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Abstract

The main object of the current paper is to introduce and investigate a new unified
class of the degenerate Apostol-type polynomials. These polynomials are studied by
means of the generating function, series definition and are framed within the context
of monomiality principle. Several important recurrence relations and explicit repre-
sentations for the antecedent class of polynomials are derived. As the special cases,
the degenerate Apostol-Bernoulli, Euler and Genocchi polynomials are obtained and
corresponding results are also proved. A fascinating example is constructed in terms of
truncated-exponential polynomials, which gives the applications of these polynomials
to produce their hybridized forms.

Keywords Apostol-type polynomials - Degenerate Apostol-type polynomials -
Quasi-monomiality - Recurrence relation - Explicit representations
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1 Introduction and preliminaries

On the subject of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi poly-
nomials and their various extensions, a remarkably large number of investigations
have appeared in the literature, see for example [7,12,13]. Many authors achieve certain
enthralling results including various relatives of the Apostol-Bernoulli, Apostol-Euler
and Apostol-Genocchi polynomials.
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Recently, many researchers began to study various kinds of degenerate versions of
the familiar polynomials like Bernoulli, Euler, falling factorial and Bell polynomials
by using generating functions, umbral calculus, and p-adic integrals, see for example
[2,8,9,11]. We recall the following definitions:

Definition 1.1 The degenerate Bernoulli polynomials 8, (x; A) are defined by means
of the following generating function [2]:

PR "
L a+mi =Yg ni. (1.1)
A+ r0)F —1 ,12:(:) T

When x = 0, B,(A) := B,(0; 1) are the corresponding degenerate Bernoulli
numbers. It is to be noted from Eq. (1.1) that

}irr})ﬁn(X; A) = B,(x), n>=0,

where By, (x) is the n-th order ordinary Bernoulli polynomials [17].

Definition 1.2 The degenerate Euler polynomials &, (x; 1) are defined by means of
the following generating function [9]:

) x n
— (4> =Z£,,(x;x)t—. (1.2)
A+r)% +1 = n!

When x =0, &,(%) := &,(0; A) are the corresponding degenerate Euler numbers.
It is to be noted from Eq. (1.2) that

where E, (x) is the n-th order ordinary Euler polynomials [17].

Definition 1.3 The degenerate Genocchi polynomials G, (x; 1) are defined by means
of the following generating function [11]:

2 I "
)t =Y G (13)
(14207 +1 = n!

When x = 0, G,(A) := G,(0; 1) are the corresponding degenerate Genocchi
numbers. It is to be noted from Eq. (1.3) that

lim G, (x; 1) = G, (x), n>0,
A—0

where G, (x) is the n-th order ordinary Genocchi polynomials [18].
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We can also find various types of captivating researches on the subject of the
Apostol-type polynomials and their properties and generalizations, see, for example,
[5,7,12-15].

Motivated by the above-cited work on Apostol-type polynomials in this paper, a
unified class of the degenerate Apostol-type polynomials is introduced and studied by
means of the generating function, series definition and monomiality principle. Several
important recurrence relations and explicit representations for these polynomials are
derived. As the special cases, the degenerate Apostol-Bernoulli, Euler and Genoc-
chi polynomials are obtained and corresponding results are proved. An example is
constructed in terms of truncated-exponential polynomials to give the applications of
main results.

2 Degenerate Apostol-type polynomials

In this section, we introduce a unified class of the degenerate Apostol-type polynomi-
als. Certain properties and explicit formulae for these polynomials are also derived.
We give the following definition:

Definition2.1 Let x € R; y, u,v € C and n € Ny. The degenerate Apostol-type
polynomials denoted by 7?,5">(x; A; ¥, 1, v) of order « are defined by means of the
following generating function:

o0

2KV “ x t"
—(1 ol A+r0)% =D PO Ay, s V). Q2.1
y(1+ A7 + = !

When x = 0, P% Yo, v) = PO (0; A; y, b, v) are the corresponding
degenerate Apostol-type numbers of order « and defined as:

o o0

2[l,tl) (a) tn

————— ] =) PPy ). (22)
y(I+r)x +1 =0 n:

Remark 2.1 In view of Eq. (2.1), we remark that

Alim0 PO asy, w,v) = F %y, m,v), n >0, (2.3)
—

where ]-',Ea) (x; v, u, v) are the Apostol-type polynomials of order o [14] (see also
[16]).

It should be noted that the degenerate Apostol-type polynomials 77,5“) (x; A5y, w,v)
include the following special cases:

Remark 2.2 For the special case y — —y; w = 0and v = 1 and on use of relation

(=D*P@ (x; a; —y,0,1) = B (x; 4; ),
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we have the degenerate Apostol-Bernoulli polynomials defined by

o o0

t x t"

—— ] A+ = § B (x; ns y)—, (2.4)
y(1+ )7 — 1 s n!

where 535,“) O; A5 ) = 535,“) (%; y) are the degenerate Apostol-Bernoulli numbers of
order o and %ﬁ,a)(x; Al = ﬂ,(,a)(x; A) are the degenerate Bernoulli polynomials of
order .

Remark 2.3 For the special case = 1 and v = 0 and on use of
P s a5y, 1,0) = €9 (x5 25 ),
we have the degenerate Apostol-Euler polynomials defined by

2 ¢ - - "
<m) (1 + )\,[)X = Z nga)(x, A ]/);, (25)
y(L+AD)* + n=0 ’

where G( )(0 A Y) = Qf(a) (X; y) are the degenerate Apostol-Euler numbers of order
o and G(a) (x; 0 1) = (a)(x A) are the degenerate Euler polynomials of order «.

Remark 2.4 For the special case © = 1 and v = 1 and on use of
P (s hsy, 1,00 = G0 (x4 ),

we have the degenerate Apostol-Genocchi polynomials defined by

2t “ > t"
—————— | A+ =) G0y, (2.6)
y(1+Ar)r +1 =0 n.

where gn )(0 A YY) = g,;’) (%; y) are the degenerate Apostol-Genocchi numbers of

order o and Q(a)(x rl) = g(“>(x, A) are the degenerate Genocchi polynomials of
order .

To prove several formulae and identities for the aforementioned polynomials, we
recall the following definitions:

Definition 2.2 The Stirling numbers of the first kind Sy (n, m) [20] are defined by

Z Si(n, m) tn M 2.7

m!



On degenerate Apostol-type polynomials... 513

Definition 2.3 The generalized falling factorial (x|)),, with increment X is defined by

n—1

@l =[x = 2. (2.8)

k=0

for positive integer n, with the convention (x|A)g = 1, it follows that

@l =Y Si(n kr" Kk, (2.9)

k=0
From Binomial Theorem, we have

o0

(1 +r)i = Z(xM)n%. (2.10)

n=0

Theorem 2.4 The degenerate Apostol-type polynomials P,(,a) (x; A; v, 1, v) aredefined
by the following series expansion:

n

PA(x; hs s, v) = Z( )P“* (s s 1, 0) (KW @11)

k=0

Proof Using Egs. (2.2) and (2.10) in the left hand side of generating function (2.1)
and by applying the Cauchy-product rule in the resultant equation, it follows that

n (Ot)
A; L) (x| A) et t"
ZZ n k( V e 2) G = E F,E")(x;k; Vi, v);. (2.12)

— ) k!
n=0 k=0 k)k n=0

Equating the coefficients of same powers of 7 in Eq. (2.12), yields assertion (2.11).
]

Theorem 2.5 The following implicit summation formula for the degenerate Apostol-
type polynomials ’P,(,a)(x; A Y, I, V) holds true:

n

PR (x + y; iy, o v) =Z< )P(“k(x My PP (35 A5y, ).
k=0
(2.13)

Proof Replacing x by x + y and « by o + 8 in generating relation (2.1), we have

MgV a+h x+y [
- (A+r)+ ZP<“+f’>(x+y AV s v) . (2.14)
y(L+ a7 + 1 o
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which on using generating function (2.1) becomes

o N (@) ® AR - "
DD P kv, P (i A Ve b V) = PP+ yin Vel V)

n=0 k=0 n=0
(2.15)
Using Cauchy product rule in the left hand side and then equating the coefficients

of the same powers of 7 in both sides of the resultant equation yields assertion (2.13).
(]

The notion of quasi-monomiality was introduced and studied by Dattoli [3], in
details. The main motive behind this is to find the multiplicative and derivative oper-
ators. Further, to frame the degenerate Apostol-type polynomials 79,5"‘) (x; X9, u,v)
within the context of the monomiality principle, we prove the following result:

Theorem 2.6 The degenerate Apostol-type polynomials P,ga)(x; A ¥, U, V) are quasi-
monomial with respect to the following multiplicative and derivative operators:

. X VA ay (Pl
Mp = oD, T oD, 1 @b 11 (2.16)
and
N erDx 1
Pp = — (2.17)
Proof Consider the following identity:
1 e)th —1 1
¢ {ex In(14+Az) % } — - {ex In(14+A1) % } ) (218)

Differentiating generating function (2.1) partially with respect to ¢, it follows that

1 o
X av ozy(l—l—)»t)i_l MY x
<1+At+7_—‘ — 1 | d+an)r
y(l+r)x +1 y(l+xr)x +1

n

oo
t
=D PGk y ) (2.19)
n=0 ’

which in view of identity (2.18) and then use of generating function (2.1) in the left
hand side of resulting equation and after rearranging the summation, we have

o n

X VA ay(ePrl—* @ t
_ Y o
nz()(ewx + b @D 11 P (x5 Ay, 1, V)n!

o tn
=) Py ). (2.20)
n=0 :
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On equating the coefficients of same powers of ¢ in both sides of Eq. (2.20) and
in view of monomiality principle equation M {pn(x)} = pp+1(x), assertion (2.16)
follows.

Using generating function (2.1) in identity (2.18) after simplification, we have

o0

Z ADX_I P@ (x: )ﬁ Zp()( A V)
n X5 ayal’b7vn! - 1x Vli,

n=1

n

1t
n—1nV

2.21)

On equating the coefficients of the same powers of 7 on both sides of the Eq. (2.21)
and in view of monomiality principle equation P{p,(x)} = n p,_1(x), assertion
(2.17) follows. ]

Using expressions (2.16) and (2.17) in monomiality principle equation MP {pn(0)}
=n p,(x), we get the following result:

Corollary 2.1 The degenerate Apostol-type polynomials 77,(,“)()5; Ay, W1, V) satisfies
the following differential equation:

x erMPx ozy(eDX)l’A erDx — 1 @ s
<Ol\)+ e)»Dx A V(GDX)+1 A —-n Pna ()C,)\,, Vs s l)) =0.
(2.22)

In view of Remarks 2.2-2.4, we can find the analogous results for the degenerate
Apostol-Bernoulli, Euler and Genocchi polynomials, B9 (x: 1), €9 (x; 4; y) and
Q,(f‘) (x; A; v), respectively. We present these results in Table 1.

In the next section, recurrence relation and explicit representations for the degen-
erate Apostol-type polynomials are established.

3 Recurrence relation and explicit representations

In this section, we derive the several recurrence relations and explicit formulas for
the degenerate Apostol-type polynomials 73,(,“) (x; A; ¥, 1, v). We prove the following
theorems:

Theorem 3.1 For any integraln > 1, y € C and o« € N, the following recurrence
relation for the degenerate Apostol-type polynomials P,ga)(x; Ay, 1, v) holds true:

av ay n! 1
<n+1‘1>7’(+1(“ P ) = S ey P R T Ay )

—xP,SO‘)(x — M A Y, U, V). 3.1
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Proof Differentiating both sides of Eq. (2.1) with respect to ¢, it follows that

+1
oy pladid “ x ay 2KV “ xtl g
— | — ] A+2r)* — | (1 +Ar) >

t \yd 4+t +1 27 \ (1 4+ 2% + 1
MgV “ . o 1
tr | | A+ =) PP @y o) ——, (32
vy +A07 +1 o n!

which on using generating function (2.1) yields

n

o0

av t"
(@ (a+1) T

Y P k) MU}:P (1= 2 ks )

n=0

" "
+x E PO (x — 1 sy, e, V= E PO (x; Ay, e, e (3.3)
n=1

On comparing the coefficients of the same powers of ¢ on both sides of Eq. (3.3),
assertion (3.1) follows. O

Next, we derive the explicit representations for the degenerate Apostol-type poly-
nomials Pff‘)(x; A; ¥, i, v). For this, we recall the following definition:

Definition 3.2 The generalized Hurwitz—Lerch Zeta function &, (z, s, a) [6] is defined
by

Puz,s,0) = (";?" (n j—a)v G4
n=0

which for © = 1 becomes the Hurwitz—Lerch Zeta function ®(z, s, a) [19] (see also
[1,10]).

To derive the explicit representations for the degenerate Apostol-type polynomials
(@) . 5. : .
P (x5 A; y, 1, v), we prove the following results:

Theorem 3.3 The following explicit formula for the degenerate Apostol type polyno-
mials P,(,a) (x; A; ¥, 1, v) in terms of the Stirling number of the first kind S1(n, m)
holds true:

k+1(x Ay, v) = Z Z { < )”P,Ea)(n H A5y, )

n=0m=0
ey m (=)
2u(x A+1) .

k 1
x <n N )P,E“t/ NCEATRY

+x(x—A)m< ) (a) M OSENTS U)}A" "8 (n, m).
(3.5)
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Proof Rewriting Eq. (3.2) in the following form:

a a+1
av( 2% ern(+r) _ 4V 2" o SH=E In(14an)
t\y( 407 +1 20" \ (1 4+ a0)F + 1

Z“IV ¢ xX—A ad n—1
dx | ———— ] 7 i - ZnP,g"‘)(x; ALY, s
y(+A)r +1 =0

(3.6)

Expanding the exponential and then using Eqgs. (2.1) and (2.7) in the resultant
equation and after simplification, it follows that

v - [k 0 n m ) tn
%;P,Ea)(k; Y 1 ”)HZ (Z (;) Sy (n, m)A ) -

n=0 \m=0

k 00 n m N
t x—Xi+1 t
2/"1‘“ Z,PIEQ—H)()‘ 202 V) Z (Z <T> S1(n, m)k”) =
n=0 \m=0 n

(@) k& " x—A\" "

: n
+xz7)]¢ ()"s Vs MK, V)FZ Z ( 2 ) S](n,m))\, ;
=0 n=0 \m=0
k
Z PEh G Ay, v) : (3.7)

On comparing the coefficients of the same powers of # on both sides of Eq. (3.7)
and interchanging the sides of the resultant equation, assertion (3.5) follows. O

Theorem 3.4 The following explicit formula for the degenerate Apostol-type polyno-
mials Pp(c)(x; A; v, w, v) in terms of the generalized Hurwitz—Lerch Zeta function
®,.(z, s, a) holds true:

n—voa
P,g“)(x; ALY, W, V) = Z 2H (par)! < )CD (=y, —m, x) A"7"TVES (n—va, m).
m=0
(3.8)
Proof The generating relation (2.1) can be simplified in the following form:
. " (o >k
Do P ke y e v) = @) Z Lt a+anT
n=0
which gives
00 n oo XX n
t _mt
Do P (ki) = @M Z @<— D0 D kA0S (m) AT
n=0 : k=0 m=0n=m .

(3.9)
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Use of Eq. (2.7) in above equation and after simplification, we find

. @ 5. ﬂ_ " e (a)k__g:Zli_
;PH (3 A3 v, 1, v) — ZOZ% {2 (var >'< )k:o REET

x ATV S (n — va, m)}—’,
n

(3.10)
which on using Eq. (3.4) and then comparing the coefficients of same powers of ¢ on
both sides of the resultant equation yields assertion (3.8). O

Theorem 3.5 The following explicit formula for the degenerate Apostol-type polyno-

mials P,ga)(x; Ay, W1, v) in terms of the degenerate Apostol-Bernoulli polynomials
B, (x; A; y) holds true:

n

1 n—+1
PO (x; Ay, v) = ( . )(V Br(x + 1545 y)
k=0

n+1

— By (x4 y)) PGy ). (3.11)

Proof From generating function (2.1), we have

28V “ x
— | d+r)>
y(l+ )7 +1
o
QM gV 1 t x4l
- . - . (1 + )5
yAd+r)r+1) T \yd+arx —1

24V “1 t .
_ ( 1 ) - ( . )(1 + A%, (3.12)
yA+r)r+1) T \yd+rzr -1

Using generating functions (2.1), (2.2) and (2.4) in Eq. (3.12), it follows that

o0

tn
Z()P,S“’(x;x; Vol V) — = —ZOP@‘)(A i v)—Z%k<x+1 ks y)
n= n

1 & " ik
- = P(C() )"; s My o % ;)\'; PR
; ,?:0 n (ALY, U)n! /;:0 k(x V)k!

(3.13)
which on using the Cauchy product rule in the right hand side of the above equation
and then equating the coefficients of identical powers of ¢ in both sides of resultant
equation yields assertion (3.10). O

Theorem 3.6 The following explicit formula for the degenerate Apostol-type poly-
nomials 79,5“) (x; X; ¥, 1, v) in terms of the degenerate Apostol-Euler polynomials
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E,(x; A5 p) holds true:

1< n+1
Pﬁ“)(x;/\;y»u,v)=§;( ' )(nyk(x+l;/\;y)

+ Elxs As y))Pf,‘i’lk(x; Vol v). (3.14)

Proof Following on the same line of proof as in Theorem 3.5 with use of Egs. (2.1),
(2.2) and (2.5) yields assertion (3.14). Thus we omit it. O

Theorem 3.7 The following explicit formula for the degenerate Apostol-type polyno-
mials P,Sa)(x; Ay, W1, v) in terms of the degenerate Apostol-Genocchi polynomials
Gn(x; A5 y) holds true:

1 " n+1
(o) A — 1)\’
P (x; A5y, 1, v) 20t D kE_()( K )(J/ Gr(x + 1545 9)

+ G A y))P,E?‘Qlk(A; Yol v). (3.15)

Proof Following on the same line of proof as in Theorem 3.5 with use of Egs. (2.1),
(2.2) and (2.6) yields assertion (3.15). Thus we omit it. O

In view of Remarks 2.2-2.4, we can find the analogous results for the degenerate
Apostol-Bernoulli, Euler and Genocchi polynomials %ﬁ,a)(x; A YD, Qfﬁ,a)(x; A; y)and
g,i"‘) (x; A; y), respectively. We present these results in Table 2.

In the next section, we introduce and study a hybrid form of degenerate Apostol-type
polynomials.

4 Example

To introduce the hybridized forms of polynomials and to characterize their properties
via generating functions is a recent new approach. To achieve this, we recall the
following definition:

Definition 4.1 The generating function for the truncated-exponential polynomials
en(x) is defined as [4, p.596 (4)]:

< —i 5 @.1)
(1—t)_n=08"x nl '

The following example can well satisfied the definition of hybridized polynomials:
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Example 4.1 The truncated-exponential degenerate Apostol-type polynomials
673,(,“) (x; A; ¥, 1, v) by defined by means of the following generating function:

]

o X
gV (1+ 1)z t"
T ~ =) PPy, V= (42)
y(+a07 +1 (1 —In(1 +Az)z) = m

When x = 0, eP,(,a)(k; VU, V) = eP,E") (0; A; y, i, v) are the corresponding
truncated-exponential degenerate Apostol-type numbers of order «.

The other results for the truncated-exponential degenerate Apostol-type numbers
of order « are given in Table 3.

In view of Remarks 2.2-2.3, we can find the special cases of eP,ga)(x; AV, L, V).
These are given in Table 4.

Now, we obtain the results for the truncated-exponential degenerate Apostol—
Bernoulli polynomials. These are given in Table 5 below.

Also, the corresponding results for the truncated-exponential degenerate Apostol—
Euler polynomials are obtained. We give these results in Table 6 below. Further,
the corresponding results for the truncated-exponential degenerate Apostol-Genocchi
polynomials are obtained and these are given in Table 7 below. These hybrid spe-
cial polynomials are important as they possess essential properties such as recurrence
and explicit relations and functional and differential equations, summation formulae,
symmetric and convolution identities, etc. These polynomials are useful and possess
potential for applications in numerous problems of number theory, combinatorics,
classical and numerical analysis, theoretical physics, approximation theory and other
fields of pure and applied mathematics. The technique used here could be used to
establish further quite a wide variety of formulas for certain other special polyno-
mials and can be extended to derive new relations for conventional and generalized
polynomials.
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