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Abstract
We study a class of Poisson tensors on a fibered manifold which are compatible
with the fiber bundle structure by the so-called almost coupling condition. In the
case of a 5-dimensional orientable fibered manifolds with 2-dimensional bases, we
describe a global behavior of almost coupling Poisson tensors and their singularities
by using a bigraded factorization of the Jacobi identity. In particular, we present some
unimodularity criteria and describe a class of gauge type transformations preserving
the almost coupling property.

Keywords Poisson structures · Fiber bundles · Almost coupling tensors · Poisson
connections

Mathematics Subject Classification 53D17 · 53C12 · 70G45

1 Introduction

Recall that a Poisson manifold consists of a smooth manifold M equipped with a
Poisson structure, that is, a Lie bracket {, } on the space of smooth functionsC∞

M which
is compatible with the pointwise product by the Leibniz rule. A Poisson structure can
be given by a bivector field Π ∈ Γ ∧2 TM , called a Poisson tensor, by the formula
{ f , g} = Π(d f , dg). The Jacobi identity for the bracket {, } is equivalent to the
nonlinear equation [[Π,Π ]] = 0 for the Schouten bracket. A singular point p of
the Poisson structure is characterized by the condition that rankΠ is not constant
around p. The Hamiltonian vector fields X f = id f Π , f ∈ C∞

M span a singular
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integrable distribution which induces a partition of M into immersed submanifolds
called symplectic leaves.

We are interested in Poisson manifolds equipped with additional structures, namely
fiber bundle structures. Fibered manifolds appear as natural phase spaces for various
physical models as well as some problems in Poisson geometry (see, for example,
[1,2,5,14,15,22]). In this article, we present a generalized version of the coupling
method for Poisson structures [23] on fiber bundles.

We study a class of Poisson tensors Π on a fibered manifold M over a base B
which are compatible with the fiber bundle structure by the condition: the mixed term
ofΠ in the bigraded decomposition relative to an Ehresmann connection (a horizontal
subbundle) vanishes and Π becomes the sum of an horizontal and a vertical bivector
fields on M , Π = ΠH + ΠV . Such bivector fields on M are called the almost cou-
pling Poisson structures [21] and generalize the class of coupling Poisson structures
naturally arising in the study of Poisson geometry around symplectic leaves [23]. A
coupling Poisson tensor Π on a fibered manifold M is characterized by a horizon-
tal nondegeneracy condition and has the following feature: the Jacobi identity for Π

admits a bigraded factorization which leads to the four equations called the integra-
bility conditions having a natural geometric interpretation. Our goal is to investigate
the global behavior of compatible Poisson tensors on fibered manifolds in the almost
coupling case with further applications to the linearization problem and normal forms
[5,13,23] and the method of averaging [1,22]. In particular, one of our motivations
comes from the question on the existence of almost coupling neighborhoods for Pois-
son submanifolds. The answer to this question is positive [23] in the case of symplectic
leaves which present a “simplest” type of Poisson submanifolds.

Our approach is based on the following key observation. The rank of the horizontal
componentΠH of a bivector fieldΠ in a bigraded decomposition is independent of the
choice of an Ehresmann connection. This gives rise to an intrinsic decomposition of the
fiberedmanifoldM = ∪k

i=0Mi (disjoint union), where k = dim B andMi is the subset
of all points at which the rank of the horizontal tensor ΠH equals i ≤ k. In particular,
MΠ := Mk is an open subset in M , consisting of the points of maximal horizontal
rank of Π . An almost coupling Poisson tensor Π has a “good” behavior on MΠ in
the sense that the restriction Π |MΠ is a coupling tensor and inherits a unique Poisson
connection. The question is to describe how the tensor field Π in the complement
M\MΠ is glued with its coupling part as it crosses the boundary ∂MΠ which consists
of singular points of Π . We address this question in the case of almost coupling
Poisson tensors on 5-dimensional fibered manifolds with 2-dimensional bases. Under
some orientability assumptions, we give a complete characterization of such “toy”
Poissonmodels by using the bigraded tensorial calculus and theEhresmann connection
technique. In particular, we present some unimodularity criteria and describe a class
of symmetries of the integrability conditions by using the gauge type transformations
for Poisson structures [3,18]. Moreover, we illustrate these results by considering
the trivial fiber bundles and constructing deformed Poisson structures on the product
(2 + 3)-manifolds.

Note that various results on low-dimensional Poisson manifolds in dimensions 2,
3 and 4 were obtained, for example, in [4,7,9–12,17]. By using our results about
5-dimensional Poisson manifolds, in the context of the problem on the existence of
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almost coupling neighborhoods, mentioned above, it will be interesting to study the
case of singular two-dimensional Poisson submanifolds.

The paper is organized as follows: In Sect. 2, we briefly recall the basic facts about
Ehresmann connections on fiber bundles. In Sect. 3, some general properties of almost
coupling Poisson structures are formulated. In Sect. 4, we present our main results
and give a complete description of almost coupling Poisson tensors on 5-dimensional
orientable fibered manifolds with 2-dimensional bases. Section 5 contains a global
criterion of unimodularity for such class of Poisson tensor which extends the results
of [16] to the almost coupling case. In Sect. 6, we describe a method of construction
of almost coupling Poisson tensors by using the gauge transformations. In Sect. 7,
we present some coordinate formulas and illustrate the general results in the case of
trivial bundles.

2 Preliminaries

Here we recall some basic facts about Ehresmann connections on fiber bundles which
will be used in our bigraded calculus on fibered manifolds (for more details, see also
[14,16,21,23]).

Let π : M → B be a fiber bundle (a surjective submersion). Denote by V :=
ker dπ ⊂ TM the vertical subbundle and by V

◦ := AnnV ⊂ T∗M its annihilator.
By an Ehresmann connection on the fiber bundle, we mean a horizontal subbundle
H ⊂ TM , that is, a complementary subbundle to the vertical one,

TM = H ⊕ V, (2.1)

This induces the dual decomposition

T∗M = V
◦ ⊕ H

◦. (2.2)

Alternatively, one can define an Ehresmann connection as a vector-valued 1-form
γ ∈ Ω1(M; V) (i.e. a vector bundlemorphism γ : TM → V) that satisfies γ |V = idV.
Then, given a horizontal subbundle H, the connection form is defined by the natural
projection γ = pr2 : TM → V along H. On the contrary, given a γ we write
H := ker γ .

Given an Ehresmann connection γ , a horizontal lift of a vector field u ∈ X̄B

is the unique horizontal vector field horγ u ∈ Γ H which is π -related to u. More-
over, the horizontal lift of every k-vector field ψ on B is defined as the horizontal
k-vector field horγ ψ ∈ Γ ∧k

H satisfying the condition horγ ψ (π∗α1, . . . , π
∗αk) =

π∗(ψ(α1, . . . , αk)), for α1, . . . , αk ∈ Γ T∗B. The curvature of the connection γ is a
vector valued 2-form Curvγ ∈ Ω2(B; V) on the base B given by

Curvγ (u1, u2) := [horγ u1, hor
γ u2] − horγ [u1, u2] ∈ Γ V,

for u1, u2 ∈ X̄B . As is known the horizontal subbundle H is integrable if and only if
the connection γ is flat, Curvγ = 0.
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Fix a local coordinate system (xi , ya) on the total space M , where x = (xi ) are
coordinates on the base and y = (ya) are coordinates along the fiber of π . Then,

γ = (dya + γ a
i dxi ) ⊗ ∂

∂ ya and horγi := horγ
(

∂
∂xi

)
= ∂

∂xi
− γ a

i
∂

∂ ya , the summation

on repeated indices will be understood. So, we have the following local descriptions
of the horizontal and vertical distributions:

H = span
{
horγ1 , . . . , horγn

}
, V = span

{
∂

∂ y1
, . . . , ∂

∂ yr

}
.

Here n = dim B and r = rank π . Taking the dual basis {dxi , ηa} of {horγi , ∂
∂ ya },

where ηa := γ a
i dxi + dya , we also get

V
◦ = span

{
dx1, . . . , dxn

}
, H

◦ = span
{
η1, . . . , ηr

}
.

The curvature form has the following coordinate representation: Curvγ = 1
2 C

a
i j dx

i ∧
dx j ⊕ ∂

∂ ya , where

Ca
i j = ∂γ a

i

∂x j
− ∂γ a

j

∂xi
− γ b

j
∂γ a

i

∂ yb
+ γ b

i

∂γ a
j

∂ yb
(2.3)

Decompositions (2.1) and (2.2) give the bigrading for multivector fields and differ-
ential forms on M . We say that a tensor field on M is of bidegree (p, q) if this field is
locally generated by the elements of the form horγi1 ∧ · · · ∧ horγi p ∧ ∂

∂ ya1 ∧ · · · ∧ ∂
∂ yaq .

Therefore, the indices p and q denote the degrees in the direction of H and V, respec-
tively. Each tensor field A on M has a γ -dependent bigraded decomposition whose
component of bidegree (p, q) will be denoted by Ap,q . The same bigrading argument
is applied to differential forms on E , in particular, a form of bidegree (p, q) is a linear
combination of basic elements dxi1 ∧ · · · ∧ dxi p ∧ ηa1 ∧ · · · ∧ ηaq . Moreover, we say
that a linear operator, acting on the space of tensor fields or differential forms, has
a bidegree (t, s) if it sends (p, q)-elements to elements of bidegree (p + t, q + s).
For example, the exterior differential d for forms on M has the following bigraded
decomposition [21]: d = d1,0 + d2,−1 + d0,1. Here dp,q = dγ

p,q is a γ -dependent
operator of bidegree (p, q). In particular, the term of bidegree (2,−1) can be easily
derived by differentiating the basic forms and using the identity

dηa = − 1
2 C

a
i j dx

i ∧ dx j − ∂γ a
i

∂ yb
dxi ∧ ηb.

It follows that d2,−1 = 0 if and only if the connection γ is flat. The coboundary
condition for d imply the relations: d21,0 +d2,−1 ◦d0,1 +d0,1 ◦d2,−1 = 0, d1,0 ◦d0,1 +
d0,1 ◦ d1,0 = 0 and d20,1 = 0.

It is also useful to note that two Ehresmann connections γ and γ̃ on M are related
by

γ̃ = γ − Ξ, (2.4)
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where the vector valued 1-form Ξ ∈ Ω1(M; TM) satisfies the following conditions:

ImΞ ⊆ V ⊆ kerΞ. (2.5)

It follows that the horizontal subbundle H̃ associated with γ̃ is given by H̃ = (id +
Ξ)(H). In other words, relations (2.4) means that the set of all connections on M is
an affine space for the vector space of vector-valued 1-forms Ξ satisfying (2.5).

3 Almost coupling Poisson tensors

Let π : M → B be a fiber bundle. Given a bivector field Π ∈ Γ ∧2 TM , let us pick
an arbitrary Ehresmann connection γ on M and consider the corresponding bigraded
decomposition:

Π = Π2,0 + Π1,1 + Π0,2 (3.1)

Here Π2,0 ∈ Γ ∧2
H and Π0,2 ∈ Γ ∧2

V are the horizontal and vertical components,
respectively. It is clear that

rankΠ2,0 ≤ rank H = dim B.

Under varying the connection γ , the components in decomposition (3.1) are changing
by some rules according to (2.4). But it is easy to see that the rank of the horizontal
part regarded as a function rankΠ2,0 : M → Z does not depend on the choice of γ .
Indeed, if γ̃ = γ − Ξ is another connection, then the transition rule of the horizontal
part of Π is given by the following formula:

Π̃
�
2,0 = (

idTM + Ξ
) ◦ Π

�
2,0 ◦ (

idT∗M + Ξ∗).

Since the morphism idTM + Ξ is ivertible, it follows that rankΠ2,0 = rank Π̃2,0.
As a consequence, the open subset

MΠ := {p ∈ M
∣∣ rank p Π2,0 = dim B} (3.2)

in M consisting of all point p ∈ M at which the rank of the horizontal bivector field
is maximal, is also γ -independent and hence represents an intrinsic characteristic of
Π . Here we suppose that the dimension of B is even.

We are interested in the following class of compatible bivector fields on the fibered
manifold M [21,23]:

Definition 3.1 A bivector field Π ∈ Γ ∧2 TM is said to be an almost coupling tensor
if there exists an Ehresmann connection γ on M such that the mixed term in the
γ -dependent decomposition (3.1) vanishes.

Π1,1 = 0, (3.3)
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or, explicitly, Π(α, β) = 0, for all α ∈ V
◦ and β ∈ H

◦.

Equivalently, condition (3.3) can be reformulated as follows: there exists a hori-
zontal subbundle H ⊂ TM such that

Π�
(
V

◦) ⊆ H. (3.4)

HereΠ� : T∗M → TM is a vector bundlemorphism given by α �→ iαΠ . In particular,
Π is called a coupling bivector field if

H = Π�
(
V

◦) (3.5)

is a horizontal subbundle. Therefore, in the coupling case, there exists a unique Ehres-
mann connection γ on M defined by (3.5) which provides the property (3.4) for the
bivector field Π .

Recall that [21,23] a coupling tensor Π on M is uniquely determined by the
so-called geometric data (γ, σ,Π0,2), consisting of the Ehresmann connection γ ,
a horizontal 2-form σ ∈ Γ ∧2

V
◦, called the coupling form and the vertical compo-

nent Π0,2 of Π . By the horizontal nondegeneracy of σ , the horizontal component of
Π is recovered by the formula iiαΠ2,0σ = −α, for all α ∈ V

◦.
Note that the (almost) coupling condition is natural with respect to the restriction

of bivector fields to open subsets in M .

Lemma 3.2 For a bivector field Π ∈ Γ ∧2 TM, its restriction to the open subset
MΠ �= ∅ is a coupling tensor.

Proof Let us show that for each p ∈ MΠ , the bivector field Π satisfies the coupling
property which splits into the following conditions:

Π�
(
V

◦
p

) ∩ Vp = {0} and dimΠ�
(
V

◦
p

) = dim B. (3.6)

Starting with decomposition (3.1) with respect to a fixed connection γ , we define
a “new” Ehresmann connection γ̃ on MΠ by formula (2.4), where a vector valued
1-formΞ is given by the following relation:Π�

1,1|V◦
p

= (
Ξ ◦Π

�
2,0

)|V◦
p
. It follows that

the mixed component in the decomposition (3.1) relative to γ̃ is zero and hence Π

is almost coupling in MΠ via γ̃ . This implies the first condition in (3.6). The second
one follows form the definition of MΠ . ��
Definition 3.3 The open subset MΠ in the fibered manifold M will be called the
coupling domain of the bivector field Π ∈ Γ ∧2 TM .

Now, given an almost coupling tensor Π via an Ehresmann connection γ on the
fibered manifold M , we have the decomposition

M = MΠ ∪ ∂MΠ ∪ Int
(
M\MΠ

)
.

Weobserve that theEhresmann connection γ is uniquely defined byΠ in the closure
MΠ of the coupling domain which coincides with the whole M in the case when MΠ
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is dense in M . But, in general, γ is not fixed in the interior of the complement M\MΠ .
Note also that each point p of the boundary ∂MΠ is a singular point ofΠ in the sense
that rankΠ is not locally constant around p. Clearly, Π is a coupling tensor on M if
and only if MΠ = M .

The next point is to study the set of almost coupling Poisson tensors, that is,
the almost coupling bivector fields Π = Π2,0 + Π0,2 satisfying the Jacobi iden-
tity [[Π,Π ]] = 0, where [[, ]] denotes the Schouten bracket for multivector fields on
M [20]. Geometrically, the Jacobi identity means that the characteristic distribution

CΠ := Π�
(
T∗M

) = Π
�
2,0

(
V

◦) ⊕ Π
�
0,2

(
H

◦), (3.7)

is integrable in the sense of Sussman-Stefan and gives rise to the symplectic foliation
(S,�).

By using the bigrading arguments and the properties of the Schouten bracket, one
can show that the Jacobi identity for Π splits into the following equations for the
horizontal Π2,0 ∈ Γ ∧2

H and vertical Π0,2 ∈ Γ ∧2
V components:

[[Π2,0,Π2,0]]3,0 = 0, (3.8)

[[Π2,0,Π2,0]]2,1 + 2[[Π2,0,Π0,2]]2,1 = 0, (3.9)

[[Π2,0,Π0,2]]1,2 = 0, (3.10)

[[Π0,2,Π0,2]] = 0. (3.11)

In particular, the last equality is just the Jacobi identity for the vertical component
which says that Π0,2 is a Poisson bivector field. It follows from (3.7) that CΠ is
the sum of the characteristic distribution of the vertical Poisson tensor Π0,2 and the

horizontal factor Π
�

2,0(V
◦) ⊆ H which is not necessarily integrable, in general. This

happens in the flat case [23].

Proposition 3.4 In the coupling domain MΠ of an almost coupling Poisson tensor Π ,
the following conditions are equivalent:

(i) the curvature of γ is zero, Curvγ = 0;
(ii) the horizontal bivector field Π2,0 is a Poisson tensor;
(iii) the horizontal Π2,0 and vertical Π0,2 components of Π form a Poisson pair.

We have the following consequence of Proposition 3.4: Let M be a 3-dimensional
fibered manifold over 2-manifold B and Π an almost coupling Poisson tensor on M
via a connection γ . Then, Π is a horizontal bivector field and hence in the coupling
domain MΠ = {p ∈ M | rank p Π = 2}, the connection γ is necessarily flat.

The symplectic foliation of an almost coupling Poisson tensor Π is described as
follows: Let (S,�) and (L, τ ) be two symplectic leaves through a point p ∈ MΠ

associated with the Poisson structures Π and Π0,2, respectively. Then, TpS = Hp ⊕
TpL and for symplectic form we have �p = σp ⊕ τp, where σ is the coupling form
ofΠ |MΠ . If p approaches the boundary ∂MΠ , then the first term in this sum becomes
singular. Moreover, one can show that L ⊂ S ⊂ MΠ and hence the coupling domain
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is invariant relative to the Hamiltonian flows. This follows from the property that the
boundary ∂MΠ consist of singular points of Π .

Recall that a immerse submanifold N ⊂ M is said to be a Poisson submanifold
of (M,Π) if CΠ |N ⊆ TN . In this case, there exists a unique Poisson structure on N
such that the inclusion N ↪→ M is a Poisson map. Its clear that each symplectic leaf
of Π is a Poisson submanifold.

By using (3.7) we derive the following fact:

Proposition 3.5 Let Π be an almost coupling Poisson tensor on M via a horizontal
subbundle H and s : B → M a smooth section of π . Then, s(B) ⊂ M is a Poisson
submanifold of (M,Π) if and only if

Π
�
2,0

(
V

◦|s(B)

) ⊆ T
(
s(B)

)
, (3.12)

Π
�
0,2|s(B) = 0. (3.13)

Proof Note that T(s(B)) ∩ V = {0}. This together with

Π�
(
T∗
s(B)M

) = Π�
(
(V◦ ⊕ H

◦) |s(B)

) = Π
�
2,0

(
V

◦|s(B)

) + Π
�
0,2

(
H

◦|s(B)

)
,

implies that Π�
(
T∗
s(B)M

) ⊆ T(s(B)) is equivalent to conditions (3.12) and (3.13). ��

So, condition (3.12) means that Π2,0 is tangent to s(B) and hence the restriction
Π2,0|s(B) gives the Poisson structure on s(B). It is clear that condition (3.12) holds if
H|s(B) ⊆ T

(
s(B)

)
.

For an open subset U ⊆ M , the space of Casimir functions of a Poisson tensor Π

restricted to U is denoted by Casim(U ,Π) := {h ∈ C∞
U

∣∣ idhΠ = 0}. The almost
coupling property of Π implies the following relation between the Casimir functions
of Π and its vertical part Π0,2:

Casim(U ,Π) ⊆ Casim(U ,Π0,2).

Note also that π∗C∞
B ⊆ Casim(M,Π0,2).

We conclude this section with some remarks on the natural symmetry group of
transformations which leave invariant the set of all almost coupling Poisson structures
on a given fiber bundle π : M → B. Let g : M → M be a fiber preserving
diffeomorphism on the total space, that is, g descends to a diffeomorphism g0 : B →
B on the base, π ◦ g = g0 ◦ π . The key property is that the tangent map dg :
TM → TM leaves invariant the vertical subbundle V, (dpg)(Vp) = Vg(p). As a
consequence, the pull-back by g of a Ehresmann connection γ on M is well defined
as (g∗γ )(X) = g∗(γ (g∗X)), for X ∈ X̄M . Then, we have the following fact [21,23]:
let Π = Π2,0 + Π0,2 be an almost coupling Poisson structure via a connection γ and
g : M → M be a fiber preserving diffeomorphism. Then, the pull-back g∗Π is again
an almost coupling Poisson structure via the connection g∗γ , which is the sum of the
bigraded components

(
g∗Π

)
2,0 = g∗Π2,0 and

(
g∗Π

)
0,2 = g∗Π0,2.
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4 The case of (2+ 3)-fiberedmanifolds

In this section, we focus on the detailed study of the further properties of almost
coupling Poisson structure in the case of 5-dimensional fibered manifolds with 2-
dimensional bases.

Let M be a 5-dimensional orientable manifold equipped with a volume form Ω .
Assume that M is a fibered manifold in the sense that we are given a fiber bundle
π : M → B over an oriented 2-manifold B carrying an area (symplectic) form ω.
Therefore, the fibers of π are 3-dimensional orientable manifolds and rank V = 3.

Suppose also that we have a triple (γ, κ, β) consisting of an Ehresmann connection
γ ∈ Ω1(M; V), a smooth function κ ∈ C∞

M and a vertical 1-form β ∈ Γ H
◦. Here

H = ker γ ⊂ TM is the horizontal subbundle of rank 2.
Denote the pull-back of the area form ω to M by

ΩH = π∗ω ∈ Γ ∧2
V

◦.

Then, there exists a unique nowhere vanishing 3-form ΩV ∈ Γ ∧3
H

◦ of bidegree
(0, 3) such that

Ω = ΩH ∧ ΩV. (4.1)

Moreover, there exist nowhere vanishing “dual” tensor fields QH ∈ Γ ∧2
H and

QV ∈ Γ ∧3
V such that

iQHΩH = 1 and iQVΩV = 1. (4.2)

Here the interior product of multivector fields and forms is defined by the rule iX∧Y =
iX ◦ iY , for any X , Y ∈ X̄M . We emphasize that the elements ΩV and QH are γ -
dependent. Moreover, it follows from (4.2) that QH is the γ -horizontal lift of a bivector
field on the base,

QH = − horγ ψ, (4.3)

whereψ ∈ Γ ∧2 TB is the nondegenerate Poisson tensor of the symplectic 2-manifold
(B, ω), iψω = −1.

Now, let us associate to the triple (γ, κ, β) the following 2-tensor field on M :

Π = κ horγ ψ + Pβ (4.4)

Here, the vertical bivector field

Pβ := −iβQV ∈ Γ ∧2
V, (4.5)

is independent of γ and uniquely determined by the restriction (a fibered 1-form)
β = β|V ∈ Γ V

∗. Its clear thatΠ is an almost coupling bivector fieldwith components
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Π2,0 = −κ QH and Π0,2 = Pβ in the γ -bigraded decomposition. Introduce also the
following γ -dependent forms:

θ := −iQVd1,0Ω
V ∈ Γ V

◦ (4.6)

and

� := iQHd2,−1Ω
V ∈ Γ ∧2

H
◦. (4.7)

One can show that these forms are solutions to the equations

d1,0Ω
V = θ ∧ ΩV and d2,−1Ω

V = ΩH ∧ �. (4.8)

We arrive at the following result:

Theorem 4.1 The almost coupling bivector field Π in (4.4) is a Poisson tensor if and
only if the triple (γ, κ, β) satisfies the following integrability conditions:

d0,1β ∧ β = 0, (4.9)

κ
(
d1,0β − θ ∧ β

) = 0, (4.10)

d0,1κ ∧ β − κ2� = 0. (4.11)

The proof of this theorem is a direct verification of the fact that relations (3.8)–
(3.11), representing the bigraded factorization of the Jacobi identity for Π (4.4), are
equivalent to Eqs. (4.9)–(4.11). Here we use some properties of the Schouten bracket
and identities (4.8). Notice that the relation (3.8) holds automatically because of the
dimension argument.

In particular, Eq. (4.9) for β represents the Jacobi identity for the vertical bivector
field Pβ (4.5) which induces the Poisson fiber bundle (M

π→ B, Pβ). The corre-
sponding fiberwise Poisson structure is obtained under the restriction of Pβ to the
3-dimensional fibers of π . The restriction β = β|V ∈ Γ V

∗ is said to be a fibered
Poisson 1-form and satisfies the condition dVβ ∧ β̄ = 0 involving the foliated de
Rham differential dV along the fibers of π . Notice that the equation (4.9) is invariant
under the transformation β �→ f β, for arbitrary f ∈ C∞

M . This is a fiber bundle
version of the well-known property of the conformal invariance of the Jacobi identity
in the 3-dimensional case [11].

A setup (γ, κ, β) satisfying Eqs. (4.9)–(4.11) will be called a Poisson triple relative
to the pair (Ω,ω).

Remark 4.2 Under changing the volume form Ω̃ = mΩ , wherem is a positive smooth
function on M , a Poisson triple (γ, κ, β) relative to (Ω,ω) is transformed to the
Poisson triple

(
γ̃ = γ, β̃ = mβ, κ̃ = κ

)
relative to (Ω̃, ω), which is a solution to

Eqs. (4.9)–(4.11) with θ̃ = θ + 1
m d1,0m and �̃ = m�. ��

In the flat case, some solutions toEqs. (4.9)–(4.11) can be described in the following
way:
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Proposition 4.3 Let (M
π→ B, Pβ) be a flat Poisson fiber bundle over a symplectic

2-dimensional base (B, ω), which is equipped with a flat Poisson connection γ . Then,
for any Casimir function κ0 ∈ Casim(M; Pβ), the triple (γ, κ0, β) is Poisson and
induces the almost coupling Poisson tensor Π = κ0 horγ ψ + Pβ .

Proof The condition for the connection to be Poisson is equivalent to the relation
d1,0β + β ∧ θ = 0 on M, which implies (4.10). The flatness of γ means that � = 0
and the equality d0,1κ0 ∧ β = 0 holds for any Casimir function κ0 of Pβ . This proves
(4.11). ��

We have also the converse to Theorem 4.1 which says that each almost coupling
Poisson structure Π on the fibered manifold 5-manifold M is represented by (4.4).

Theorem 4.4 Every almost coupling Poisson tensorΠ = Π2,0+Π0,2 via a horizontal
subbundle H is of the form (4.4), where the Poisson triple (γ, κ, β) is given by

γ = pr2 : TM H→ V, κ = −iΠ2,0π
∗ω, β = −iΠ0,2Ω

V.

Therefore, the assignment (γ, κ, β) �→ Π is surjective. But it is not one-to-one.
Indeed, consider an arbitrary connection γ on M and a vertical 1-form β ∈ Γ H

◦
satisfying the fiberwise Jacobi identity. Then, the triple (γ, 0, β) is a solution to
Eqs. (4.9)–(4.11) which gives the vertical Poisson tensor Π = Pβ . Here is another
example (see also Sect. 7).

Example 4.5 Let R
5 = R

2
x × R

3
y → R

2
x be a trivial fiber bundle and

Ω = dx1 ∧ dx2 ∧ dy1 ∧ dy2 ∧ dy3

the Euclidean volume form. Consider a setup (γ, κ, β) consisting of γ = (Ξa
i dx

i +
dya) ⊗ ∂

∂ ya , κ(y) = χ(‖ y ‖2) and β = y · dy. Here χ ∈ C∞
R

with suppχ = [0, 1]
is fixed and Ξa

i = Ξa
i (x, y) are arbitrary C∞-functions on R

5 such that

suppΞa
i ∩ (

R
2
x × {‖ y ‖≤ 1}) = ∅. (4.12)

Then, one can check that (γ, κ, β) is a Poisson triple which induces an almost coupling
Poisson tensor on R

5 independent of the choice of γ satisfying (4.12). ��
Now, let us describe some properties of the almost coupling Poisson tensor Π in

(4.4) associated with a given Poisson triple (γ, κ, β). In terms of the setup (γ, κ, β),
the Poisson bracket defined by Π can be written as follows:

{ f , g} = κ
d1,0 f ∧ d1,0g

π∗ω
+ d0,1 f ∧ d0,1g ∧ β

ΩV .

The second termon the right-hand side of this equality represents thePoissonbracket of
Π0,2 = Pβ which will be denoted by {, }β . The Hamiltonian vector field XF = idFΠ
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of a function F ∈ C∞
M has the bigraded decomposition: XF = (XF )1,0 + (XF )0,1,

where

(
XF

)
1,0 = κ id1,0F horγ ψ,

(
XF

)
0,1 = idF Pβ = −id0,1F∧βQV. (4.13)

It follows that the characteristic distribution CΠ of Π is generated by vector fields
κ horγ u and idF∧βQV, for any u ∈ X̄B , F ∈ C∞

M . The space of Casimir functions
Casim(M,Π) consists of all c ∈ C∞

M such that

κ d1,0c = 0 and d0,1c ∧ β = 0. (4.14)

The second condition just determines the space of Casimir functions of the vertical
Poisson structure Pβ .

Denote byZ(κ) andZ(β) the zero sets of the function κ and the 1-form β, respec-
tively. It is clear that Z(β) is also the zero set of Pβ . Moreover, the coupling domain
of Π is just MΠ = M\Z(κ) and we have the following decomposition:

M = MΠ ∪ ∂
(
Z(κ)

) ∪ Int
(
Z(κ)

)
. (4.15)

So, the rank of Π is zero in Z(κ) ∩ Z(β) and

{rankΠ = 2} = (
Z(κ) ∪ Z(β)

)\(Z(κ) ∩ Z(β)
)
,

{rankΠ = 4} = M\(Z(κ) ∪ Z(β)
)
.

Therefore, the characteristic foliation S of Π consists of symplectic leaves of dimen-
sion 0, 2, 4. In particular, there are two kinds of 2-dimensional symplectic leaves. If
κ(p) = 0 and βp �= 0, then the symplectic leaf Sp of Π through p ∈ M coincides
with the symplectic leaf of the restricted vertical Poisson structure Pβ |Mb on the 3-
dimensional fiber Mb of π over b = π(p). If κ(p) �= 0 and βp = 0, then by (4.11)
at each point q ∈ Sp, the curvature of the connection γ vanishes and the tangent space
to Sp coincides with the horizontal plane Hq . The corresponding symplectic form is
the pull-back of π∗ω/κ to Sp. Notice also that the coupling domain MΠ is foliated
by the symplectic leaves of dimension 2 and 4:

Remark 4.6 If MΠ ∩ suppβ = ∅, then the rank of Π equals 0 or 2 and the Poisson
structure Π is of the Flaschka-Ratiu type. Such class appears in the problem of the
construction of Poisson structures with prescribed characteristic foliations [6,7,9]. ��

Now, we observe that, according to decomposition (4.15), Eqs. (4.10), (4.11) for
(γ, κ, β) can be represented as follows:

– In the open subset MΠ :

d1,0β + β ∧ θ = 0, (4.16)

d0,1
( 1

κ

) ∧ β + � = 0; (4.17)
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– in the closed subset Z(κ): d0,1κ ∧ β = 0.

In fact, the last condition holds automatically in the interior Int
(
Z(κ)

)
and hence, can

be rewritten in the following form:

(d0,1κ)p ∧ βp = 0, ∀ p ∈ ∂
(
Z(κ)

)
. (4.18)

From here and the relation ∂
(
Z(κ)

) = ∂MΠ , we conclude that condition (4.18)
involves only the first variation of κ at the boundary points of the coupling domain.

Moreover, relations (4.16) and (4.17) have the following interpretations. Using (4.6)
and taking the interior product of both sides of equation (4.16) with QH∧QV, we show
that (4.16) is equivalent to the following condition:

Lhorγ u Pβ = 0, ∀ u ∈ X̄B, (4.19)

which means that the γ -horizontal lift horγ u is an infinitesimal automorphism of the
vertical Poisson bivector field Pβ restricted to MΠ . In other words, γ is a Poisson
connection on the corresponding Poisson fiber bundle π |MΠ .

We have the following consequence of properties (4.19) and (4.3): the bivector field
QH ∈ Γ ∧2

H given by (4.2) is a 2-cocycle in the Lichnerowicz-Poisson cohomology
[20] of the vertical Poisson structure, [[QH, Pβ ]] = 0.

Next, taking the interior product of both sides (as (0, 2)-forms) of (4.17) with QV,
we get the following “curvature identity” [23]:

Curvγ
(
u1, u2

) = −π∗(ω(u1, u2)
)
P�

β d
( 1

κ

)
,

for any u1, u2 ∈ X̄B . This relation tells us that the scalar factor κ controls the curvature
of γ in MΠ in the following sense: the connection γ is flat, Curvγ = 0, if and only
if κ is a Casimir function of Pβ |MΠ , i.e., condition (4.18) is satisfied in the coupling
domain.

As we have already noted (see, Proposition 3.4), the flatness of γ implies that the
bivector field QH is a Poisson tensor. So, in the flat case, the horizonalΠ2,0 and vertical
Π0,2 parts of the almost coupling Poisson tensor Π form a Poisson pair.

Remark 4.7 Putting β ≡ 0, we get that (γ, κ, 0) is a Poisson triple for arbitrary flat
connection γ on the fiber bundle π : M → B and an arbitrary smooth function
κ ∈ C∞

B . ��
Summarizing the above facts and taking into account the properties of coupling

Poisson structures [21–23] we formulate the following result characterizing almost
coupling structures in dimension 5:

Proposition 4.8 An almost coupling Poisson tensor Π (4.4) on M has the following
behavior:

(i) in the open subset MΠ = M\Z(κ), Π is a coupling Poisson tensor associated
to the geometric data (γ, σ, Pβ), where the Poisson connection γ is uniquely
determined by (3.5) and the coupling form is given by σ = 1

κ
π∗ω;
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(ii) in the open subset Int
(
Z(κ)

)
, the bivector field coincides with the vertical Poisson

tensor, Π = Pβ ;
(iii) at the points of the boundary ∂

(
Z(κ)

)
, the linear part of κ is compatible with β

by condition (4.18).

As we know, the Poisson connection γ is completely determined by Π in the
closure MΠ of the coupling domain. In the open subset Int

(
Z(κ)

)
, the connection

γ is not fixed and independent of β. Indeed, the freedom in the choice of γ is given
by transformation (2.4), for arbitrary vector valued 1-form Ξ satisfying (2.5) with
suppΞ ⊂ Int(Z(κ)). But in the case when MΠ is dense in M , the subset Int

(
Z(κ)

)
is empty and hence the connection γ is uniquely determined in the whole M .

Remark 4.9 Theorems 4.1 and 4.4 remain true in the case when M is a oriented
fibered (2 + r)-manifold over the 2-dimensional base B, for any r ≥ 2. In this case,
every almost coupling Poisson tensor is defined by a triple (γ, κ, β) satisfying the
integrability conditions such that the only Eq. (4.9) for (r − 2)-form is modified.
In particular, in the case dim M = 4, condition (4.9) holds automatically and the
integrability conditions for a smooth function β ∈ C∞

M together with γ , κ take the
form κ (d1,0β −β θ) = 0 and β d0,1κ −κ2� = 0. Moreover, in the general case when
M is a fibered (k + r)-manifold over a k-dimensional base B with k > 2, instead
of integrability conditions (4.9)–(4.11), we will deal with four relations involving a
horizontal (k − 2)-form κ . ��

5 Unimodularity criteria

Here we describe some unimodularity criteria for almost coupling Poisson structures
on 5-dimensional fibered manifolds.

First, we recall that by the definition [25], the modular vector field ZΩ of an
orientedPoissonmanifold (M,Π) relative to a volume formΩ is defined byLZΩ f :=
divΩ

(
Π�d f

)
for f ∈ C∞

M . As is known, ZΩ is a Poisson vector field of Π which is
independent of the choice of a volume form modulo Hamiltonian vector fields. The
Poisson structure Π is said to be unimodular if ZΩ is a Hamiltonian vector field.
In this case, there exists a volume form on M which is invariant with respect to all
Hamiltonian flows.

For example, a homogeneous Poisson structure Π on the Euclidean space is uni-
modular if and only if the modular vector field of Π relative to the Euclidean volume
form is zero [4].

Now, suppose we start again with an oriented fibered 5-manifold (π : M → B,Ω)

with an oriented 2-dimensional base (B, ω). Let Π be the almost coupling Poisson
tensor on M associated to a Poisson triple (γ, β, κ).

Lemma 5.1 The modular vector field ZΩ of Π on M has the following bigraded
decomposition: ZΩ = ZΩ

1,0 + ZΩ
0,1, where

ZΩ
1,0 = −iκθ + d1,0κ horγ ψ and ZΩ

0,1 = id0,1β + κ�QV. (5.1)
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Here 1-form θ and 2-form � are given by formulas (4.6) and (4.7), respectively.

Proof By the definition of ZΩ we have iZΩ Ω = −diΠΩ . Moreover, for any 4-forms
δ and δ̃ of bidegree (1, 3) and (2, 2), respectively, the following equalities hold:

iδ (QH ∧ QV) = −iiQV δQH, ĩδ (QH ∧ QV) = iiQH δ̃QV.

Applying these identities to the case when δ = −(diΠΩH) ∧ ΩV − (iΠΩH) d1,0ΩV

and δ̃ = −ΩH ∧ diΠΩV − (iΠΩH) d2,−1Ω
V, and taking into account (4.4)–(4.7),

we verify the formulas for the bigraded components of the modular vector field. ��
Consider the renormalization of the volume form by a nowhere vanishing func-

tion a ∈ C∞
M : aΩ . Then, the modular vector field and its bigraded components are

changing by the following rules: Z aΩ = ZΩ − 1
a idaΠ and

Z aΩ
1,0 = ZΩ

1,0 + κ id1,0aQH = iκθ + d1,0κ + κ
a d1,0a

QH,

Z aΩ
0,1 = ZΩ

0,1 + 1
a id0,1a∧βQV = id0,1β + κ� + 1

a d0,1a∧βQV.

Now, puttinga = 1
κ
and taking into account (4.11),we conclude that, in the coupling

domain MΠ = M\Z(κ), the modular vector field ZΩ ′
relative to the volume form

Ω ′ := 1
κ

Ω = ΩH ∧ 1
κ
ΩV has the following components:

ZΩ ′
1,0 = κ iθQH and ZΩ ′

0,1 = id0,1βQV. (5.2)

Assume that the vertical 1-form β ∈ Γ H
◦ is d0,1-closed:

d0,1β = 0. (5.3)

It follows from here and (5.2) that the vertical component of the modular vector field
relative to the volume form Ω ′ vanishes, ZΩ ′

0,1 = 0.

Lemma 5.2 Under assumption (5.3) the vertical Poisson tensor Pβ is unimodular in
M. Moreover, in the coupling domain MΠ = M\Z(κ), the following conditions
hold:

– the horizontal 1-form θ ∈ Γ V
◦ in (4.6) takes values in the space Casim(MΠ, Pβ)

of a Casimir functions of the vertical Poisson structure;
– θ is covariantly constant,

d1,0θ = 0. (5.4)

Proof First, the unimodularity of Pβ follows directly from (5.1) and the closedness
condition (5.3). It is clear that the corresponding invariant volume form is given by
(4.1). Next, by (4.16) and (5.3) we have

d0,1(β ∧ θ) = −d0,1 ◦ d1,0β = d1,0 ◦ d0,1β = 0,
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and hence 0 = d0,1(β ∧ θ) = −β ∧ d0,1θ . This implies that ihorγ uθ ∈
Casim(MΠ, Pβ), for any u ∈ X̄B . Next, using the identities d0,1ΩH = 0, d0,1ΩV =
0 and d0,1� = 0, by (4.8) we get

d1,0θ ∧ ΩV = d21,0Ω
V = −d2,−1 ◦ d0,1Ω

V − d0,1 ◦ d2,−1Ω
V

= −d0,1 ◦ d2,−1Ω
V = −d0,1Ω

H ∧ � − ΩH ∧ d0,1� = 0.

From here and the bigrading argument, we derive (5.4). ��
We arrive at the following result which is an almost-coupling version of a general

unimodularity criterion for coupling Poisson structures due to [16].

Theorem 5.3 Let Π be an almost coupling Poisson tensor on M associated with a
Poisson triple (γ, β, κ). Suppose that the closedness condition (5.3) holds. Then,

(i) in the coupling domain MΠ = M\Z(κ), Π is unimodular if and only if θ is
d1,0-exact in the sense that

θ = −d1,0h, (5.5)

for a certain Casimir function h ∈ Casim(MΠ, Pβ). The volume form on MΠ

given by

Ω inv
1 := eh

κ
π∗ω ∧ ΩV (5.6)

is invariant with respect to the flows of all Hamiltonian vector fields of Π ;
(ii) in the open domain IntZ(κ) of M, Π = Pβ is unimodular and the corresponding

invariant volume form is given by

Ω inv
2 := π∗ω ∧ ΩV. (5.7)

Proof Suppose that condition (5.5) holds. Consider the volume form Ω ′ which is well
defined in MΠ . Then, it follows from (5.2) and (4.13) that the unimodular vector field
of Π with respect to Ω ′ is Hamiltonian, ZΩ ′ = −κ id1,0hQH = (Xh)1,0 = Xh and
hence Ω inv

1 = ehΩ ′ is an invariant volume form. The converse is also true. Indeed,
the unimodularity of Π implies that aΩ ′ is an invariant volume form for a certain
nowhere vanishing function a on MΠ . Then, by using again (5.2) one can show that θ
is d1,0-exact with primitive h = ln |a|. Finally, the item (ii) follows from Lemma 5.2
and the equality Π = Pβ in the subset Z(κ). ��
Remark 5.4 The restriction of the covariant derivative d1,0 to the spaces of horizontal
forms with values in the space of Casimir functions of Pβ is well-defined and gives
rise to a cochain complex, called the de Rham-Casimir complex [16]. So, Theorem 5.3
tells us that under assumption (5.3), there exists a cohomological obstruction to the
unimodularity property of the coupling Poisson structure Π |MΠ which is related with
the generalized Reeb class [16].
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Now we formulate the following global unimodularity criterion:

Theorem 5.5 Under hypothesis (5.3), the Poisson structure Π = κ horγ ψ + Pβ is
unimodular in the whole M if and only if the condition (5.5) holds for a certain
h ∈ Casim(MΠ, Pβ) and there exists a nowhere vanishing function K ∈ C∞

M whose
restriction to IntZ(κ) is a Casimir function of Pβ and such that

κ|MΠ = ehK |MΠ (5.8)

Moreover, the volume form Ω inv = 1
K π∗ω ∧ ΩV is invariant with respect to all

Hamiltonian flows on (M,Π).

Proof The sufficiency part follows from the Theorem 5.3 and the relations Ω inv =
Ω inv

1 in MΠ = M\Z(κ) and Ω inv = K−1 Ω inv
2 in IntZ(κ), where Ω inv

1 and Ω inv
2

are defined by (5.6) and (5.7), respectively. To prove the necessity, suppose that Π

is unimodular in M . Then, there exists a nowhere vanishing K ∈ C∞
M such that

K−1 π∗ω∧ΩV is a (global) invariant volume form.On the other hand, byTheorem5.3,
in the domain MΠ , the volume form (5.6) is also invariant for a fixed primitive h of
θ . Then, the above two invariant volume forms are related by a multiplicative Casimir
factor κ0 ∈ Casim(MΠ,Π), and hence,

κ|MΠ = ehκ0 K |MΠ (5.9)

It follows from (4.14) that the primitive h of θ is uniquely defined up to adding
an arbitrary Casimir function of Π |MΠ . We conclude that (5.9) is transformed to
(5.8) under the changing h �→ h + ln |κ0| ∈ Casim(MΠ, Pβ). Finally, the fact that
K ∈ Casim(IntZ(κ), Pβ) follows from the invariance of the volume forms Ω2 and
K−1Ω2 with respect to all Hamiltonian flows on (IntZ(κ), Pβ). ��

It follows from the proof of the Theorem 5.5 that condition (5.8) can be replaced
by (5.9). A realization of condition (5.9) is given in Example 7.1.

In general, if the zero set Z(κ) is not empty, then the factor 1/κ in (5.6) has a
singularity at p ∈ ∂

(
Z(κ)

)
and the invariant volume form Ω inv

1 is not necessarily to
be extended to the whole M by gluing with Ω inv

2 .

Example 5.6 In the 5-dimensional Euclidean spaceR
5 = R

2
x ⊕R

3
y regarded as a trivial

fiber bundle over R
2
x , consider the following bivector field:

Π = (
y21 − x21 − x22

) (
∂

∂x1
∧ ∂

∂x2
+

(
∂

∂x1
− ∂

∂x2

)
∧

(
∂

∂ y2
+ ∂

∂ y3

))

+ y21
∂

∂ y2
∧ ∂

∂ y3
.

Then, the bivector field Π is an almost coupling Poisson tensor via the connection

γ = dy1 ⊗ ∂

∂ y1
+ dy2 ⊗ ∂

∂ y2
+ dy3 ⊗ ∂

∂ y3
− d(x1 + x2) ⊗

(
∂

∂ y2
+ ∂

∂ y3

)
.
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In this case,β = y21 dy1 and θ = 0, and hence, formula (5.6), gives an invariant volume
form in the coupling domain MΠ = R

5\{y21 = x21 + x22 }. But, one can show that
the function κ = y21 − x21 − x22 does not satisfy (5.8) and hence, by Theorem 5.5 the
Poisson tensor Π is not unimodular in the whole space R

5. This fact is also derived
from the observation that the unimodular vector field of the homogeneous Poisson
tensor Π with respect to the Euclidean volume form in R

5 is nontrivial. ��

6 Symmetries of integrability conditions

Here we described some symmetries of Eqs. (4.9)–(4.11) that is, some transformations
which preserve the solutions of these equations. We start with so-called gauge trans-
formations [3]. Our point is to describe a class of gauge transformations preserving
the almost coupling property.

Suppose we are given a Poisson triple (γ, κ, β) on an oriented fibered 5-manifold
(π : M → B,Ω,ω).

To formulate our results let us introduce the following notations: To any 1-forms
α1 and α2 on M , we assign a 2-form {α1 ∧ α2}β on M given by

{α1 ∧ α2}β(Y1,Y2) := {α1(Y1), α2(Y2)}β − {α1(Y2), α2(Y1)}β,

for Y1,Y2 ∈ X̄M . Recall that {, }β denotes the Poisson bracket on M associated with
the vertical Poisson 1-form β, { f1, f2}β = −QV(β, d f1, d f2).

Supposeweare given ahorizontal 1-form μ ∈ Γ V
◦ and aCasimir function c ∈ C∞

M
of the bracket {, }β , d0,1c ∧ β = 0. Denote

κμ = κμ(γ, β) := dγ
1,0μ + 1

2 {μ ∧ μ}β
ΩH ∈ C∞

M .

Here we use the fact that the nowhere vanishing 2-form ΩH and dγ
1,0μ + 1

2 {μ ∧ μ}β
are 2-forms on M of bidegree (2, 0). Now, we can associate to the pair (μ, c) a
transformation

Tμ,c : (γ, κ, β) �−→ (γ̃ , κ̃, β̃) (6.1)

given by

γ̃ (X) = γ (X) + id0,1μ∧β(QV ∧ X), κ̃ = κ

1 − κ (κμ − c)
, β̃ = β, (6.2)

for any X ∈ X̄M .

Proposition 6.1 Transformation (6.1)–(6.2) preserves the solutions of Eqs. (4.9)–
(4.11), that is, (γ̃ , κ̃, β̃) is again a Poisson triple.

Proof First, let us start with a Poisson triple (γ, κ, β) and an arbitrary triple (γ̃ , κ̃, β̃).
Then, the connections γ and γ̃ are related by (2.4), where a vector valued 1-form
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Ξ ∈ Ω1(M; TM) satisfies the condition (2.5).We observe that if the 1-form β̃ ∈ Γ H
◦

is defined by

β̃ := β − Ξ∗β, (6.3)

then β̃ satisfies the condition β̃|V = β|V and equation dγ̃
0,1β̃ ∧ β̃ = 0. Here Ξ∗ :

T∗M → T∗M is the adjoint vector bundle morphism. Now, assuming that

Ξ = −P�
β ◦ (d0,1μ)�, (6.4)

for a horizontal 1-form μ ∈ Γ V
◦, we conclude that condition (2.5) is satisfied and the

connection γ is related with γ̃ by (6.2). Moreover, it follows from (6.4) that Ξ∗β = 0
and hence, by equality (6.3), the last relation in (6.2) holds. Another consequence of
(6.4) is that γ̃ is a Poisson connection relative to Pβ . This means that relation (4.10)
holds for the triple in (6.2). Finally, the fact that the triple (γ̃ , κ̃, β̃) satisfies (4.11)
follows from the transition rule for the curvature of γ under transformation (2.4) and
the relation iCurvγ (u1,u2)Ω

V = −ΩH(horγ u1, horγ u1) �, for all u1, u2 ∈ X̄B . ��
Now, let Π = Π2,0 + Π0,2 and Π̃ = Π̃2,0 + Π̃0,2 be two almost coupling Poisson

structures associated with some Poisson triples (γ, κ, β) and (γ̃ , κ̃, β̃), respectively.
Suppose that these triples are related by a transformation (6.1) for a certain pair (μ, c).
Then, Π0,2 = Π̃0,2 = Pβ because of β = β̃ and hence the transformation Π �→ Π̃

modifies only the horizontal part, Π̃2,0 = −κ̃ Q̃H . It follows fromhere and the second
relation in (6.2) that the domain of definition of the transformed Poisson structure Π̃

is the following open subset in M :

Dom
(
Π̃

) := {p ∈ M | 1 − κ(p)(κμ(p) − c(p)) �= 0}.

Moreover,Z (̃κ) = Z(κ). Taking into account the transition rule for the horizontal lift,
horγ̃ u = horγ u + P�dμ(u), we conclude that the characteristic distributions of Π

and Π̃ coincide, CΠ = CΠ̃ . Let (S,�) and (S, �̃ ) be the symplectic foliations on
Dom(Π̃) carrying the leaf-wise symplectic forms� and �̃ ofΠ and Π̃ , respectively.
Then, one can show that the difference between �̃ and � is the pull-back to S of the
global 2-form Υ := −dμ+ cΩH on M . In other words, for every leaf ιS : S ↪→ E of
the characteristic foliation S, we have �̃S − �S = ι∗SΥ . Therefore, Π̃ is a result of
the gauge transformation of the Poisson structure Π via the 2-form Υ which is closed
along the leaves of S. The closedness of Υ is equivalent to the condition c ∈ π∗C∞

B .
Note that the complement M\Dom(Π̃) just consists of all points p ∈ M at which
the 2-form ι∗SΥ + �S becomes degenerate, where S is the leaf through p.

Now, consider another simple symmetry of Eqs. (4.9)–(4.11) defined by ρε :
(γ, κ, β) �→ (γ, εκ, εβ) for any fixed ε ∈ R. Clearly, Π �→ Π̃ = εΠ .

Starting with an almost coupling Poisson tensor on the oriented fibered 5-manifold
(M,Ω) over the oriented 2-manifold (B, ω) and using the above symmetries, we get
the following recipe to construct a “new” Poisson structure from the original one:



206 R. Flores-Espinoza et al.

Proposition 6.2 For a given arbitrary pair (μ, c) and an almost coupling Poisson
tensorΠ on M associatedwith aPoisson triple (γ, κ, β), the symmetry transformation

ρ 1
ε

◦ Tμ,c ◦ ρε (6.5)

induces the following smooth ε-dependent family {Πε}ε∈R of Poisson structures:

Πε = κ

1 − εκ (κμ,ε − c)
horγεψ − iβQV, (6.6)

where γε(X) := γ (X) + ε id0,1μ∧β(QV ∧ X), for any X ∈ X̄M, and

κμ,ε := dγ
1,0μ + ε

2 {μ ∧ μ}β
π∗ω

.

Proof Applying transformation (6.5) to the triple (γ, κ, β), we get the Poisson triple(
γ̃ = γε, κ̃ = κ

1−εκ (κμ,ε−c) , β̃ = β
)
inducing the Poisson tensor Πε in (6.6). ��

Corollary 6.3 If U is an open subset in M with compact closure, then there exists a
δ > 0 such that for the Poisson tensor Πε in (6.6) we have U ⊆ Dom(Πε), for all
ε ∈ (−δ, δ).

In particular, if M is compact, then for small enough ε, the Poisson tensor Πε is
well-defined in the whole M and can be regarded as a deformation of the original one,
Π = Πε|ε=0. Moreover, by using the Moser homotopy method, one can show that if
c = 0, then the Poisson structures Π and Πε are isomorphic [1,16].

As we noted in Sect. 3, the fiber preserving transformations respect the almost
couplingproperty onfiber bundles. In otherwords,weobserve that there exists a natural
action of fiber preserving diffeomorphisms g : M → M on the set of Poisson triples
which is given by g∗(γ, κ, β) := (g∗γ, g∗κ, g∗β). Therefore, the pull-back g∗Π
of any almost coupling Poisson tensor Π associated with a Poisson triple (γ, κ, β) is
again an almost coupling Poisson tensor on M whose Poisson triple is just g∗(γ, κ, β).
One can verify this fact directly by applying the pull back g∗ to both sides of Eqs. (4.9)–
(4.11).

7 The case of trivial fiber bundles

In this section, we consider the case whenM is a flat and trivial Poisson bundle defined
as the product of two Poisson manifolds.

Let (B, ω) be a symplectic 2-manifold and (N ,Ωfib) an orientable 3-manifold
equipped with a Poisson tensor Pfib and a volume form Ωfib. Then, one can choose
adapted local coordinate systems x = (x1, x2) on B and y = (y1, y2, y3) on N such
that ω = dx1 ∧ dx2 and Ωfib = dy1 ∧ dy2 ∧ dy3.

Consider the product manifold M = B × N and denote by pr1 : M → B and pr2 :
M → N the canonical projections. Then, we have a trivial bundle π = pr1 : M → B
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over B with typical fiber N . The pair (ω,Ωfib) induces a volume form on the total
space E given by

Ω = π∗ω ∧ pr∗2Ωfib. (7.1)

Let γ = ηa⊗ ∂
∂ ya be an Ehresmann connection onM , where ηa = dya+γ a

i (x, y) dxi ,
a = 1, 2, 3. Then, the corresponding horizontal subbundle H is generated by vector
fields horγi = ∂

∂xi
− γ a

i
∂

∂ ya , i = 1, 2. It follows from (4.1) and (7.1) that there exists

a unique horizontal 3-form ΩV ∈ Γ ∧3
H

0 such that Ω = π∗ω ∧ ΩV. Locally,
ΩV = η1 ∧ η2 ∧ η3.

Let (γ, β, κ) be a Poisson triple on the trivial bundle M = B × N . In adapted
coordinates (x, y), we have β = βa(x, y) ηa and

θ = −∂γ a
i

∂ ya
dxi , � = − 1

2 εabc�
a(x, y) ηb ∧ ηc, (7.2)

where �a = ∂γ a
1

∂x2
− ∂γ a

2
∂x1

+ γ b
1

∂γ a
2

∂ yb
− γ b

2
∂γ a

1
∂ yb

and εabc denotes the totally anti-
symmetric Levi-Civita symbol.

In terms of the components of γ and β, Eqs. (4.9)–(4.11) take the following form:

S
(a,b,c)

(
∂βa

∂ yb
− ∂βb

∂ ya

)
βc = 0,

κ

(
∂βa

∂xi
− γ b

i
∂βa

∂ yb
− βb

∂γ b
i

∂ ya
+ βa

∂γ b
i

∂ yb

)
= 0,

∂κ

∂ ya
βb − ∂κ

∂ yb
βa + εabcκ

2 �c = 0.

Now, let us assume that the 3-manifold N is also equipped with a Poisson
structure Pfib which is induced by a Poisson 1-form βfib = βa(y) dya , that is,
iPfibΩ

fib = βfib. Equivalently, Pfib = iβfib
∂

∂ y1
∧ ∂

∂ y2
∧ ∂

∂ y3
. Therefore, (N , Pfib)

is a typical fiber of the trivial Poisson bundle π : M → B. Suppose that we are
given a setup (κ0, c, μ) consisting of some fiberwise Casimir functions κ0, c ∈ C∞

M ,
i.e., κ0, c |{x}×N ∈ Casim(N , Pfib), for all x ∈ B, and a global horizontal 1-form
μ = μi (x, y) dxi on M .

We associate to the data (κ0, c, μ, βfib) the ε-dependent triple (γε, κε, β = pr∗2βfib)

given by

(γε)
a
i = ε εabc

∂μi

∂ yb
βc, κε = κ0

1 − εκ0 (κμ − c)
, β = βa(y) ηa . (7.3)

Let γ = dya⊗ ∂
∂ ya be the flat Ehresmann connection onM = B×N associatedwith

the canonical horizontal distributionH(x, y) = Tx B⊕{0}. Clearly, by Proposition 4.3,
(γ, κ0, β) is a Poisson triple. Then, the triple (γε, κε, β) in (7.3) is obtained by applying
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the gauge transformation (6.5) to (γ, κ0, β) and hence, by Proposition 6.1, is again a
solution to Eqs. (4.9)–(4.11).

So, we conclude that the original setup (κ0, c, μ, βfib) induces the following ε-
dependent Poisson bivector field:

Πε = κ0

1 − εκ0 (κμ − c)
horγε

1 ∧ horγε

2 + εabcβa(y)
∂

∂ yb
∧ ∂

∂ yc
. (7.4)

Here horγε

i = ∂
∂xi

− ε εabc
∂μi
∂ ya βb

∂
∂ yc and κμ,ε = ∂μ2

∂x1
− ∂μ1

∂x2
− ε εabc

∂μ1
∂ ya βb

∂μ2
∂ yc .

Suppose that there exists a singular point y0 ∈ N of Pfib, βb(y0) = 0 (b = 1, 2, 3)
such that μ1(x, y0) = μ2(x, y0) = 0 and c(x, y0) = 0 for all x ∈ B. Then, for a
fixed ε, the bivector field Πε (7.4) is well defined in a neighborhoodUε of the section
B×{y0}which represents a 2-dimensional Poisson submanifold of (Uε,Πε) equipped
with the Poisson structure Ψ = κ0(x, y0)

∂
∂x1

∧ ∂
∂x2

(see Proposition 3.5).
Now, let us apply the unimodularity criteria in Theorem 5.5 to the family (7.4).

Assume that the 1-form βfib is closed: ∂βa
∂ yb

= ∂βb
∂ ya . This implies that Pfib is unimodular.

Then, we claim that the Poisson bivector field Πε (7.4) is unimodular in the domains
MΠ = M\Z(κ) and IntZ(κ). Indeed, by using formulas (7.2) we compute

θi = −∂(γε)
a
i

∂ ya
= ε

∂2μi

∂ ya∂ yb
Pba
fib + ε

∂μi

∂ yb
∂Pba

fib

∂ ya
.

The first term in the right-hand side of this equality is zero. The second one vanishes

because of the closedness condition,
∂Pbc

fib
∂ yc = εabc

∂βa
∂ yc = 0. Consequently, θ ≡ 0. So,

(5.5) holds for h ≡ 0. Moreover, Πε satisfies the item (ii) of Theorem 5.3 and the
corresponding invariant volume form is given by (7.1). Therefore, the closedness of
the 1-form β on the 3-dimensional Poisson manifold N implies the triviality of θ . This
is a special feature of fiber bundles with 3-dimensional Poisson fibers which has no
any direct analogue in the general case.

Here is a realization of the global criteria in Theorem 5.5.

Example 7.1 LetM = B×R
3, where B is compact. Consider N = R

3 equipped with
cyclic brackets associatedwith the Lie-Poisson bracket on so∗(3). Putβfib = y ·dy and
κ0(y) = χ(‖y‖2), where χ ∈ C∞

R
is a bump function with suppχ = [0, 1]. Then, for

arbitrary c, μ and sufficiently small ε, formula (7.4) gives the almost coupling Poisson
tensor Πε defined on the whole M with the coupling domain MΠε = B × {‖y‖ < 1}.
In this case, the all hypothesis of Theorem 5.5 holds and condition (5.9) is satisfied
for h = 0 and K = (

1 − ε κ0(κμ − c)
)−1. Therefore, Πε is unimodular on M and

the corresponding global invariant volume form is given by

Ω inv
ε = (

1 − ε κ0(κμ − c)
)
π∗ω ∧ pr∗2Ωfib.
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