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Abstract In the context of orientable circuits and subcomplexes of these as repre-
senting certain singular spaces, we consider characteristic class formulas generalizing
those classical results as seen for the Riemann–Hurwitz formula for regulating the
topology of branched covering maps and that for monoidal transformations which
include the standard blowing-up process. Here the results are presented as cap product
pairings, which will be elements of a suitable homology theory, rather than charac-
teristic numbers as would be the case when taking Kronecker products once Poincaré
duality is defined. We further consider possible applications and examples includ-
ing branched covering maps, singular varieties involving virtual tangent bundles, the
Chern–Schwartz–MacPherson class, the homologyL-class, generalized signature, and
the cohomology signature class.
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1 Introduction

Given a topological group with an associated classifying space, we consider certain
characteristic class expressions pertaining to a (virtual) bundle theory over spaces
that are oriented circuits (viz. triangulated pseudomanifolds). The techniques follow
from general topological constructions as presented in [13] (cf. [14,15]) leading to
formulas of a generalized Riemann–Hurwitz type, besides similar expressions that
may regulate the topology of generalized monoidal transformations which include the
standard blowing-up process.

The development of ideas in this present paper highlights a basic difference from
[13–15], namely, that in contrast to using the usual Kronecker pairing in cohomol-
ogy/homology that leads to actual characteristic numbers, we instead formulate the
results applicable to a suitable homology theory over the circuits in question by tak-
ing cap product pairings, once fundamental classes are prescribed. This is a possible
approach to a theory of ramified maps, or to a generalized blowing-up process in
the presence of singular objects. When Poincaré duality is defined, it can be used
to recover the numerical results via the Kronecker pairing in the usual way. Here
we consider several instances to show how the general results may be applicable. To
this extent, particular interest is when the circuits in question (e.g., branching sets) are
stratified pseudomanifolds, or possibly singular complex projective varieties in which,
for instance, Chern–Schwartz–MacPherson classes can be implemented, as well as the
homology L-class, and the cohomology signature class in other cases.

We dedicate this paper to the memory of Professor Samuel Gitler–Hammer who
was our co-author in [13]. Samuel was an exceptionally accomplished and gifted
mathematicianwhogreatly inspiredmanycolleagues and studentswhowere privileged
to have worked with him. We can imagine that he would have been very interested in
our current project with view to a renewed collaboration. Alas, for us, this will not be
the case. His presence will be sadly missed by his family, and by the mathematical
community at large.

2 The topological background

2.1 Adapted pairs

Definition 2.1 Following [13], let � be a given (commutative) coefficient ring and
(�,�) a pair of CW-complexes, with � of dimension n and � a subcomplex of
codimension r ≥ 2, so that Hq(�,�) = 0 for q > n, and Hq(�,�) = 0 for
q ≥ n − 1. Then the pair (�,�) is called (n,�)-adapted if Hn(�,�) ∼= �, and



Homology theory formulas for generalized Riemann–Hurwitz… 429

the following condition holds: there exists a neighborhood B(�) of �, such that
� is a deformation retract of the interior B0(�) of B(�), and the quotient map
pn : Cn(�) −→ Cn(�)/Cn(� − B0(�)) induces an isomorphism

p∗ : Hn(�)
∼=−→ Hn(� − B0(�)). (2.1)

Having defined an adapted pair, we continue from [13] to form the subspace K of
� × I , where

K = (� × ∂ I ) ∪ (� − B0(�)) × I, (2.2)

together with the double S(�) ⊂ K, given by

S(�) = (∂B(�) × I ) ∪ (B(�) × ∂ I ). (2.3)

Now let

K1 = (� × {0}) ∪ (� − B0(�)) ×
[
0,

3

4

]

and

K2 = (� × {1}) ∪ (� − B0(�)) ×
[
1

4
, 1

]
,

and let S(�)i = S(�) ∩ Ki , for i = 1, 2.
By this construction, the spaces Ki are homotopically equivalent to �, and both

the spaces K/K1 and S(�)/S(�)1 are homotopically equivalent to the generalized
Thom space �/(� − B0(�)) (cf. [29]). It follows from the cofibration

S(�)1 −→ S(�) −→ S(�)/S(�)1 (2.4)

and the above definition that

Hn(S(�)1,�) ∼= Hn(S(�)/S(�)1) ∼= �. (2.5)

We assume there is a choice of generators for Hn(�,�) and Hn(S(�),�) giving
(by definition) an orientation or a fundamental class [�] of � and [S(�)] of S(�),
respectively.

Remark 2.1 Observe that the conditions defining an (n,�)-adapted pair above are
immediately satisfied when � is a closed (compact without boundary) connected
orientable n-manifold, and � is a closed connected and orientable submanifold of
codimension r ≥ 2, with� any coefficient ring. This example also applies to topolog-
ical, PL, as well as smooth (sub)manifolds, with S(�) a corresponding normal sphere
bundle (also closed, connected and orientable for Hn(S(�),�) ∼= �, given the above
topological type of �).
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Let G be a topological group admitting a classifying space BG, and suppose P ∈
H∗(BG,�) is a cohomology class. For a given vector bundle E of rank � over �,
with structure group G, we have then a corresponding characteristic class P = PE ∈
H∗(BG,�), and an element P(E) ∈ H∗(�,�) defined by P(E) = �∗

E (P), where
�E : � −→ BG is the classifying map. Typically, G = U(�),SO(�) or Sp(�).
Recall that H∗(BG,�) is a polynomial ring in the Chern classes (for complex vector
bundles, with� = Z); in the Pontrjagin classes andEuler class (for real oriented vector
bundles, with � = Z[ 12 ]); or the corresponding Pontrjagin classes (for symplectic
vector bundles, with � = Z), and in the Stiefel–Whitney classes (for real vector
bundles, with � = Z2). We refer to [5,8,17] for the basic details.

2.2 Constructing the double S(�)

Starting from these axioms for an (n,�)-adapted pair above, the ‘double’ S(�) of
� was constructed by general topological means in [13]. Here we will use a special,
more geometric, case of this construction along the lines of [3,20], which to some
extent follows the approach given in [33].

We assume � to be a closed and connected orientable simple (finite) n-circuit (or a
triangulated pseudomanifold in the sense of [16]; see also [9,23]), and � an arbitrary
closed and connected subcomplex of (real) codimension r ≥ 2, such that (�,�)

satisfies the conditions of an (n,�)-adapted pair.
Here B(�) is taken to be a closed tubular neighborhood of �. For i = 1, 2, let

Bi (�) be two distinct copies of B(�), together with restriction maps

qi : Bi (�) −→ �. (2.6)

Identifying B1(�) and B2(�) along their common boundary ∂B(�) = ∂B1(�) =
∂B2(�), the double S(�) is formed by setting

S(�) = B1(�) ∪∂B(�) B2(�), (2.7)

which leads to an r -sphere bundle

q : S(�) −→ �, (2.8)

for which the fundamental class (or orientation) [S(�)] is prescribed as the union of
cycles

[S(�)] = [B1(�)] ∪ (−)[B2(�)]. (2.9)

At this stage, it seems fitting for us to recall the general result of [13, Theorem 1.1]
as it was expressed in terms of Kronecker pairings (〈 , 〉):
Theorem 2.1 Suppose (�,�) is an (n,�)-adapted pair and E, F are G-bundles
over �, such that on � − � there exists a homotopy

θ : �E |�−� ∼ �F |�−�. (2.10)
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Then there exists a G-bundle ξθ −→ S(�) and orientations [�] and [S(�)], such
that for any class P ∈ Hn(BG,�), we have the following equality:

〈P(E) − P(F), [�]〉 = 〈P(ξθ ), [S(�)]〉. (2.11)

2.3 The clutching construction

Let E, F beG-bundles over�. Specifically, wemean that E, F −→ � are vector bun-
dles with structure group G. Since we are considering general characteristic classes,
we could also take E, F to be locally free sheaves. Consider now a homomorphism
ψ : E −→ F , such that

(i) ψ : E |�−�

∼=−→ F |�−� , and
(ii) ψ |� has constant rank.

The above data involving ψ induces a ‘clutching function’ η which is used to clutch
E and F over the double S(�) as outlined below. We refer to [3,20,33] for details of
this construction. We have the following exact sequence of vector bundles on �:

0 −→ K1 −→ E |� ψ−→ F |� −→ K2 −→ 0, (2.12)

where K1 ∼= kerψ , and K2 ∼= coker ψ . Further, let

L := ψ(E |�) ⊂ F |�. (2.13)

In this construction the bundles E, F are pulled back to S(�) via q, and the clutched
bundle ξ −→ S(�) is specified by

ξ = (E, ψ, F) ∼= (q∗
1K1, η, q∗

2K2) ⊕ q∗L . (2.14)

Letting K = (q∗
1K1, η, q∗

2K2) we can express (2.14) as

ξ = K ⊕ q∗L . (2.15)

Observe also, that by the above construction, we obtain isomorphisms

q∗
1 i

∗E ∼= ξ |B1(�), and q∗
2 i

∗F ∼= ξ |B2(�), (2.16)

and
E |� ∼= K1 ⊕ L , and F |� ∼= K2 ⊕ L . (2.17)

For x ∈ �,
Kx = (q∗

1K1|B1(�)x , ηx , q
∗
2K2|B2(�)x ) (2.18)

is the vector bundle over S(�)|x∈� constructed via the transition function ηx , seen as
the restriction of η to ∂B(�)x . That is, we have an isomorphism
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ηx : q∗
1K1|∂B(�)x

∼=−→ q∗
2K2|∂B(�)x . (2.19)

Lemma 2.1 For x, y ∈ � wehave Kx ∼= Ky, andq∗(�∗
Kx

(P)∩[S(�)x ]) is a constant
multiple k1� of the trivial class in H∗(�), where q∗ denotes integration along the
fiber (see (2.24) below).

Proof Let c(x, y) is a curve in � joining two points x, y ∈ �. Then the restrictions
K1|c(x,y), and K2|c(x,y) are trivial. This leads to the following diagram in which the
vertical maps are isomorphisms

q∗
1K1|∂B(�)x

ηx−−−−→ q∗
2K2|∂B(�)x

∼=
⏐⏐� ⏐⏐�∼=

q∗
1K1|∂B(�)y

ηy−−−−→ q∗
2K2|∂B(�)y

(2.20)

and, modulo these isomorphisms, ηx and ηy are homotopic. Thus Kx and Ky , regarded
as bundles on Sr ∼= S(�)x ∼= S(�)y , are isomorphic. Since � was taken to be
connected, this implies that q∗(�∗

Kx
(P) ∩ [S(�)x ]) is independent of x , and thus is a

constant multiple, k1� of the trivial class in H∗(�). �
Theorem 2.2 Let K and L be as in (2.15), with q : S(�)� the r-sphere bundle in
(2.8). With respect to the clutched bundle ξ = (E, ψ, F) in (2.14) and the classifying
map �, suppose: (1) there exists a splitting �∗

ξ (P) = �∗
K (P) ∪ �∗

q∗L(P), and (2)
the cohomological degree of PK ≤ rank(K ) = r . Then in H∗(�,�) we have the
following formula

(P(E) − P(F)) ∩ [�] = i∗(P(L) ∪ k1� ∩ [�]), (2.21)

where k is a constant.

Proof In view of (2.16), we have

(P(E)−P(F))∩[�] = i∗q∗(P(ξ)|B1(�)∩[B1(�)]−P(ξ)|B2(�)∩[B2(�)]). (2.22)

Recalling (2.9), we see that (2.22) equals

i∗q∗(P(ξ)|B1(�) ∩ [B1(�)] + P(ξ)|B2(�) ∩ (−)[B2(�)]) = i∗q∗(P(ξ) ∩ [S(�)]).
(2.23)

Consider the Gysin sequence applied to q : S(�) −→ � (see e.g., [5,17]). We have
a long exact sequence:

. . . Hi (S(�))
q∗−→ Hi−r (�)

∪e−→ Hi+1(�)
q∗

−→ Hi+1(S(�)) . . . (2.24)

With some abuse of notation q∗ in (2.24) above denotes integration along the fiber, and
∪e denotes cup product with the Euler class. Let α ∈ �∗

L(P), and β ∈ �∗
K (P). Then



Homology theory formulas for generalized Riemann–Hurwitz… 433

if q∗ and q∗ are the maps in (2.24), we have via fibre-integration along S(�)|x∈� , the
equality q∗(q∗(α) ∪ β) = α ∪ q∗(β). In view of (1) and (2) above, we have then

i∗q∗(P(ξ) ∩ [S(�)]) = i∗q∗(�∗
ξ (P) ∩ [S(�)])

= i∗q∗((�∗
q∗L(P) ∪ �∗

K (P)) ∩ [S(�)])
= i∗(q∗((�∗

q∗L(P) ∪ �∗
K (P)) ∩ [S(�)])). (2.25)

For x ∈ �, integration over the fiber of (2.25) yields

i∗((�∗
L(P) ∩ [�]) ∪ q∗(�∗

K (P) ∩ [S(�)x ]))
= i∗((�∗

L(P) ∩ [�]) ∪ q∗(�∗
Kx

(P) ∩ [S(�)x ])). (2.26)

Applying Lemma 2.1, we finally obtain

i∗(�∗
L(P) ∪ k1� ∩ [�]) = i∗(P(L) ∪ k1� ∩ [�]). (2.27)

�
Remark 2.2 In applying this result to complex vector bundles (taking � = Z), with
P corresponding to the total (or top) Chern class c∗, for instance, (or ctop), we see
that both assumptions (1) and (2) in Theorem 2.2 are satisfied (with r the rank of L
as a complex vector bundle), so that � is of real codimension 2r , with cohomological
degree c∗(L) ≤ 2r . Likewise, if �∗P( ) = e( ) is the Euler class of a real oriented
vector bundle.

3 Examples and applications

3.1 A homology generalized Riemann–Hurwitz formula

In the following we will be considering situations of the following type. Let f :
(�,�) −→ (�′, �′) be a simplicial map of (n,�)-adapted pairs such that

(i) f −1(�′) = �, and
(ii) f : � − � −→ �′ − �′ is a homeomorphism,

(again, � ⊂ � and �′ ⊂ �′ are taken to be subcomplexes of � and �′ respectively).
Consider then the diagram

�
i−−−−→ �

g
⏐⏐� ⏐⏐� f

�′ j−−−−→ �′

. (3.1)

Example 3.1 Let us first see how (2.21) looks when the adapted pairs (�,�) and
(�′, �′) are smooth manifolds with dimR � = dimR �′, together with E = T�, and
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F = f ∗T�′ (and thus rankRE = rankRF). Here we take the morphismψ of Sect. 2.3
to have constant rank equal to dimR �, with an isomorphism

ψ : T�|�
∼=−→ L = ψ(T�|�). (3.2)

We then obtain from (2.21)

((P(T�) − f ∗P(T�′)) ∩ [�] = i∗((P(T�) ∪ k1� ∩ [�]) ∈ H∗(�). (3.3)

Riemann–Hurwitz type formulas in the smooth category expressed in terms of Kro-
necker pairings with fundamental classes involving Chern, Pontrjagin and Euler
classes, for instance, have been obtained in [6,13,25,31,33].

Example 3.2 If, for instance,� and�′ are compact complexmanifoldswith dimC � =
dimC �′ = n, and f is a holomorphic branched covering map with deg f = �, having
� as the (complex) codimension r = 1 branch set, then for top Chern classes one can
derive the term (cf. [6,31,33]) cn−1(T�) ∪ k1 = (� − 1)cn−1(T�), and thus

(cn(T�) − f ∗cn(T�′)) ∩ [�] = i∗((� − 1)cn−1(T�) ∩ [�]). (3.4)

3.2 Virtual tangent bundles

When � is a smooth manifold (so the tangent bundle T� exists), then the cap product
pairing leads to the characteristic homology class P∗(�) = P(T�)∩[�] ∈ H∗(�,�).
But here we are interested in knowing how much of the traditional theory carries
through in the singular case. To this extent we follow, in part, the review article [30].

So to commence, let us take the category of (possibly singular) projective algebraic
varieties. Let � be a singular variety. Then there is the problem of defining suitable
characteristic classes. But suppose � is realized as a local complete intersection in a
smooth variety M , so that the closed inclusion j : � −→ M is a regular embedding.
In this case, the normal cone N�M −→ � is a vector bundle over �, and hence one
can define the virtual tangent bundle of � by

Tvir� = [ j∗T M − N�M] ∈ K 0(�), (3.5)

which is independent of the embedding and thus produces a well-defined element in
the Grothendieck group K 0(�) of vector bundles on � (see [11]).

In terms of the characteristic cohomology classes of vector bundles as we have
already considered, an intrinsic homology class (independent of the embedding)
applies relative to the virtual tangent bundle of �, and is defined as

Pvir∗ (�) := P(Tvir�) ∩ [�] ∈ H∗(�,�). (3.6)
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In this case, [�] ∈ H∗(�) can be taken as the fundamental class (or the class of the
structure sheaf) of � in

H∗(�) =

⎧⎪⎨
⎪⎩

HBM
2∗ (�), the Borel–Moore homology in even degrees,

CH∗(�), the Chow group,

G0(�), the Grothendieck group of coherent sheaves.

(3.7)

In terms of the Gysin homomorphism j ! : H∗(M) −→ H∗−d(�) (where d is the
embedding codimension), we also have, in relationship to characteristic classes, that

j !(P(M)) = j !(P(T M) ∩ [M]) = P(N�M) ∩ Pvir∗ (�). (3.8)

Example 3.3 If � and �′ are singular varieties admitting closed regular embeddings
as above, then Chern classes for virtual tangent bundles can be defined (see e.g., the
lecture in [32]). In the case that � and �′ are equidimensional, and � a subvariety,
each with fundamental classes defined, then from (3.2), we have

ψ : Tvir�|�
∼=−→ L = ψ(Tvir�|�). (3.9)

Given a rational map f : � −→ �′ in the setting of Sect. 3.1, and applying (2.21),
we have for total Chern classes

(c(Tvir�) − f ∗c(Tvir�′)) ∩ [�] = i∗(c(Tvir�) ∪ k1� ∩ [�]). (3.10)

3.3 Stratified pseudomanifolds

To commence, we recall the definition as given in [10,16].

Definition 3.1 Ann-dimensionalPL-stratified pseudomanifold S is a piecewise linear
space (having a compatible family of triangulations) that also possesses a filtration by
closed PL-subspaces

S = Sn ⊃ Sn−2 ⊃ Sn−3 ⊃ · · · ⊃ S1 ⊃ S0 ⊃ S−1 = ∅, (3.11)

forming a stratification that satisfies the following properties:

1. S − Sn−2 is dense in S;
2. for each k ≥ 2, Sn−k − Sn−k−1 is either empty or is an (n − k)-dimensional

PL-manifold;
3. if x ∈ Sn−k − Sn−k−1, then x has a distinguished neighborhood that is PL-

homeomorphic to R
n−k × cL, where cL denotes the open cone on a compact

(k − 1)-dimensional manifold L whose stratification is compatible with that of S.

A PL-stratified pseudomanifold S is oriented (or orientable) if S−Sn−2 has that same
property. The sets S i are called the skeleta (it can be verified from (2) above that each
has dimension i as a PL-complex). The sets Si = S − S i−1 are called the strata. In
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particular, S − Sn−2 are called regular strata, and the rest are called singular strata.
The space L is called the link of x , or of the stratum containing x . We refer to [10,16]
for the additional topological characteristics of this sort of pseudomanifold.

3.4 Maps with branch-like singularities

In the context of Sects. 3.1 and 3.3, let f : � −→ �′ be a smooth map of compact
oriented manifolds of equal dimension n, with degree deg f = ν f . Let � be a closed,
connected PL-stratified pseudomanifold of codimension 2 in � such that (�,�) is a
(n,�)-adapted pair. We say that f has branch-like singularities when the following
holds. Let M be a closed oriented n-cycle in �, such that each B(νi ) := M ∩ S i

is a smooth connected oriented PL-submanifold of � on which f has local degree
νi = | deg( f |B(νi ))| ≤ ν f . Furthermore, M is assumed to have empty intersection
with the singular strata of �. Note that this construction yields a nested sequence of
the B(νi ) in accordance with the filtration in (3.11). Moreover, in this setting there
is some scope in applying (2.21) and (3.3) to various characteristic classes. We will
present such an application in Sect. 3.5 below.

3.5 Total Hirzebruch L-polynomial and the signature

Let f : � −→ �′ be a smooth map of compact oriented manifolds of equal dimension
4n with f having branch-like singularities on � as described above, such that (�,�)

is a (4n,Q)-adapted pair. Recalling the above details, with M a closed oriented 4n-
cycle in �, it is possible to obtain from (2.21) and (3.3) several types of formulas
in the Pontrjagin classes of the manifolds in question, whenever these classes can be
defined.

Here we recall the total Hirzebruch L-polynomial [17] on setting P( ) in (3.3) by
P(�) = L (p1(�), . . . , pn(�)), where pi (�) are the Pontrjagin classes of �, etc., to
obtain from (3.3):

(P(�) − f ∗P(�′)) ∩ [�] = i∗

(∑
νi

P
(
B(νi )

)
∪ k1B(νi ) ∩

[
B(νi )

])
. (3.12)

When Poincaré duality is defined, expressions such as (3.3) can be expressed in a
numerical form via Kronecker pairings. Thus (3.12) becomes for the signature σ :

σ(�) − ν f σ(�′) = k
∑
νi

σ
(
B(νi )

)
, (3.13)

where k is a suitable constant.
Note that given a smooth (or PL-locally flat) embedding i : � −→ �, the codi-

mension 2 stratified pseudomanifold � here admits a homology L-class in the sense
of [7,16] given by
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L(�) = [�] ∩ i∗L
(
P(�) ∪ (1 + η2)−1

)
∈ H2∗(�,Q), (3.14)

where P(�) ∈ H∗(�) is the total Pontrjagin class of � and η is the Poincaré dual
of i∗[�] (see also Sect. 3.8). When Poincaré duality is defined, the latter transforms
L(�) to L as above.

Remark 3.1 Similar signature formulas have been obtained in [18,34], and noting that
the right-hand side of (3.12) is effectively a residual quantity, see also [25].

In the case of branched coverings of S4 by 4-dimensional closed oriented PL-
manifolds (reviewed in [19]), node singularities of the branching set are removable by
suitable cobordisms [19]. Our approach is different since singularities in the strata are
avoided by taking the appropriate intersection with the 4-cycle M to create the B(νi ),
as described above.

3.6 Chern–Schwartz–MacPherson classes

Firstly, we recall the Chern–MacPherson transformation (over the field C) [24]. To
an extent we follow the exposition in [26]. For a quasi-projective variety X and proper
morphisms this is a natural transformation, when X is smooth, from the constructible
function functor to the Chow group functor

c∗ : F∗(X) −→ CH∗(X), (3.15)

satisfying the normalization property

c∗(IX ) −→ c(T X) ∩ [X ] ∈ CH∗(X). (3.16)

On the other hand, if �′ is a possibly singular variety, then c∗(�′) = c∗(I�′) defines
the Chern–Schwartz–MacPherson class of �′ in CH∗(�′) [24].

There is away this latter class can be realized as in [1]. Consider a closed embedding
j : �′ −→ X , still assuming X is smooth. Resolving singularities, one obtains a
birationalmap f : X̃ −→ X such that X̃ is smooth, with �̄′ := f −1(�). Furthermore,
� = X̃ − �′ is a normal crossing divisor in X with smooth irreducible components
D1, . . . , Dk . By induction on k, and properties of c∗, it is shown in [1] that

c∗ (I�′) = f∗
(

c(T X̃)

�(1 + Di )
∩ [X̃ ]

)
∈ CH∗(X). (3.17)

In this last expression, the term c(T X̃)/�(1 + Di ) is shown to equal the total Chern
class c(E∗) where E = �1

X̃
(log�) is a locally free sheaf of complex differential

1-forms with logarithmic poles along � having rankCE = dimC X̃ .

Example 3.4 Within the setting of Sect. 3.1, we set � = X̃ and �′ = X . We take
E = �1

X̃
(log�), and set F = f ∗(T X). Again we have L = ψ(E |�) ⊂ F |� . Setting
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P as the total Chern class, and then applying the push-forward f∗ to (2.21), we have
by [1, Theorem 1]:

f∗
((

c
(
�1

X̃
(log�)

)
− f ∗c(T X)

)
∩ [X̃ ]

)
= f∗i∗(c(L) ∪ k1� ∩ [�])
= − j∗cSM(�′) ∈ CH∗(X), (3.18)

which gives a further realization of the Chern–Schwartz–MacPherson class in the
Chow group CH∗(X).

3.7 Generalized monoidal tranformations for oriented circuits

We return now to the generalized set-up of Sect. 2.1 and Sect. 3.1 with regards a sim-
plicial map f : (�,�) −→ (�′, �′) satisfying conditions (i) and (ii) in Sect. 3.1. The
hypotheses outlined in Sect. 3.1, gave rise to the concept of a generalized monoidal
transformation in [14]. So far, the development of ideasmotivates the following propo-
sition:

Proposition 3.1 Consider an (n,�)-adapted pair (�,�) as in Sect. 3.1 satisfying
conditions (i) and (ii). Let the maps i, j in (3.1) be embeddings such that the Thom
spaces T (�,�), T (�′, �′) of the normal bundles N̂ , N, of i, j respectively, are
defined. Then for suitable P ∈ H∗(BG,�), we have

(P(�) − f ∗P(�′)) ∩ [�] = t̂∗(u · a) ∩ [�] ∈ H∗(�), (3.19)

where u is the Thom class of T (�,�), a ∈ H∗(�) is some suitable class, and
t̂ : � −→ T (�,�) is the Thom–Pontrjagin map.

Proof In view of the hypotheses on i, j , we have (following e.g., [12]) a natural
commutative diagram

�
k̂−−−−→ N̂

i−−−−→ �
t̂−−−−→ T (�,�)

g
⏐⏐� ĝ

⏐⏐�
⏐⏐� f

⏐⏐�h

�′ k−−−−→ N
j−−−−→ �′ t−−−−→ T (�′, �′)

, (3.20)

where t, t̂ denote the Thom–Pontrjagin maps, together with excision relations:

� = (� − �) ∪ N̂ , (� − �) ∩ N̂ = N̂ − �,

�′ = (�′ − �′) ∪ N , (�′ − �′) ∩ N = N − �′. (3.21)

Note that by excision, we have H∗(�,� − �) ∼= H∗(T (�,�)). The proposition
follows from the topological properties of T (�,�) and the Thom class u of T (�,�)

relative to pullback via t̂ in the far right square of (3.20). �
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In the case of the standard blowing-up process for non-singular varieties (see Sect. 3.9
below), the ‘suitable class’ a ∈ H∗(�) was explicitly determined, as was the right-
hand side of (3.19) in terms of total Chern classes in [12, Theorem (4.3)], as exhibited
in (3.34) below (cf. [21,22,27]).

Remark 3.2 Once virtual tangent bundles are defined, then following (2.21) for con-
nected n-circuits in the setting of Sect. 2.1, a generalized monoidal transformation
satisfies

(P(Tvir�) − P( f ∗Tvir�′)) ∩ [�] = i∗(P(Tvir�) ∪ k1� ∩ [�]), (3.22)

for the appropriate P ∈ H∗(BG,�).

3.8 Intersection cohomology signature

Following [30], in the compact case, we have a signature

sign(�) = deg(L∗(�)), with L∗ : �(�) −→ H2∗(�,Q), (3.23)

where the latter is the homology L-class transformation of [7] (see also the review
of related topics in [4]). Here �(�) denotes the abelian group of corbordism classes
of selfdual constructible complexes. From this it follows that L∗(�) = L∗([JC�])
is the homology L-class of [16] having a distinguished element 1� = [JC�] the
class of their intersection homology complex. Thus sign(�) is called the intersection
cohomology signature of �.

Proposition 3.2 If f : (�,�) −→ (�′, �′) in Sect. 3.1 is a map of compact spaces,
then we have

f∗(L∗(�) − L∗(�)) = L(�′) ∈ H2∗(�′,Q). (3.24)

In particular, on taking degrees we have the intersection cohomology signature rela-
tionship

sign(�) = sign(�′) + sign(�). (3.25)

Proof Let U0 and V0 be open tubular neighborhoods of� and�′, respectively, so that
V0 = f (U0), and let V1 = � × [0, 1], V2 = �′ × [0, 1]. Then set S = V1 ∧ V2/ ∼,
where the identification ‘∼’ is given by

(x, 0) ∈ (�′ × {0}) − (V0 × {0}) ∼ ( f (x), 1) ∈ (� × {1}) − (U0 × {1}). (3.26)

Then, by smoothing the corners created by identification S is an oriented manifold
whose oriented boundary is diffeomorphic to�′ +�−�, and� is oriented cobordant
to�′+� [14, Proposition (2.2)]. From this additivity property of cobordism invariants
the first statement follows. The second statement then follows by taking degrees (cf.
[14, Corollary (2.3)]). �
Remark 3.3 In [14] the role of � was there denoted by W , and it was aptly entitled a
residual circuit.
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3.9 The standard blowing-up process

In the following it will be useful to adapt (3.1) using more familiar information as
follows.We set�′ = Y and�′ = X , and consider the inclusionY ⊆ X of non-singular
(smooth) varieties. Let � = X̃ denote the blow-up of X along Y , with � = Ỹ :

Ỹ
i−−−−→ X̃

g
⏐⏐�

⏐⏐� f

Y
j−−−−→ X

. (3.27)

We have then a biholomorphism f̂ : X̃ − Ỹ −→ X − Y . In this situation Ỹ =
P(NY X ⊕ 1) is the projectivized normal bundle of Y in X , that is a locally trivial
bundle over Y with fiber CPr (r = codimCY ). Using [11, Theorem 15.4], we have

(c(T X̃) − f ∗c(T X)) ∩ [X̃ ] = i∗(g∗c(TY ) ∪ λ ∩ [Ỹ ])
= i∗(c(L) ∪ k1T̃ Y ∩ [Ỹ ]). (3.28)

Completely determining the right-hand side of (3.28) essentially leads to the Todd–
Segre formula for Chern classes relative to the Chow ring of rational equivalence
classes of cycles, as was first established by Porteous [27,28]. Since then there have
been several variations on this theme, exhibiting alternative proofs along with certain
generalizations. We refer to, e.g., [2,12,21,22] for the particular details, but for now,
we briefly expose one common line of approach in terms of the geometry of projective
bundles.

Suppose V is a rank r complex vector bundle, and consider the projective bundle
p : P(V ) −→ Y . There is a short exact sequence

0 −→ L −→ p∗V −→ Q −→ 0, (3.29)

where L is the canonical line bundle and Q is the quotient bundle. We have then

TP(V ) = p∗TY ⊕ B(TCPr−1), (3.30)

where B(TCPr−1) denote the bundle along the fibers in (3.29), which in this case is
given by

B(TCPr−1) ∼= Hom(L, Q) ∼= L∗ ⊗ Q, (3.31)

so that
TP(V ) = p∗TY ⊕ L∗ ⊗ Q. (3.32)

Applying these considerations to the short exact sequence

0 −→ N̂ −→ f ∗N −→ Q −→ 0 (3.33)
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leads, as in [12] (cf. [21,22,28]), to a realization of the right-hand side of (3.28) given
by

(c(T X̃) − f ∗c(T X)) ∩ [X̃ ] = i∗(g∗c(TY ) ∪ λ ∩ [Ỹ ])
= t∗

(
u( f̂ ∗c(TY ) ∪ c(N̂ ) ∪ B(N̂∗, Q)

) ∩ [X̃ ]. (3.34)
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