e)∈Ω×RI+1

ai,i (x, e) > 0; (13)

∃a#
i, j > 0 : |ai, j (·, e)| ≤ a#

i, j , a.e. in Ω, ∀e ∈ R
I+1, (14)

for all i, j ∈ {1, . . . , I + 1}.
(H4) The leading coefficient σ is assumed to be a Carathéodory function from Ω ×

R
I+1 into R. Moreover, there exist σ#, σ # > 0 such that

σ# ≤ σ(x, e) ≤ σ #, (15)

for a.e. x ∈ Ω , and for all e ∈ R
I+1.
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(H5) The boundary coefficient γ is assumed to be a Carathéodory function from
∂Ω × R into R. Moreover, there exist γ#, γ # > 0 and γ1 ≥ 0 such that

γ#|e|−2 ≤ γ (·, e) ≤ γ #|e|−2 + γ1, (16)

a.e. on ∂Ω , and for all e ∈ R, where the exponent  ≥ 2 stands for the
Robin-type boundary condition ( = 2) on Γ , and for the power-type boundary
condition ( > 2) on Γw.

Remark 1 The boundary condition (16) may be generalized for a function γ1 : ∂Ω →
R belonging to L/(−2)(∂Ω) for  ≥ 2. Indeed, Theorem 1 remains valid if (16) is
replaced by

|γ (·, e)| ≤ γ1 a.e. on Γ ;
γ#|e|−2 ≤ γ (·, e) ≤ γ # |e|−2 + γ1 a.e. on Γw,

for all e ∈ R, which infer in Sect. 4.1 that the Brouwer fixed point theorem is applied
for a different r > 0 taking Definition 2 into account.

Hereafter, we will use the Kirchhoff transformation (3) to the time derivative term,
i.e., the characterization ∂t B(u), denoting by B the operator defined by

v ∈ L2(QT ) �→ B(v) =
∫ v

0
b(·, z)dz. (17)

Let us state the existence results.

Theorem 1 Suppose that Assumptions (H1)–(H5), hi ∈ L2(ΣT ), i = 1, . . . , I, hI+1 ∈
L/(−1)(ΣT ), and g ∈ L2(Γ ) be fulfilled. Under the smallness conditions, for i ∈
{1, . . . , I + 1},

(ai )# >
1

2

⎛

⎜⎜⎝
I+1∑

l=1
l �=i

(a#
i,l + a#

l,i ) + F#
i + G#

i

⎞

⎟⎟⎠ , (18)

σ# >
1

2

I+1∑

j=1

(
F#

j + G#
j

)
, (19)

there exists at least one weak solution

(u, φ) ∈ [L∞(0, T ; L2(Ω))]I+1 × L2(0, T ; V (∂Ω))

in accordance with Definition 1, with v ∈ L(0, T ; V(Ω)), such that

ui − u0
i ∈ L2(0, T ; V (Ω)) and ∂t ui ∈ L2(0, T ; (V (Ω))′);

u ∈ V(QT ) and b(u)∂t u ∈ L′
(0, T ; (V(Ω))′),
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for i = 1, . . . , I. In particular, B(u) ∈ L∞(0, T ; L1(Ω)).

Here, we consider the Banach spaces that are of direct application for the thermo-
electrochemical problem under study. Clearly, Theorem 1 remains valid for any closed
subspace V such that H1

0 (Ω) ↪→ V ↪→ H1(Ω) is considered instead of V (Ω) or
V (∂Ω) if the Poincaré inequality is verified.

Remark 2 In (7) and (8), the meaning of the time derivative should be understood as
in the following weak sense [4]:

∫ T

0
〈∂t ui , vi 〉dt = −

∫ T

0

∫

Ω

ui∂tvidxdt −
∫

Ω

u0
i vi (0)dx; (20)

∫ T

0
〈b(u)∂t u, v〉dt = −

∫ T

0

∫

Ω

B(u)∂tvdxdt −
∫

Ω

B(u0)v(0)dx, (21)

for every test functions vi ∈ L2(0, T ; V (Ω)) ∩ W 1,1(0, T ; L∞(Ω)), for i ∈
{1, . . . , I}, and v ∈ L(0, T ; V(Ω))∩W 1,1(0, T ; L∞(Ω)) such that vi (T ) = v(T ) =
0 a.e. in Ω .

3 Time discretization technique

Weadopt theweak solvability of I+1 time-dependent partial differential equationwith
a nonlinear Neumann boundary condition as investigated in Refs. [4,22], while the
j parabolic equations ( j = 1, . . . , I) are studied via the classical time discretization
technique [21]. We introduce a recurrent system of boundary value problems to be
successively solved for m = 1, . . . , M ∈ N, starting from the initial function (6).

Wedecompose the time interval I = [0, T ] into M subintervals Im,M of size τ (com-
monly called time step) such that M = T /τ ∈ N, i.e., Im,M = [(m −1)T /M, mT /M]
for m ∈ {1, · · ·, M}. We set tm,M = mT /M .

For any time integrable function h : ΣT → R, we introduce the (piecewise constant
in time) function hM ∈ L∞(0, T ; L1(∂Ω)) being given by hM (t) = h̄m for t ∈
](m − 1)τ, mτ ], with

h̄m = 1

τ

∫ mτ

(m−1)τ
h(·, z)dz.

Then the problem (7)–(9) is approximated by the following recurrent sequence of
time discretized problems:

1

τ

∫

Ω

um
i vidx +

I+1∑

j=1

∫

Ω

ai, j (um)∇um
j · ∇vidx +

∫

Ω

Fi (um)∇φm · ∇vidx

= 1

τ

∫

Ω

um−1
i vidx +

∫

∂Ω

h̄m
i vids, i = 1, . . . , I, (22)
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1

τ

∫

Ω

B(um)vdx +
I+1∑

j=1

∫

Ω

aI+1, j (um)∇um
j · ∇vdx +

∫

Ω

FI+1(um)∇φm · ∇vdx

+
∫

∂Ω

γ (um)umvds = 1

τ

∫

Ω

B(um−1)vdx +
∫

∂Ω

h̄m
I+1vds, (23)

∫

Ω

σ(um)∇φm · ∇wdx +
I+1∑

j=1

∫

Ω

G j (um)∇um
j · ∇wdx =

∫

Γ

gwds, (24)

where u = (u1, . . . , uI, u), for all vi ∈ V (Ω), i = 1, . . . , I, v ∈ V(Ω) and w ∈
V (∂Ω). Since u0 ∈ L2(Ω) is known, we determine u1 as the unique solution of
Proposition 1, and we inductively proceed.

The existence of the above systemof elliptic problems is established in the following
proposition.

Proposition 1 Let m ∈ {1, · · ·, M} be fixed, and um−1 be given. Then there exists a
unique solution (um, φm) ∈ [V (Ω)]I × V(Ω) × V (∂Ω) to the variational system
(22)–(24).

This existence of solution is proved in Sect. 4 via the Galerkin method (cf. Sect. 4.1).
Let us recall the technical result [4,22].

Lemma 1 Denoting by

Ψ (s) := B(s)s −
∫ s

0
B(r)dr =

∫ s

0
(B(s) − B(r))dr ,

there holds
∫

Ω

(B(u) − B(v))udx ≥
∫

Ω

Ψ (u)dx −
∫

Ω

Ψ (v)dx . (25)

In particular, if Assumption (12) is fulfilled then there holds

∫

Ω

Ψ (u)dx ≤
∫

Ω

B(u)udx ≤ b#‖u‖22,Ω .

Under Assumption (12), the operator B verifies

(B(u) − B(v), u − v) ≥ b#‖u − v‖22,Ω . (26)

To control the time dependence, we begin by recalling the following remarkable
lemma [4, Lemma 1.9].

Lemma 2 Suppose um weakly converge to u in L p(0, T ; W 1,p(Ω)), p > 1, with the
estimates

∫

Ω

Ψ (um(t))dx ≤ C for 0 < t < T ,
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and for z > 0

∫ T −z

0

∫

Ω

(B(um(t + z)) − B(um(t)))(um(t + z) − um(t))dxdt ≤ Cz, (27)

with C being positive constants. Then B(um) → B(u) in L1(QT )andΨ (um) → Ψ (u)

almost everywhere in QT .

In the sequel, we will also need both the discrete Gronwall inequality and the
Aubin–Lions theorem. Let us recall the following discrete version of the Gronwall
inequality [22].

Lemma 3 (Discrete Gronwall inequality) Let {am}m∈N and {Am}m∈N be sequences of
nonnegative real numbers such that Am is nondecreasing and

am ≤ Am + τ L
m∑

j=1

a j ,

for each m ∈ N and for some 0 < τ L < 1. Then there holds

am ≤ Am

1 − τ L
exp[(m − 1)τ ].

Let us recall the following version of the Aubin–Lions theorem for piecewise con-
stant functions [13].

Theorem 2 (Aubin–Lions) Let X, B, and Y be Banach spaces such that the embeddings
X ↪→↪→ B ↪→ Y hold, and let T > 0 and 1 ≤ p < ∞. Let {uM }M∈N be a sequence
of functions, which are constant on each time subinterval ](k − 1)τ, kτ ] with uniform
time step τ = T /M, satisfying

τ−1‖uM − uM−1‖L1(τ,T ;Y ) + ‖uM‖L p(0,T ;X) ≤ C0, ∀τ > 0,

where C0 is a positive constant independent on τ . Then there exists a subsequence of
{uM }M∈N strongly converging in L p(0, T ; B).

4 Proof of Proposition 1

Let m ∈ {1, · · ·, M} be fixed, and um−1 be given. Set f = um−1, and g be such that

g j =
{

h̄m
j if 1 ≤ j ≤ I + 1

gχΓ if j = I + 2.
(28)

Set the (I + 2)2-matrix

L(u) =
[

A(u) F(u)

G
(u) σ (u)

]
. (29)
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Using Assumptions (10), (11) and (13)–(15), we find

I+2∑

j,l=1

n∑

ι=1

(
L j,l(u)ξl,ι

)
ξ j,ι ≥

I+2∑

j=1

n∑

ι=1

(L j )#|ξ j,ι|2, (30)

where for j = 1, . . . , I + 1,

(L j )# = (a j )# − 1
2

(∑I+1
l=1
l �= j

(a#
l, j + a#

j,l) + F#
j + G#

j

)
;

(L I+2)# = σ# − 1
2

∑I+1
j=1

(
F#

j + G#
j

)
.

Remark 3 Although the positive definiteness implies invertibility, there are invertible
matrices that are not positive definite. The existence of the inverse matrix L−1 may be
consequence of det(L) �= 0. An alternative sufficient condition is that rank(L) = I+2.

Definition 2 We call by K2(P2 + 1) the constant that verifies

‖v‖2,Γ ≤ K2
(‖v‖2,Ω + ‖∇v‖2,Ω

) ≤ K2(P2 + 1)‖∇v‖2,Ω, ∀v ∈ H1(Ω). (31)

Here, K2 stands to the continuity constant of the trace embedding H1(Ω) ↪→ L2(Γ ),
and P2 stands to the Poincaré constant correspondent to the space exponent 2.

4.1 Galerkin approximation technique

The Banach space V := [V (Ω)]I × V(Ω) × V (∂Ω) admits linearly indepen-
dent functions wν , ν = 1, . . . , N , such that the finite-dimensional subspace VN =
span{w1, . . . ,wN } is dense in V, for every N ∈ N.

Introduce the continuous function P : M(I+2)×N → M(I+2)×N that maps
[
λ j,ν

]

into
[
β j,ν

]
, defined by for each ν = 1, . . . , N

β j,ν = 1

τ

∫

Ω

U N
j wν

jdx +
I+2∑

l=1

∫

Ω

(
L j,l(uN )∇U N

l

)
· ∇wν

jdx

−1

τ

∫

Ω

f jw
ν
jdx −

∫

∂Ω

g jw
ν
jds, ∀ j = 1, . . . , I;

β j,ν = 1

τ

∫

Ω

b(U N
I+1)U

N
j wν

jdx +
I+2∑

l=1

∫

Ω

(
L j,l(uN )∇U N

l

)
· ∇wν

jdx

+
∫

∂Ω

γ (U N
I+1)U

N
j wν

jds − 1

τ

∫

Ω

b(U N
I+1) f jw

ν
jdx −

∫

∂Ω

g jw
ν
jds, j = I + 1;

β j,ν =
I+2∑

l=1

∫

Ω

(
L j,l(uN )∇U N

l

)
· ∇wν

jdx −
∫

∂Ω

g jw
ν
jds, j = I + 2,
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with the function UN ∈ VN being in the form

U N
j (x) =

N∑

ν=1

λN
j,νw

ν
j (x), j = 1, . . . , I + 2.

Here, we set uN = (U N
1 , . . . , U N

I+1), for the sake of simplicity.
To apply the Brouwer fixed point theorem [25], we must prove that P satisfies

(Pλ, λ) > 0 for all λ ∈ M(I+2)×N such that

|λ| =
⎛

⎝
I+1∑

j=1

N∑

ν=1

λ2j,ν

⎞

⎠
1/2

= r ,

and (β, λ) stands for the inner product inM(I+2)×N . To this aim, we compute

(Pλ, λ) =
I+2∑

j=1

N∑

ν=1

β j,νλ j,ν

= 1

τ

I+1∑

j=1

∫

Ω
b j, j (U

N
I+1)|U N

j |2dx +
I+2∑

j=1

I+2∑

l=1

∫

Ω

(
L j,l (u

N )∇U N
l

)
· ∇U N

j dx

+
∫

∂Ω
γ (U N

I+1)|U N
I+1|2ds − 1

τ

I+1∑

j=1

∫

Ω
b j, j (U

N
I+1) f j U

N
j dx −

I+2∑

j=1

∫

∂Ω
g j U

N
j ds.

Applying Assumptions (12) and (16), the Hölder inequality, and (31), we obtain

(Pλ, λ) ≥ 1

τ

I∑

j=1

(
‖U N

j ‖2,Ω − ‖ f j‖2,Ω − K2‖g j‖2,∂Ω

)
‖U N

j ‖2,Ω

+1

τ

(
b#‖U N

I+1‖2,Ω − b#‖ fI+1‖2,Ω
)

‖U N
I+1‖2,Ω

+
I∑

j=1

(
(L j )#‖∇U N

j ‖2,Ω − K2‖g j‖2,∂Ω

)
‖∇U N

j ‖2,Ω

+(L I+1)#‖∇U N
I+1‖22,Ω

+
(
γ#‖U N

I+1‖−1
,∂Ω + γ1‖U N

I+1‖′,∂Ω − ‖gI+1‖′,∂Ω

)
‖U N

I+1‖,∂Ω

+
(
(L I+2)#‖∇U N

I+2‖2,Ω − K2(P2 + 1)‖gI+2‖2,∂Ω

)
‖∇U N

I+2‖2,Ω .

Then there exists r > 0 such that fulfills (Pλ, λ) > 0. We are in the position of
applying the Brouwer fixed point theorem. Consequently, there exists λ ∈ M(I+2)×N

such that |λ| ≤ r and P([λ j,ν]) = 0, i.e., taking the density of VN into V:
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1

τ

I∑

j=1

∫

Ω

U N
j v jdx + 1

τ

∫

Ω

b(U N
I+1)U

N
I+1vI+1dx

+
I+2∑

j=1

I+2∑

l=1

∫

Ω

(
L j,l(uN )∇U N

l

)
· ∇v jdx +

∫

∂Ω

γ (U N
I+1)U

N
I+1vI+1ds

= 1

τ

I∑

j=1

∫

Ω

f jv jdx + 1

τ

∫

Ω

b(U N
I+1) fI+1vI+1dx +

I+2∑

j=1

∫

∂Ω

g jv jds. (32)

To pass to the limit in the variational equality (32) with N , when N tends to infinity,
we can extract a subsequence, still denoted by UN , convergent to U weakly in V and
strongly in L2(Ω) and in L2(∂Ω). In particular, UN converges to U a.e. in Ω and on
∂Ω . Applying the Krasnoselski theorem to the Nemytskii operators b and L, we have

b(U N
I+1)v

N→∞−→ b(UI+1)v in L2(Ω); (33)

I+2∑

j=1

L j,l(uN )∇v j
N→∞−→

I+2∑

j=1

L j,l(u)∇v j in L2(Ω), (34)

for l = 1, . . . , I + 1, and for all v, v j ∈ H1(Ω), making use of the Lebesgue domi-
nated convergence theoremwith Assumptions (10)–(15). Similarly, the boundary term
γ (U N

I+1)v converges to γ (UI+1)v in L′
(∂Ω), for all v ∈ L′

(∂Ω), due to (16). Thus,
we are in the condition of passing to the limit in the variational equality (32) as N
tends to infinity to conclude that U is the required limit solution.

5 Passage to the limit as time goes to zero (M → +∞)

Set X = [V (Ω)]I × V(Ω). Let ũM :]0, T [→ X and φ̃M :]0, T [→ V (∂Ω) be the
step functions defined by

ũM (t) =
{
u0 if t = 0
um if t ∈]tm−1,M , tm,M ] (35)

φ̃M (t) = φm if t ∈]tm−1,M , tm,M ]. (36)

We begin by establishing the estimates and the weak convergences of the Rothe func-
tion

(̃uM , φ̃M ) = (̃uM
1 , . . . , ũM

I , ũM , φ̃M )

obtained from the discretized solution (um, φm), of variational system (22)–(24), by
piecewise constant interpolation with respect to time t .
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Proposition 2 Denoting by {(̃uM , φ̃M )}M∈N the Rothe sequence, then the following
estimate hold, for M > T ,

max
1≤m≤M

(
I∑

i=1

‖um
i ‖22,Ω + 2

∫

Ω

Ψ (um)dx

)

+
I∑

i=1

(Li )#‖∇ũM
i ‖22,QT

+ (L I+1)#‖∇ũM‖22,QT
+ (L I+2)#‖∇φ̃M‖22,QT

+2
γ#

′ ‖ũM‖
,ΣT

≤
(
1 + M

M − T
exp[T ]

)
R, (37)

where

R =
I∑

i=1

‖u0
i ‖22,Ω + 2b#‖u0‖22,Ω + T

K 2
2 (P2 + 1)2

(L I+2)#
‖g‖22,ΓN

+K 2
2

I∑

i=1

(
1 + 1

(Li )#

)
‖hi‖22,ΣT

+ 1

′γ 1/(−1)
#

‖h‖′
′,ΣT

.

Moreover, there exists (u, φ) ∈ [L2(0, T ; V (Ω))]I × V(QT ) × L2(0, T ; V (∂Ω))

such that

ũM⇀u in [L2(0, T ; V (Ω))]I × V(QT ) ↪→ L2(0, T ;X);
φ̃M⇀φ in L2(0, T ; V (∂Ω))

as M tends to infinity (up to subsequences).

Proof Choosing (v, v) = um and w = φm as test functions in (22)–(24), we sum the
obtained relations, and we successively apply the Hölder inequality, to deduce

1

τ

(
I∑

i=1

∫

Ω

(
um

i − um−1
i

)
um

i dx +
∫

Ω

(B(um) − B(um−1))umdx

)

+
I+1∑

j=1

(L j )#‖∇um
j ‖22,Ω + (L I+2)#‖∇φm‖22,Ω + γ#‖um‖

,∂Ω

≤
I∑

i=1

‖h̄m
i ‖2,∂Ω‖um

i ‖2,∂Ω + ‖h̄m
I+1‖′,∂Ω‖um‖,∂Ω + ‖g‖2,Γ ‖φm‖2,Γ

:=
I∑

i=1

Ii + II+1 + II+2, (38)
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for all m ∈ {1, . . . , M}. We successively apply (31), and the Young inequality, to
obtain

Ii ≤ K 2
2

2

(
1 + 1

(Li )#

)
‖h̄m

i ‖22,∂Ω + 1

2
‖um

i ‖22,Ω + (Li )#

2
‖∇um

i ‖22,Ω ;

II+1 ≤ 1

′γ 1/(−1)
#

‖h̄m
I+1‖′

′,∂Ω + γ#


‖um‖

,∂Ω ;

II+2 ≤ K 2
2 (P2 + 1)2

2(L I+2)#
‖g‖22,Γ + (L I+2)#

2
‖∇φm‖22,Ω .

Making recourse to the elementary identity 2(a − b)a = a2 − b2 + (a − b)2 for all
a, b ∈ R to the first term on the left-hand side in (38), summing over k = 1, . . . , m,
we obtain

m∑

k=1

I∑

i=1

∫

Ω

(
uk

i − uk−1
i

)
uk

i dx ≥ 1

2

I∑

i=1

(
‖um

i |22,Ω − ‖u0
i ‖22,Ω

)
.

Next, applying Lemma 1, we deduce for the second term on the left-hand side in (38)

∫

Ω

(B(um) − B(um−1))umdx ≥
∫

Ω

(Ψ (um) − Ψ (um−1))dx .

Therefore, summing over k = 1, . . . , m into (38), inserting the above equalities,
and multiplying by 2τ , we obtain

I∑

i=1

‖um
i ‖22,Ω + 2

∫

Ω

Ψ (um)dx + τ

m∑

k=1

(
I∑

i=1

(Li )#‖∇uk
i ‖22,Ω

+2(L I+1)#‖∇uk‖22,Ω + (L I+2)#‖∇φk‖22,Ω + 2γ#
′ ‖uk‖

,∂Ω

)

≤
I∑

i=1

‖u0
i ‖22,Ω + 2

∫

Ω

Ψ (u0)dx + τ

m∑

k=1

I∑

i=1

‖uk
i ‖22,Ω

+τ

m∑

k=1

(
K 2
2

I∑

i=1

(
1 + 1

(Li )#

)
‖h̄k

i ‖22,∂Ω + 2

′γ 1/(−1)
#

‖h̄k
I+1‖′

′,∂Ω

)

+τm
K 2
2 (P2 + 1)2

(L I+2)#
‖g‖22,Γ .

In particular, the discrete Gronwall inequality (cf. Lemma 3), with L = 1 and τ =
T /M < 1, implies that

I∑

i=1

‖um
i ‖22,Ω ≤ MR

M − T
exp[T ].
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Taking the maximum over m ∈ {1, . . . , M}, estimate (37) holds.
Thus, we can extract a subsequence, still denoted by (̃uM , φ̃M ), weakly convergent

to (u, φ) ∈ [L2(0, T ; V (Ω))]I × V(QT ) × L2(0, T ; V (∂Ω)). ��
Let us introduce some Rothe functions obtained by piecewise linear interpolation

with respect to time t .

Definition 3 We say that {(UM , B M )}M∈N is the Rothe sequence if

U M
i (x, t) = um−1

i (x) + t − tm−1,M

τ

(
um

i (x) − um−1
i (x)

)
, i = 1, . . . , I;

B M (x, t) = B(x, um−1(x)) + t − tm−1,M

τ

(
B(x, um(x)) − B(x, um−1(x))

)
,

for all (x, t) ∈ Ω × Im,M , m ∈ {1, . . . , M}.
The discrete derivative with respect to the time has the following characterization.

Proposition 3 Let Z̃M : [0, T [→ [L2(Ω)]I+1 be defined by

Z̃M (t) =
{
Z0 if t = 0
Zm if t ∈]tm−1,M , tm,M ] in Ω

with Z0 = (u0
1, . . . , u0

I , B(u0)), and the discrete derivative with respect to t at the
time t = tm,M being such that

Zm
i := um

i − um−1
i

τ
, i = 1, . . . , I; (39)

Zm
I+1 := B(um) − B(um−1)

τ
. (40)

Then there exists Z ∈ [L2(0, T ; (V (Ω))′)]I × L′
(0, T ; (V(Ω))′) such that

Z̃M⇀Z in [L2(0, T ; (V (Ω))′)]I × L′
(0, T ; (V(Ω))′). (41)

Proof Let {(UM , B M )}M∈N be the Rothe sequence in accordance with Definition 3.
For i = 1, . . . , I, by definition of norm, we have

‖∂tU
M
i ‖L2(0,T ;(V (Ω))′) = sup

v∈L2(0,T ;V (Ω))
‖v‖≤1

M∑

m=1

∫ mτ

(m−1)τ
〈Zm

i , v〉dt .

Applying Proposition 2 to equality (22) being rewritten as

∫

Ω

Zm
i vdx =

∫

∂Ω

h̄m
i vds −

I+1∑

j=1

∫

Ω

ai, j (um)∇um
j · ∇vdx −

∫

Ω

Fi (um)∇φm · ∇vdx,
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we conclude

‖∂tU
M
i ‖L2(0,T ;(V (Ω))′) ≤ C,

with C > 0 being a constant independent on M . Analogously, applying Proposition 2
to equality (23) we find

‖∂t B M‖L′ (0,T ;(V(Ω))′) = sup
v∈L(0,T ;V(Ω))

‖v‖≤1

M∑

m=1

∫ mτ

(m−1)τ
〈Zm

I+1, v〉dt ≤ C,

with C > 0 being a constant independent on M .
Hence, we can extract a subsequence, still denoted by Z̃M , weakly convergent to

Z ∈ [L2(0, T ; (V (Ω))′)]I × L′
(0, T ; (V(Ω))′). ��

In the following proposition, we state some strong convergences that allow, up to a
subsequence, a.e. pointwise convergences.

Proposition 4 Let (̃uM , φ̃M ) be according to Proposition 2. Under (10)–(14) and (16),
for a subsequence, there hold

ũM → u in L2(QT ), (42)

B (̃uM ) → B(u) in L1(QT ), (43)

as M tends to infinity. Also, ũM strongly converges to u in L2(ΣT ).

Proof To prove (42), we make recourse to the discrete version of the Aubin–Lions
theorem 2. Thanks to Proposition 2, we have

‖̃uM‖2L2(0,T ;X(Ω))
≤ T sup

t∈]0,T [

I∑

i=1

‖ũM
i ‖22,Ω + ‖ũM‖

,ΣT
+ ‖∇ũM‖22,QT

≤ C,

with C > 0 being a constant independent on M .
For a fixed t ∈]0, T [, there exists m ∈ {1, . . . , M} such that t ∈]tm−1,M , tm,M ]. For

i = 1, . . . , I, by applying (10) and (14) to (22)–(23), we deduce

‖um
i − um−1

i ‖V ′(Ω) ≤ τ sup
v∈V (Ω): ‖v‖=1

(‖h̄m
i ‖2,∂Ω‖v‖2,∂Ω

+
(
max(a#

i j )‖∇um‖2,Ω + max(F#
j )‖∇φm‖2,Ω

)
‖∇v‖2,Ω

)
.

While for i = I + 1, by applying (12), (26), (10), (14) and (16), we deduce

‖um − um−1‖V ′
(Ω) ≤ τ

b#
sup

v∈V(Ω): ‖v‖=1

(‖h̄m
I+1‖2,∂Ω‖v‖2,∂Ω

+
(
max(a#

i j )‖∇um‖2,Ω + max(F#
j )‖∇φm‖2,Ω

)
‖∇v‖2,Ω

+‖(γ #|um |−2 + γ1)u
m‖′,∂Ω‖v‖,∂Ω

)
.



552 L. Consiglieri

Applying Proposition 2, we find

τ−1
∫ T

τ

‖ũM
i − ũM−1

i ‖V ′(Ω)dt =
M∑

k=1

‖ũk
i − ũk−1

i ‖V ′(Ω) ≤ C;

τ−1
∫ T

τ

‖ũM − ũM−1‖V ′
(Ω)dt =

M∑

k=1

‖ũk − ũk−1‖V ′
(Ω) ≤ C,

with C > 0 being constants independent of M . Taking the Kondrachov–Sobolev
embedding H1(Ω) ↪→↪→ L2(Ω) and H1(Ω) ↪→↪→ L2(∂Ω), we conclude the proof
of strong convergences of ũM due to the Aubin–Lions theorem 2.

To prove the convergence (43), we will apply Lemma 2. Considering the weak
convergence of ũM established in Proposition 2 and estimate (37) to apply Lemma 2
it remains to prove that the condition (27) is fulfilled. Let 0 < z < T be arbitrary.
Since the objective is to find convergences, it suffices to take M > T /z, which means
τ < z. Thus, there exists k ∈ N such that kτ < z ≤ (k + 1)τ . Moreover, we may
choose M > k + 1 deducing

∫ T −z

0

∫

Ω

(B (̃uM (t + z)) − B (̃uM (t)))(̃uM (t + z) − ũM (t))dxdt ≤

≤
M−k∑

l=1

∫ (l+k)τ

(l−1)τ

∫

Ω

(B(ul+k) − B(ul))(ul+k − ul)dx . (44)

Let us sum up (23) for m = l + 1, . . . , l + k and multiply by τ , obtaining

∫

Ω

(B(ul+k) − B(ul))vdx ≤ Il
∂Ω + Il

Ω, (45)

where

Il
∂Ω := τ

l+k∑

m=l+1

∫

∂Ω

|(γ (um)um − h̄m
I+1)v|ds;

Il
Ω := τ

l+k∑

m=l+1

∫

Ω

∣∣∣∣∣∣

⎛

⎝
I+1∑

j=1

aI+1, j (um)∇um
j + FI+1(um)∇φm

⎞

⎠ · ∇v

∣∣∣∣∣∣
dx .

Applying the Hölder inequality and using Assumptions (16), (14) and (10), we
deduce

Il
∂Ω ≤

∫ (l+k)τ

lτ

(
γ #‖ũM‖−1

,∂Ω + γ1‖ũM‖′,∂Ω + ‖hI+1‖′,∂Ω

)
‖v‖,∂Ωdt;

Il
Ω ≤

∫ (l+k)τ

lτ

⎛

⎝
I+1∑

j=1

a#
I+1, j‖∇ũM

j ‖2,Ω + F#
I+1‖∇φM‖2,Ω

⎞

⎠ ‖∇v‖2,Ωdt .
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Making use of the Hölder inequality and estimate (37) in the above inequalities, we
conclude from (45)

∫

Ω

(B(ul+k) − B(ul))vdx ≤ ‖v‖,∂ΩC(kτ)1/ + ‖∇v‖2,ΩC
√

kτ .

Taking v = ul+k−ul in the above inequality, first gatheringwith (44), second, applying
the Hölder inequality and after estimate (37), we obtain

∫ T −z

0

∫

Ω

(B (̃uM (t + z)) − B (̃uM (t)))(̃uM (t + z) − ũM (t))dxdt

≤
M−k∑

l=1

∫ (l+k)τ

(l−1)τ

(
‖ul+k − ul‖,∂ΩC(kτ)1/ + ‖∇(ul+k − ul)‖2,ΩC

√
kτ
)

≤ C
(
(kτ)1/(kτ + τ)1/

′ + (kτ)1/2(kτ + τ)1/2
)

= C
(
21/

′ + 21/2
)

z,

which implies (27).
Thus, all hypotheses of Lemma 2 are fulfilled. Therefore, Lemma 2 assures that

B(uM ) strongly converges to B(u) in L1(QT ), which concludes the proof of (43). ��
Proposition 5 If Z satisfies Proposition 3, then

Z = ∂t (u, B(u)) in [L2(0, T ; (V (Ω))′)]I × L′
(0, T ; (V(Ω))′)

in the weak sense (cf. Remark 2).

Proof Let t ∈]0, T [ be arbitrary, but a fixed number. Thus, there existsm ∈ {1, . . . , M}
such that t ∈]tm−1,M , tm,M ]. For j = 1, . . . , I + 1, we have

∫ t

0
Z̃ M

j (z)dz =
m−1∑

k=1

∫ kτ

(k−1)τ
Zk

jdz +
∫ t

(m−1)τ
Zm

j dz

= τ

m−1∑

k=1

Zk
j + (t − (m − 1)τ )Zm

j in Ω.

From Definitions (39)–(40), we have

∫ t

0
Z̃M (z)dz =

{
U M

j (t) − u0
j for j = 1, . . . , I

B M (t) − B(u0) for j = I + 1
.

The bounded linear functional v ∈ L2(Ω) �→ ∫ t
0 (Z̃M (z), v)dz is (uniquely) rep-

resentable by the element
(
UM − u0, B M − B(u0)

)
from L2(Ω) due to the Riesz

theorem.
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Observing that by the application of the change of variables, we have

∫ T

0

∫

Ω

u(x, t − τ)v(x, t)dxdt =
∫ T −τ

−τ

∫

Ω

u(x, t)v(x, t + τ)dxdt,

for every u, v ∈ L2(QT ), we find, for i = 1, . . . , I,

J M
i :=

∫ T

0

∫

Ω

Z̃ M
i vdxdt = 1

τ

(∫ T

T −τ

∫

Ω

uM
i (x)v(x, t)dxdt

−
∫ T −τ

0

∫

Ω

ũM
i (x, t)�τ v(x, t)dxdt −

∫ 0

−τ

∫

Ω

u0
i (x)v(x, t + τ)dxdt

)
;

J M
I+1 :=

∫ T

0

∫

Ω

Z̃ M
I+1vdxdt = 1

τ

(∫ T

T −τ

∫

Ω

B(uM )(x)v(x, t)dxdt

−
∫ T −τ

0

∫

Ω

B (̃uM )(x, t)�τ v(x, t)dxdt −
∫ 0

−τ

∫

Ω

B(u0)(x)v(x, t + τ)dxdt

)
,

where �τ v(x, t) = v(x, t + τ) − v(x, t) for a.e. (x, t) ∈ QT .
The objective is to pass to the limitJ M

j , for j = 1, . . . , I+1, as M tends to infinity.
To this end, each term is separately evaluated.

First, the weak convergence (41) assures that

J M M→∞−→ 〈Z, v〉,

for all v ∈ [L2(0, T ; V (Ω))]I × L(0, T ; V(Ω)).
Considering that ‖v(T )‖2,Ω = 0, we evaluate the following term as follows:

1

τ

∣∣∣∣
∫ T

T −τ

∫

Ω

uM
i (x)v(x, t)dxdt

∣∣∣∣ ≤ ‖uM
i ‖2,Ω 1

τ

∫ T

T −τ

‖v‖2,Ωdt
M→∞−→ 0

with Proposition 2 ensuring the uniform boundedness of uM
i in L2(Ω). Considering

that ‖v(T )‖∞,Ω = 0 and that Proposition 4 ensures the uniform boundedness of
B(uM ) in L1(Ω), the similar following term is evaluated as follows:

1

τ

∣∣∣∣
∫ T

T −τ

∫

Ω

B(uM )(x)v(x, t)dxdt

∣∣∣∣ ≤ ‖B(uM )‖1,Ω 1

τ

∫ T

T −τ

‖v‖∞,Ωdt
τ→0−→ 0.

Thedifference quotient�τ /τ approximates the time derivative ∂t , that is,�τ v/τ →
∂tv a.e. in QT as τ tends to zero. Moreover, it verifies

‖�τ v‖L1(τ,T ;X) ≤ ‖∂tv‖L1(0,T ;X),
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with X being a Banach space, whenever ∂tv ∈ L1(0, T ; X). Thanks to Proposition 4,
up to a subsequence ũM → u and B(uM ) → B(u) a.e. in QT . Hence, there hold

1

τ

∫ T −τ

0

∫

Ω

ũM
i (x, t)�τ vi (x, t)dxdt

M→∞−→
∫ T

0

∫

Ω

ui∂tvidxdt,

1

τ

∫ T −τ

0

∫

Ω

B (̃uM )(x, t)�τ v(x, t)dxdt
M→∞−→

∫ T

0

∫

Ω

B(u)∂tvdxdt,

for all vi , v ∈ L2(0, T ; H1(Ω)) such that ∂tvi ∈ L2(QT ) and ∂tv ∈ L∞(QT ).
For v ∈ W 1,1(0, T ; L2(Ω)) ↪→ C([0, T ]; L2(Ω)), we have

1

τ

∫ 0

−τ

v(t + τ)dt = 1

τ

∫ τ

0
v(t)dt

τ→0−→ v(0) in L2(Ω).

Therefore, we find (20) and (21). ��

Finally, we are in a condition to establish the passage to the limit as time goes to
zero (M → +∞) in the Neumann–Robin elliptic problems (22)–(24).

Proposition 6 Let (u, φ) be in accordance with Proposition 2, then the pair solves
(7)–(9), i.e., it is the required solution to Theorem 1.

Proof Let (̃uM , φ̃M ) the corresponding Rothe sequence of the steady-state solutions
to the variational system (22)–(24). For each M ∈ N, it satisfies

∫ T

0
〈Z M

i , vi 〉dt +
I+1∑

j=1

∫

QT

ai, j (̃uM )∇ũM
j · ∇vidxdt

= −
∫

QT

Fi (̃uM )∇φ̃M · ∇vidxdt +
∫

ΣT

hM
i vidsdt, i = 1, . . . , I, (46)

∫ T

0
〈Z M , v〉dt +

I+1∑

j=1

∫

QT

aI+1, j (̃uM )∇ũM
j · ∇vdxdt +

∫

ΣT

γ (̃uM )̃uMvdsdt

= −
∫

QT

FI+1(̃uM )∇φ̃M · ∇vdxdt +
∫

ΣT

hM
I+1vdsdt, (47)

∫

QT

σ (̃uM )∇φ̃M · ∇wdx = −
I+1∑

j=1

∫

QT

G j (̃uM )∇ũM
j · ∇wdx +

∫ T

0

∫

Γ

gwds,

(48)

for all vi ∈ L2(0, T ; V (Ω)), v ∈ V(QT ), and w ∈ V (∂Ω).
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Applying Proposition 4, and the Krasnoselski theorem to the Nemytskii operators
A, F, G, and σ , we have

ai, j (̃uM )∇v −→ ai, j (u)∇v in L2(QT );
Fj (̃uM )∇v −→ Fj (u)∇v in L2(QT );
G j (̃uM )∇v −→ G j (u)∇v in L2(QT );
σ (̃uM )∇v −→ σ(u)∇v in L2(QT ) as M → +∞,

for every i, j = 1, . . . , I+ 1, and for all v ∈ H1(Ω). Thanks to Propositions 2, 3 and
5, we may pass to the limit in (46) and (48), as M tends to infinity, concluding that ui

and φ verify, respectively, (7), for i = 1, . . . , I, and (9).
Similar argument is valid to pass to the limit in (47), considering that

∇ (̃uM , φ̃M )⇀∇(u, φ) in L2(QT ), (49)

γ (̃uM )v → γ (u)v in L/(−1)(Γw×]0, T [), (50)

ũM⇀u in L(Γw×]0, T [), (51)

and that γ (̃uM )v strongly converges to γ (u)v in L2(Γ ×]0, T [), which corresponds
to the Robin-type boundary condition ( = 2). ��

6 Application example

The domain Ω stands for the representation of electrolysis cells (see Fig. 1). Elec-
trolysis of metals are well known for lead bromide, magnesium chloride, potassium
chloride, sodium chloride, and zinc chloride, to mention a few.

The phenomenological fluxes q, Ji and j are, respectively, the measurable heat flux
(in W m−2), the ionic flux of component i (in mol m−2 s−1), and the electric current
density (in C m−2 s−1), and they are explicitly driven by gradients of the temperature
θ , the molar concentration vector c = (c1, . . . , cI), and the electric potential φ, in the
form (up to some temperature- and concentration-dependent factors): [1,2,9,16,30,31]

q = −k(θ)∇θ − Rθ2
I∑

i=1

D′
i (ci , θ)∇ci − Π(θ)σ (c, θ)∇φ, (52)

Ji = −ci Si (ci , θ)∇θ − Di (θ)∇ci − ui ci∇φ, (i = 1, . . . , I), (53)

j = −αS(θ)σ (c, θ)∇θ − F
I∑

i=1

zi Di (θ)∇ci − σ(c, θ)∇φ. (54)

It includes the Fourier law (with the thermal conductivity k), the Fick’s law (with
the diffusion coefficient Di ), the Ohm’s law (with the electrical conductivity σ ), the
Peltier–Seebeck cross effect (with the Peltier coefficientΠ and the Seebeck coefficient
αS being correlated by thefirstKelvin relation), and theDufour–Soret cross effect (with
the Dufour coefficient D′

i and the Soret coefficient Si ). Hereafter the subscript i stands
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Table 1 Universal constants

F Faraday constant 9.6485 × 104 C mol−1

R Gas constant 8.314 J mol−1K−1

σSB Stefan–Boltzmann constant (for blackbodies) 5.67 × 10−8 W m−2K−4

for the correspondence to the ionic component i intervened in the reaction process.
Table 1 displays the universal constants R and F .

Every ionic mobility ui = zi Di F/(Rθ) satisfies the Nernst–Einstein relation
σi = Fzi ui ci , with σi = tiσ representing ionic conductivity, and ti is the trans-
ference number (or transport number) of species i . Indeed, the electrical conductivity
is a function of temperature and concentration vector as reported in the Debye and
Hückel theory [11]. After several approximation attempts [18], the most accepted
approximation is the Debye–Hückel–Onsager equation. The thermal conductivity of
the electrodes can significantly vary from sample to sample due to the variability in
manufacturing techniques, carbon paper grades and amounts of particular compounds.
The thermal conductivity is frequently estimated to be in the range 0.1–1.6W m−1

K−1, based on the material composition. In particular, the thermal conductivity of
nonmetallic liquids under normal conditions is much lower than that of metals and
ranges from 0.1 to 0.6W m−1 K−1, while the thermal conductivity of liquids may
change by a factor of 1.1 to 1.6, in the interval between the melting point and the
boiling point.

Let T > 0 be an arbitrary (but preassigned) time. From the conservation of energy,
the mass balance equations, and the conservation of electric charge, we derive, respec-
tively, in QT = Ω×]0, T [

ρcv
∂θ

∂t
+ ∇ · q = 0; (55)

∂ci

∂t
+ ∇ · Ji = 0; (56)

∇ · j = 0, (57)

where the density ρ and the specific heat capacity cv (at constant volume) are assumed
to be dependent on temperature and space variable. The absence of external forces,
assumed in (55)–(57), is due to their occurrence at the surface of the electrodes Γl

(l = a, c), i.e., for a.e. in ]0, T [,

q · nl = hC(θ − θl), −FziJi · nl = gi,l , −j · n = g, (58)

where hC denotes the conductive heat transfer coefficient, θl denotes a prescribed
surface temperature, gi,l may represent a truncated version of the Butler–Volmer
expression (cf. [8,9] and the references therein), and g denotes a prescribed surface
electric current assumed to be tangent to the surface for all t > 0.

The parabolic–elliptic system (55)–(57) is accomplished by (58) and the remaining
boundary conditions. For a.e. in ]0, T [, we consider
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q · n = hR|θ |−2θ − h on Γw, (59)

q · n = 0 on Γo, (60)

Ji · n = j · n = 0 on Γw ∪ Γo, (i = 1, . . . , I ). (61)

The radiative condition (59), with a general exponent  ≥ 2 [9] and hR denoting
the radiative heat transfer coefficient that may depend both on the space variable and
the temperature function θ , accounts, for instance, for the radiation behavior of the
heavy water electrolysis, namely the Stefan–Boltzmann radiation law if  = 5, i.e.,
hR = σSBε, and h = σSBαθ4w. The parameters, ε and α, represent the emissivity and
the absorptivity, respectively, θw denotes a prescribed wall surface temperature, and
σSB stands for Stefan–Boltzmann constant for blackbodies (cf. Table 1).

Definition 4 We call by the thermoelectrochemical (TEC) problem, the finding of the
temperature–concentration–potential triplet (θ, c, φ) satisfying (55)–(57), under (52)–
(54), accomplished with (58)–(61), and the initial conditions θ(0) = θ0 and c(0) = c0

in Ω .

We assume

(A1) The coefficients ρ and cv are assumed to be Carathéodory functions fromΩ×R

into R. Moreover, there exist b#, b# > 0 such that

b# ≤ ρ(x, e)cv(x, e) ≤ b#,

for a.e. x ∈ Ω , and for all e ∈ R. Although the specific heat coefficient of
most liquid metals for which data are available is negative, it is positive at high
temperatures, and often invariant with temperature.

(A2) The electrical and thermal conductivities, Peltier, Seebeck, Soret, Dufour, and
diffusion coefficients σ, k,Π, α, Si , D′

i , Di (i = 1, . . . , I) are Carathéodory
functions such that verify (15),

∃k#, k# > 0 : k# ≤ k(x, e) ≤ k#,

∃Π# > 0 : |Π(x, e)| ≤ Π#,

∃α# > 0 : |αS(x, e)| ≤ α#,

∃S#
i > 0 : |d Si (x, d, e)| ≤ S#

i ,

∃(D′
i )
# > 0 : Re2|D′

i (x, d, e)| ≤ (D′
i )
#,

∃D#
i > 0 : F |zi |Di (x, e) ≤ D#

i ,

∃(Di )# > 0 : Di (x, e) ≥ (Di )#,

for a.e. x ∈ Ω , and for all d, e ∈ R.
(A3) The transference coefficient ti ∈ L∞(Ω) is such that

∃t#i > 0 : 0 ≤ ti (x) ≤ F |zi |t#i , for a.e. x ∈ Ω.
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(A4) The boundary operator hR is a Carathéodory function from Γw × R to R such
that it verifies

∃γ#, γ
# > 0 : γ# ≤ hR(x, e) ≤ γ # for a.e. x ∈ Γw, ∀e ∈ R.

(A5) The boundary function hC is measurable from Γ ×]0, T [ into R satisfying

∃h#, h# > 0 : h# ≤ hC(x) ≤ h#, for a.e. x ∈ Γ .

(A6) g ∈ L2(Γ ), h ∈ L/(−1)(Γw×]0, T [), θa ∈ L2(Γa×]0, T [), and θc ∈
L2(Γc×]0, T [).

(A7) For each i = 1, . . . , I, gi,a and gi,c belong to L2(Γa×]0, T [) and L2(Γc×]0, T [),
respectively.

(A8) θ0, c0i ∈ L2(Ω), i = 1, . . . , I.

The main result of existence to the TEC problem is the following theorem.

Theorem 3 Let Assumptions (A1)–(A8) be fulfilled. In addition, suppose that the small-
ness conditions

(Di )# >
1

2

(
S#

i + (D′
i )
# + t#i σ # + D#

i

)
, i = 1, . . . , I, (62)

k# >
1

2

⎛

⎝
I∑

j=1

[
S#

j + (D′
j )
#
]

+ Π#σ # + α#σ #

⎞

⎠ , (63)

σ# >
1

2

⎛

⎝
I∑

j=1

(t#j σ
# + D#

j ) + (Π# + α#)σ #

⎞

⎠ (64)

hold. Then there exists at least one weak solution to the TEC problem in the following
sense:

∫ T

0
〈∂t ci , vi 〉dt +

∫

QT

Di (ci , θ)∇ci · ∇vidxdt =
∑

l=a,c

∫ T

0

∫

Γl

gi,lvidsdt

−
∫

QT

(
ci Si (ci , θ)∇θ + ti (Fzi )

−1σ(c, θ)∇φ
)

· ∇vidxdt, i = 1, . . . , I,

∫ T

0
〈ρ(θ)cv(θ)∂tθ, v〉dt +

∫

QT

k(θ)∇θ · ∇vdxdt +
∫ T

0

∫

Γ

hCθvdsdt

+
∫ T

0

∫

Γw

hR(θ)|θ |−2θvdsdt =
∑

l=a,c

∫ T

0

∫

Γl

hCθlvdsdt +
∫ T

0

∫

Γw

hvdsdt

−
∫

QT

⎛

⎝Rθ2
I∑

j=1

D′
j (c j , θ)∇c j + Π(θ)σ (c, θ)∇φ

⎞

⎠ · ∇vdxdt,
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∫

Ω

σ(c, θ)∇φ · ∇wdx =
∫

Γ

gwds

−
∫

Ω

⎛

⎝αS(θ)σ (c, θ)∇θ + F
I∑

j=1

z j D j (c j , θ)∇c j

⎞

⎠ · ∇wdx, a.e. in ]0, T [,

for all vi ∈ L2(0, T ; V (Ω)), v ∈ V(QT ), and w ∈ V (∂Ω) where the time derivative
is understood in accordance with Remark 2.

Proof The existence of weak solutions to the TEC problem is a consequence of The-
orem 1, under ui = ci , i = 1, . . . , I and uI+1 = θ . The explicit forms of the transport
coefficients are b = ρcv,

ai, j (c, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Di (ci , θ)δi, j if 1 ≤ i, j ≤ I

ci Si (ci , θ) if 1 ≤ i ≤ I, j = I + 1

Rθ2D′
j (c j , θ) if i = I + 1, 1 ≤ j ≤ I

k(θ) if i = I + 1, j = I + 1,

Fj (c, θ) =
{

t j (Fz j )
−1σ(c, θ) if 1 ≤ j ≤ I

Π(θ)σ (c, θ) if j = I + 1,

G j (c, θ) =
{

Fz j D j (c j , θ) if 1 ≤ j ≤ I

αS(θ)σ (c, θ) if j = I + 1.

Assumption (A1) is exactly (H2). Assumptions (A2) and (A3) imply (H1) with

F#
j =

{
t#j σ

# if 1 ≤ j ≤ I
Π#σ # if j = I + 1

G#
j =

{
D#

j if 1 ≤ j ≤ I
α#σ # if j = I + 1.

Assumption (A2) implies (H4) and (H3) with

(ai )# =
{

(Di )# if 1 ≤ i ≤ I
k# if i = I + 1

a#
i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D#
i /(F |zi |)δi, j if 1 ≤ i, j ≤ I

S#
i if 1 ≤ i ≤ I, j = I + 1

(D′
j )
# if i = I + 1, 1 ≤ j ≤ I

k# if i = I + 1, j = I + 1.
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Moreover, considering in Sect. 4

(Li )# = (Di )# − 1

2

(
S#

i + (D′
i )
# + F#

i + G#
i

)
, i = 1, . . . , I,

(L I+1)# = k# − 1

2

⎛

⎝
I∑

j=1

[
S#

j + (D′
j )
#
]

+ F#
I+1 + G#

I+1

⎞

⎠ ,

(L I+2)# = σ# − 1

2

I+1∑

j=1

(
F#

j + G#
j

)
,

the smallness conditions (18)–(19) read (62)–(63).
Finally, Assumptions (A4) and (A5) fulfill (H5) with

γ (x, e) =
⎧
⎨

⎩

hC(x) if x ∈ Γ

hR(x, e)|e|−2 if x ∈ Γw
0 otherwise

,

for all e ∈ R, andAssumptions (A5)–(A8) fulfill the remaining hypothesis of Theorem
1. ��
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