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Abstract
Let f (z) be meromorphic in Δ, E1 = {a1, a2, a3} and E2 = {b1, b2, b3} be two sets
in C, k ∈ Z+. Suppose that f (z) ∈ E1 ⇔ f (k)(z) ∈ E2 and max

0≤i≤k−1
| f (i)(z)| = 0

whenever f (z) ∈ E1, then f (z) is a normal function.
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1 Introduction andmain results

By the Bloch principle, the criteria of normal functions are studied, which are con-
sistent with the known criteria of normal families. For example, corresponding to the
well-knownMontel’s theorem of normal families, Lehto and Virtanen [4] showed that
if f (z) is meromorphic inΔ and f (z) �= a, b, c, then f (z) is a normal function, where
a, b, c are three distinct points in C. But, they are not always right when the crite-
ria of normal functions are related to derivatives. For instance, corresponding to the
well-known Miranda criterion for the family of holomorphic functions, Hayman and
Storvick [1] proved that there exists a non-normal function f (z) satisfying f (z) �= 0
and f ′(z) �= 1 in Δ. In the following, we focus on the criteria of normal functions
concerning derivatives.
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The normality of families of meromorphic functions concerning shared values was
proved by Schwick [8] in 1992, which is listed below.

Theorem A [8, Theorem 2] Let F be a family of meromorphic in D, and let a1, a2, a3
be three distinct complex numbers inC. Suppose that, f (z) and f ′(z) share a1, a2, a3,
for every function f (z) ∈ F , then F is normal in D.

In 2007, Liu-Pang [5] improved Schwick’s result, by means of substituting sharing
the set {a1, a2, a3} for sharing three values a1, a2, a3 in Theorem A, as follows:

Theorem B [5, Theorem 1] Let F be a family of meromorphic in D, and let E =
{a1, a2, a3} be a set in C. Suppose that f (z) and f ′(z) share E, for every function
f ∈ F; then F is normal in D.

Recently, we consider the question about normal functions concerning derivatives
and shared sets. And, we get the following results:

Theorem 1 Let f (z) be meromorphic in Δ, E1 = {a1, a2, a3} and E2 = {b1, b2, b3}
be two sets in C, k ∈ Z+. Suppose that f (z) ∈ E1 ⇔ f (k)(z) ∈ E2 and
max

0≤i≤k−1
| f (i)(z)| = 0 whenever f (z) ∈ E1; then f (z) is a normal function.

And for the case of holomorphic functions, the following result can be obtained.

Theorem 2 Let f (z)beholomorphic inΔ, a1, a2, a3 be three distinct complex numbers
in C, and A > 0. Suppose that | f ′(z)| ≤ A whenever f (z) = ai (i = 1, 2, 3); then
f (z) is a normal function.

Remark 1 The condition “ max
0≤i≤k−1

| f (i)(z)| = 0 whenever f (z) ∈ E1” in Theorem 1

holds naturally for k = 1. Or more accurately, if k = 1, then i = 0 and the condition
“ max
0≤i≤k−1

| f (i)(z)| = 0 whenever f (z) ∈ E1” is removed. And if k ≥ 2, then 1 ≤ i ≤
k − 1 and the condition is needed. Furthermore, in the latter case, the multiplicities of
zeros of f (z) − a are at least k, where a ∈ E1.

The following example shows that the condition “ max
0≤i≤k−1

| f (i)(z)| = 0 whenever

f (z) ∈ E1” in Theorem 1 is necessary.

Example 1 Let F = { fn(z)| fn(z) = n2(ea1z − ea2z), z ∈ Δ, n = 1, 2, . . .}, E1 =
E2 = {−1, 0, 1}, where a1 �= a2 satisfying ak1 = ak2 = 1, k ∈ Z+.

By calculating, it yields that fn(z) = f (k)
n (z), and fn(z) ∈ E1 ⇔ f (k)

n ∈ E2.

max
0≤i≤k−1

| f (i)
n (z)| �= 0 whenever fn(z) ∈ E1.

However, (1 − |z|2) f �
n (z)|z=0 = (1 − |0|2) | f ′

n(0)|
1+| fn(0)|2 = n2|a1 − a2| → ∞, as

n → ∞. Thus, as n → ∞, fn(z) is not a normal function.

Here and in the sequel, C is the complex plane and C is the extended complex
plane. D is a domain in C. Δ(z0, r) = {z : |z − z0| < r}, Δ′(z0, r) = {z : 0 <

|z − z0| < r}, where z0 ∈ C, r > 0. The unit disc is marked as Δ = Δ(0, 1).



Normal functions concerning derivatives and shared sets 591

fn(z)
χ⇒ f (z) in D shows that the sequence { fn(z)} converges to f (z) in the spherical

metric uniformly in compact subsets of D and fn(z) ⇒ f (z) in D if the convergence
is in the Euclidean metric. f �(z) = | f ′(z)|/(1 + | f (z)|2) is the spherical derivative
of f (z).

Let f (z), L(z) be meromorphic in D, a, b be two complex numbers in C, and E1,
E2 be two sets in C. f (z) = a ⇒ L(z) = b if L(z) = b whenever f (z) = a, and
f (z) = a ⇔ L(z) = b if f (z) = a ⇒ L(z) = b and L(z) = b ⇒ f (z) = a.
When f (z) = a ⇔ L(z) = a in D, we say that f (z) and L(z) share the value a.
D( f , E1) := ∪a∈E1{z ∈ D : f (z) = a}, D(L, E2) := ∪a∈E2{z ∈ D : L(z) = a}.
If D( f , E1) ⊂ D(L, E2), we write f (z) ∈ E1 ⇒ L(z) ∈ E2 in D. Furthermore, if
D( f , E1) ⊂ D(L, E2) and D(L, E2) ⊂ D( f , E1), that is, D( f , E1) = D(L, E2),
we write f (z) ∈ E1 ⇔ L(z) ∈ E2 in D. If f (z) ∈ E ⇔ L(z) ∈ E in D, we say that
f (z) and L(z) share the set E in D.
Recall that a family F of meromorphic in D is said to be a normal family in D,

if each sequence { fn(z)} ⊂ F contains a subsequence which converges spherically
locally in D. The subtracted set may depend on the subsequence. See [2,3]. A function
f (z) meromorphic in Δ, it is said to be a normal function if and only if the family
{ f (L(z))} is normal (see [4]), where L(z) shows an arbitrary one-one conformal
mapping of Δ onto itself.

2 Preliminary results

First, we introduce some lemmas which will be used in the proofs of main results.

Lemma 1 [7, Lemma 2] Let F be a family of meromorphic in D, all of whose zeros
have multiplicities at least k(∈ Z+), and suppose that there exists M ≥ 1 such that
| f (k)(z)| ≤ M whenever f (z) = 0 and f (z) ∈ F . If F is not normal at z0 ∈ D, then
for each α, 0 ≤ α ≤ k, there exist a sequence of complex numbers zn ∈ D, zn → z0,
positive numbers ρn → 0, and a sequence of functions fn ∈ F such that

Ln(ξ) = fn(zn + ρnξ)

ρα
n

χ⇒ L(ξ),

where L(ξ) is nonconstant and meromorphic in C, all of whose zeros have multiplici-
ties at least k, such that L�(ξ) ≤ L�(0) = kM + 1. Moreover, L(ξ) has order at most
2.

Lemma 2 [6] Let f (z) be meromorphic in Δ. Suppose that f (z) is not a normal
function, then there exists a sequence of points zn ∈ Δ and positive numbers ρn → 0
such that

Ln(z) = f (zn + ρnz)
χ⇒ L(z)

in C, where L(z) is nonconstant and meromorphic in C.
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Lemma 3 [3, Theorem 1.5] Let f (z)benonconstant andmeromorphic, a1, a2, · · · , aq
be q(> 2) distinct complex numbers in C. Then

m(r , f ) +
q∑

i=1

m

(
r ,

1

f − ai

)
≤ 2T (r , f ) − N1(r) + S(r , f ),

where N1(r) = 2N (r , f )−N (r , f ′)+N (r , 1
f ′ ) and S(r , f ) = o(T (r , f ), as r → ∞

possibly outside a set of finite measure.

Lemma 4 [2, Corollary to Theorem 3.5] Let f (z) be a transcendental meromorphic
function in C and k ∈ Z+. Then f (z) or f (k)(z) − 1 has infinitely many zeros.

3 Proof of theorems

Proof of Theorem 1 Suppose, to the contrary, that f (z) is not a normal function in Δ.
Then, based on Lemma 2, there exist points zn ∈ Δ, ρn → 0+ such that

Ln(η) = f (zn + ρnη)
χ⇒ L(η), (1)

where L(η) is nonconstant and meromorphic in C.
And we claim that the multiplicities of all zeros of L(η)−ai (for each ai ∈ E1 ) are

no less than k + 1. In fact, assume that L(η0) − a1 = 0, it gets that there exist points
ηn → η0 such that f (zn +ρnηn) = a1 by Hurwitz’s theorem and L(η) is nonconstant.
According to f (z) ∈ E1 ⇔ f (k)(z) ∈ E2 and max

0≤i≤k−1
| f (i)(z)| = 0 whenever

f (z) ∈ E1, it obtains f (k)(zn +ρnηn) ∈ E2 and f (i)(zn +ρnηn) = 0(0 ≤ i ≤ k−1).
Then L(i)

n (ηn) = ρi
n f

(i)(zn + ρnηn) = ρi
n · 0 = 0, (0 ≤ i ≤ k − 1), and L(k)

n (ηn) =
ρk
n f

(k)(zn +ρnηn) = ρk
nbi . Clearly, L

(i)(η0) = lim
n→∞ L(i)

n (ηn) = 0(0 ≤ i ≤ k). Thus,

the multiplicities of all zeros of L(η) − a1 are no less than k + 1. Similar results that
the multiplicities of all zeros of L(η) − ai (i = 2, 3) are no less than k + 1 can be
obtained. So, the claim is proved.

Among L(η) − ai (i = 1, 2, 3), there exists at least one term which has zeros,
according to Lemma 3 and L(η) is nonconstant. Suppose that η0 is a zero of L(η) −
a1 with multiplicities l. It can find δ > 0, for large enough n, such that Ln(η) is
holomorphic in Δ(η0, δ).

Let

ϕn(η) = Ln(η) − a1
ρk
n

. (2)

Then {ϕn(η)} is holomorphic in Δ(η0, δ).
It is asserted that (i) {ϕn(η)} is not normal atη0, and (i i) |ϕ(k)

n (η)| ≤ |b1|+|b2|+|b3|
whenever ϕn(η) = 0.

First of all , we prove the claim (i). Suppose, to the contrary, that {ϕn(η)} is normal
at η0. According to the definition of normal family, there exist 0 < δ1 < δ and a
subsequence of {ϕn(η)} (still denoted by {ϕn(η)}), such that
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ϕn(η) ⇒ ϕ(η)

in Δ(η0, δ1), where ϕ(η) is holomorphic or identical to infinity in Δ(η0, δ1). Since
L(η0) = a1 and L(η) is nonconstant, there exist points ηn → η0, for large enough n,
such that Ln(ηn) − a1 = 0 by Hurwitz’s theorem. And hence

ϕ(η0) = lim
n→∞ ϕn(ηn) = lim

n→∞
Ln(ηn) − a1

ρk
n

= 0. (3)

On the other side, it can find that η′
0 ∈ Δ(η0, δ1) such that η′

0 �= η0 and L(η′
0) �= a1

according to the isolated of zeros. Thus, it gets, for large enough n, |Ln(η
′
0) − a1| >

|L(η′
0) − a1|/2 > 0. Hence

|ϕn(η
′
0)| = |Ln(η

′
0) − a1|
ρk
n

>
|L(η′

0) − a1|
2ρk

n
→ ∞.

Then, ϕn(η) ⇒ ∞ in Δ(η0, δ1), which contradicts Eq. (3). So the claim (i) is proved.
Next, we prove the claim (ii). Indeed, assume that ϕn(η) = 0, it gets that f (zn +

ρnη) = a1 ∈ E1 by Eqs. (1) and (2). By the condition f (z) ∈ E1 ⇒ f (k)(z) ∈ E2, it
gets f (k)(zn + ρnη) ∈ E2. Hence, |ϕ(k)

n (η)| = | f (k)(zn + ρnη)| ≤ |b1| + |b2| + |b3|.
Thus the claim (ii) holds immediately.

Then, according to the claim (i) and Lemma 1, there exist a subsequence of {ϕn(η)}
(still marked as {ϕn(η)}), points ηn → η0, and ζn → 0+ such that

Φn(ξ) = ϕn(ηn + ζnξ)

ζ k
n

= Ln(ηn + ζnξ) − a1
ζ k
n ρk

n

χ⇒ Φ(ξ), (4)

where Φ(ξ) is meromorphic and nonconstant in C. What is more, based on the claim
(ii), it has Φ�(ξ) ≤ Φ�(0) = k(|b1| + |b2| + |b3| + 1) + 1.

It can be asserted that (iii) Φ(ξ) is an entire function in C, (iv) Φ(ξ) has no more
than l distinct zeros, and (v) Φ(ξ) = 0 if and only if Φ(k)(ξ) ∈ E2.

We first prove the claim (iii). Indeed, based on the fact that {Φn(ξ)} is holomorphic
in Δ(η0, δ), and ηn + ζnξ → η0 for each ξ ∈ C, it obtains that Φ(ξ) is an entire
function in C by Eq. (4). Thus, the claim (iii) is proved.

In the following, we prove the claim (iv). Suppose, to the contrary, thatΦ(ξ) has (no
less than) l+1 distinct zeros: ξ1, ξ2, . . . , ξl+1. Then there exist l+1 distinct sequences
{ξnj } such that ξnj → ξ j and Φn(ξnj ) = 0( j = 1, 2, . . . , l + 1) by Hurwitz’s theorem
and Eq. (4). Hence Ln(ηn + ζnξnj ) − a1 = 0. Obviously, ηn + ζnξnj → η0 and
ηn + ζnξni �= ηn + ζnξnj for 1 ≤ i < j ≤ l + 1. It gets that η0 is a zero of L(η) − a1
with multiplicities at least l + 1 by Eq. (1). But, this contradicts the fact that η0 is a
zero of L(η) − a1 with multiplicities l. So, the claim (iv) is true.

Last, we prove the claim (v). On the one hand, setΦ(ξ0) = 0. CombiningΦ(ξ) �≡ 0
and Eq. (4) with Hurwitz’s theorem, it follows that there exist points ξn → ξ0 such
that Φn(ξn) = 0. Then Ln(ηn + ζnξn) − a1 = 0. It gets that

f (zn + ρnηn + ρnζnξn) = a1 ∈ E1.
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According to the condition that f (z) ∈ E1 ⇒ f (k)(z) ∈ E2, and max
0≤i≤k−1

| f (i)(z)| = 0

whenever f (z) ∈ E1, it yields

Φ(i)
n (ξn) = f (i)(zn + ρnηn + ρnζnξn)

ζ k−i
n ρk−i

n
= 0 (0 ≤ i ≤ k − 1)

and

Φ(k)
n (ξn) = f (k)(zn + ρnηn + ρnζnξn) ∈ E2.

It gets that Φ(i)(ξ0) = 0 (0 ≤ i ≤ k − 1), Φ(k)(ξ0) ∈ E2 according to Φ
(i)
n (ξn) →

Φ(i)(ξ0). Further, we obtain that all zeros of Φ(ξ) have multiplicities at least k.
On the other hand, assume that Φ(k)(ξ0) ∈ E2, and Φ(k)(ξ0) = b1. It can be

concluded that Φ(k)(ξ) �≡ b1. Otherwise, Φ(ξ) = b1
(ξ−ξ1)

k

k! since all zeros of Φ(ξ)

have multiplicities at least k. By simple calculation,

Φ�(0) ≤
{

k
2 , if |ξ1| ≥ 1,

|b1|, if |ξ1| < 1.

That is, Φ�(0) < k(|b1|+ |b2|+ |b3|+1)+1 which contradicts the fact that Φ�(0) =
k(|b1| + |b2| + |b3| + 1) + 1. Thus, Φ(k)(ξ) �≡ b1. Then, there exist ξn → ξ0 such
that Φ(k)

n (ξn) = b1 by Hurwitz’s theorem. Clearly,

f (k)(zn + ρnηn + ρnζnξn) = b1 ∈ E2.

It follows from f (z) ∈ E1 ⇐ f (k)(z) ∈ E2 that f (zn + ρnηn + ρnζnξn) ∈ E1. And
we claim that there exist a subsequence of { f (zn + ρnηn + ρnζnξn)} (still marked as
{ f (zn + ρnηn + ρnζnξn)}) such that

f (zn + ρnηn + ρnζnξn) = a1.

Otherwise, there exists f (zn + ρnηn + ρnζnξn) = a2 for large enough n. Then, Eq.
(4) deduces

Φ(ξ0) = lim
n→∞ Φn(ξn) = lim

n→∞
f (zn + ρnηn + ρnζnξn) − a1

ζ k
n ρk

n
= lim

n→∞
a2 − a1
ζ k
n ρk

n
= ∞,

which contradicts the fact that Φ(k)(ξ0) = b1. Thus, there exist a subsequence of
{ f (zn +ρnηn +ρnζnξn)} (still marked as { f (zn +ρnηn +ρnζnξn)}) such that f (zn +
ρnηn + ρnζnξn) = a1. Obviously,

Φ(ξ0) = lim
n→∞ Φn(ξn) = lim

n→∞
f (zn + ρnηn + ρnζnξn) − a1

ζ k
n ρk

n
= 0.

Hence, the claim (v) is proved.
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The claims (iv) and (v) imply that Φ(k)(ξ) − b1, Φ(k)(ξ) − b2 and Φ(k)(ξ) − b3
have only finitely many zeros. Thus, Φ(ξ) is a polynomial according to the claim (iii)
and Lemma 4.

Set

Φ(ξ) = cpξ
p + cp−1ξ

p−1 + · · · + c0,

where p ∈ Z+, c0, c1, . . . , cp( �= 0) are complex constants. And Lemma 3 yields

2T (r , Φ(k)) ≤
3∑

i=1

N

(
r ,

1

Φ(k) − bi

)
+ S(r , Φ(k)). (5)

Furthermore, the claim (v) deduces

3∑

i=1

N

(
r ,

1

Φ(k) − bi

)
≤ N

(
r ,

1

Φ

)
= p log r . (6)

Obviously, T (r , Φ(k)) = (p − k) log r and S(r , Φ(k)) = O(1). Combining this fact
and Eq. (6) with Eq. (5), it yields

(p − 2k) log r ≤ O(1), as r → ∞.

So, p ≤ 2k. Moreover, we know that all zeros of Φ(ξ) have multiplicity at least k.
Thus, four cases are divided as follows:

1. When 1 ≤ p ≤ k − 1. It obtains that Φ(ξ) is a polynomial with degree at most
k − 1. This contradicts the fact that all zeros of Φ(ξ) have multiplicities at least k.

2. When p = k. It gets that Φ(ξ) = ck
(ξ−ξ1)

k

k! and Φ(k)(ξ) ≡ ck , where ck �= 0. It
follows from the claim v that ck ∈ E2. Thus, Φ(k)(ξ) ∈ E2 for each ξ ∈ C. However,
Φ(ξ) has only one distinct zero. This contradicts the claim v.

3. When k + 1 ≤ p ≤ 2k − 1. It yields that Φ(ξ) = cp
(ξ−ξ1)

p

p! . And Φ(k)(ξ) is

a polynomial with degree p − k (≥ 1). Thus, Φ(k)(ξ) = ai (i = 1, 2, 3) has at least
three distinct zeros. But, Φ(ξ) has only one distinct zero. This contradicts the claim
v.

4. When p = 2k, it obtains that Φ(ξ) = c2k
(ξ−ξ1)

k (ξ−ξ2)
k

(2k)! or Φ(ξ) = c2k
(ξ−ξ1)

2k

(2k)! ,

andΦ(k)(ξ) is a polynomial with degree k. Thus,Φ(k)(ξ) = ai (i = 1, 2, 3) has at least
three distinct zeros. However, Φ(ξ) has at most two distinct zeros. This contradicts
the claim v. Therefore, Theorem 1 is proved.

Proof of Theorem 2 Suppose, to the contrary, f (z) is not a normal function inΔ. Then,
based on Lemma 2, there exist points zn ∈ Δ, positive numbers ρn → 0 such that

Ln(η) = f (zn + ρnη)
χ⇒ L(η),

where L(η) is a nonconstant holomorphic function in C.
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It is asserted that L ′(η) = 0 whenever L(η) = a1, a2, a3. In fact, assume that
L(η0) = a1; then there exist points ηn → η0, for large enough n, such that a1 =
Ln(ηn) = f (zn+ρnηn) byHurwitz′s theorem and L(η) is nonconstant. Thus | f ′(zn+
ρnηn)| ≤ A according to the condition that | f ′(z)| ≤ A whenever f (z) = ai (i =
1, 2, 3). Then |L ′

n(ηn)| = |ρn f ′(zn+ρnηn| ≤ ρn A. Clearly, L ′(η0) = lim
n→∞ L ′

n(ηn) =
0. Then L ′(η) = 0 whenever L(η) = a1. Similarly, it gets that L ′(η) = 0 whenever
L(η) = a2 or a3. Then, the claim is proved.

Referring to the fact that L(η) is nonconstant, one may easily get L ′(η) �≡ 0. And
based on the fact L(η) is nonconstant and Lemma 3, it follows that

2T (r , L) ≤
3∑

i=1

N (r ,
1

L − ai
) + S(r , L)

≤ N (r ,
1

L ′ ) + S(r , L)

≤ T (r ,
1

L ′ ) + S(r , L)

≤ T (r , L ′) + S(r , L)

≤ T (r , L) + S(r , L).

One can then obtain T (r , L) = S(r , L), which is a contradiction. Thus, f (z) is a
normal function in Δ. This completes the proof of Theorem 2. ��
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