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Abstract We determine the canonical form of a Hamiltonian matrix X ∈ sp(2n,R)

under symplectic similarity, and the canonical form of a matrix Y ∈ o(m) in the
orthogonal Lie algebra under similarity. This is a well known problem, and it has been
solved by means of different techniques. Our contribution is to provide a new solution
through elementary linear algebra. As an application, a list of the non-equivalent two-
and four-dimensional quadratic Hamiltonians is given.
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subspaces · Eigenvalue problem · Hamiltonian matrix · Jordan canonical form
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1 Introduction

Let (V, B) be a 2n-dimensional real symplectic space endowedwith a symplectic form
B : V × V → R. Given two real linear transformations X1, X2 in the symplectic Lie
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algebra sp(V ), a very well known problem in Lie theory is to determine if X1, X2 are
simplectically similar, that is, to find out if there exists a symplectic transformation
T ∈ Sp(V ) such that X2 = T−1 ◦ X1 ◦ T . This is equivalent to determine if X1
and X2 are congruent under the adjoint action of the Lie group Sp(V ) into its Lie
algebra sp(V ). Then, determining the different real canonical forms of X ∈ sp(V )

under symplectic similarity is equivalent to classify the Sp(V )-adjoint orbits of sp(V ).
Letting (V, B) be nowam-dimensional real vector space endowedwith a inner product
B : V ×V → R, the same problem arises for the orthogonal group O(V ): determining
the different real canonical forms of X ∈ o(m) under similarity is equivalent to classify
the O(m)-adjoint orbits of o(m).

The aim of thiswork is to provide a new solution to this problem through elementary
ideas: with basic concepts corresponding to a first course on linear algebra, we can
compute the real canonical form of a given linear transformation X in the symplectic
Lie algebra sp(V ) under symplectic similarity, and the real canonical form of a given
linear transformation Y in the orthogonal Lie algebra o(V ) under similarity. At our
knowledge, there is not a reference for that mentioned before.

A linear transformation X in the symplectic Lie algebra sp(V ) (and its matrix repre-
sentation [X ], in some fixed basis of V ) is called Hamiltonian. There is a vast literature
concerning the problem of computing the real canonical form of a Hamiltonian matrix
[X ] under symplectic similarity (see [1,3,4,8] and the references given therein). For
example, in [8] Williamson determined when two Hamiltonian matrices are simplec-
tically similar, but a constructive procedure for computing the canonical forms was
not provided. On the other hand, to give explicit canonical blocks for Hamiltonian
matrices, Laub and Meyer analyzed in [3] the canonical form of a Hamiltonian matrix
restricted to its generalized eigenspaces; in particular, the non-trivial cases where the
matrix has zero or pure imaginary eigenvalues are treated by using an extension of the
symplectic form. In [4], Lin, Mehrmann and Xu studied canonical forms for Hamilto-
nian and symplectic matrices or pencils under equivalence transformations that keep
the class invariant, as close as possible to a triangular structure in the class. More
recently, in [1], Duong and Ushirobira reviewed the problem of obtaining a classifica-
tion for the adjoint orbits of Sp(2n,R) into sp(2n,R) and O(m) into o(m), in terms of
parametrizing the invertible Fitting decomposition of a skew-symmetric map. On the
other hand, the best general reference for the study of conjugacy classes and central-
izers in a connected semisimple group is the book written by Humphreys, Conjugacy
clases in Semisimple Algebraic Groups (see [2]). In the introduction of this book the
author points out that it is both a monograph and a survey, and he provides a detailed
review of the classical progress made so far on the subject. We invite the interested
reader to consult [2] for more details.

Our approach consists the following: let g(V, B) denote either a symplectic Lie
algebra sp(V ) or an orthogonal Lie algebra o(V ), and let G(V, B) denote the corre-
sponding Lie group. A linear transformation X ∈ g(V, B) induces a decomposition of
the vector space V in terms of indecomposable cyclic subspaces Vλ ⊂ V associated to
the spectrum σ(X) of X. Moreover, for λ �= 0, each subspace Vλ comes with its dual
pair V−λ in such a way that Vλ ⊕ V−λ is a subspace endowed with the same type of
geometry as V ;whereas if λ = 0, the cyclic subspace V0 (if any) also admits a similar
decomposition, that is, V0 can be decomposed as an orthogonal sum of subspaces that
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are equipped with the same type of geometry as V . We use this idea to understand the
interaction of the cyclic subspaces associated to the spectrum σ(X), and to obtain the
canonical form of X under the action of G(V, B). No attempt has been made here to
develop or improve the theory presented in previousworks on this topic. The important
point here is to note that, with elementary concepts in linear algebra, we can obtain
either the canonical form of X ∈ sp(V ) under symplectic similarity or the canonical
form of Y ∈ o(V ) under similarity.

The paper is structured as follows: in Sect. 2we set up notation, terminology, andwe
present somepreliminaries results. Section3provides an explicitway to compute either
the real canonical form of X ∈ sp(V ) under symplectic similarity, or the canonical
form of Y ∈ o(V ) under similarity. Finally, Sect. 4 contains a brief summary of how
the classification problem for quadratic Hamiltonians corresponds to the classification
problem for the Sp(2n,R)-adjoint orbits of sp(2n,R). Hence, we apply the results
obtained in previous sections to describe the non-equivalent quadraticHamiltonians for
the standard lowdimensional real symplectic spaces (R2, ω) and (R4, ω), respectively.
Our motivation comes from the fact that in [7], Ovando described mechanical systems
for quadratic Hamiltonians on a standard symplectic space (R2n, ω), making use of
the coadjoint orbits of the (2n + 1)-dimensional Heisenberg Lie algebra.

2 Preliminaries

Throughout this work, and unless otherwise is stated, V is a finite dimensional real
vector space.However, since the eigenvalues of a linear transformation canbe complex,
sometimeswe shallmakeuse of thefield of complexnumbersC to finish the arguments.
We shall suppose that every real vector space is embedded in some complex space
of the same dimension. For any linear transformation X : V → V , [X ] denotes its
matrix representation in some fixed basis of V .

Let B : V × V → R be a non-degenerate skew-symmetric bilinear form on a 2n-
dimensional vector space V . Then we say that B is a symplectic geometry on V and in

this case the pair (V, B) is called a symplectic vector space. Letting J = [ 0 −In
In 0

]
be

a complex structure on R2n , the standard example is (R2n, ω) where ω(x, y) = xt J y
for all x, y ∈ R

2n . Let Sp(V ) be the isometry group of B, that is, the group of
transformations T ∈ GL(V ) that preserve the symplectic geometry B:

Sp(V ) = {T ∈ GL(V ) | B(Tu, T v) = B(u, v), ∀ u, v ∈ V }.

It is a well known fact that Sp(V ) is a Lie group and it is called symplectic. For the
standard symplectic space (R2n, ω), this group is denoted by Sp(2n,R) and it can be
identified with the linear Lie group {A ∈ Mat(2n × 2n,R) | At J A = J }. Then, we
simply write Sp(2n) when no confusion can arise. An element T ∈ Sp(V ) is called a
symplectic transformation, and without loss of generality we also say that its matrix
representation [T ] is a symplectic matrix, that is, [T ] ∈ Sp(2n,R).
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It is straightforward to verify that the Lie algebra sp(V ) of Sp(V ) is given by

sp(V ) = {X ∈ End(V ) | B(Xu, v) + B(u, Xv) = 0, ∀ u, v ∈ V }.

For the standard symplectic space (R2n, ω), this Lie algebra it is denoted by sp(2n,R),
and it can be identified with the linear Lie algebra {A ∈ Mat(2n × 2n,R) | At J +
J A = 0}. Again, we simply write sp(2n,R) when no confusion can arise. A linear
transformation X ∈ sp(V ) is called a Hamiltonian operator, and without loss of
generality, we say that its matrix representation [X ] is a Hamiltonian matrix, that is,
[X ] ∈ sp(2n,R).

Given a symplectic transformation T ∈ Sp(V ) and a Hamiltonian operator X ∈
sp(V ), it is easy to see that T−1 ◦ X ◦ T is again a Hamiltonian operator. Then we
say that two Hamiltonian operators X1, X2 are symplectically similar if there exists
a symplectic transformation T ∈ Sp(V ) such that X2 = T−1 ◦ X1 ◦ T . Clearly this
defines an equivalence relation. Since the adjoint action of Sp(V ) in sp(V ) is defined
by (T, X) 	−→ T−1 ◦ X ◦ T , saying that X1, X2 are symplectically similar it is
equivalent to say that X1 and X2 are congruent under the adjoint action of the Lie
group Sp(V ) into its Lie algebra sp(V ).

Suppose now that B : V ×V → R is a non-degenerate positive definite symmetric
bilinear form on a m-dimensional vector space V . In this case we say that B is an
orthogonal geometry on V , and (V, B) is called an orthogonal vector space. The
standard example is (Rm, g) where g(x, y) = xt y for all x, y ∈ R

m . Analogously to
the previous setting, we can consider the isometry group of B:

O(V ) = {T ∈ GL(V ) | B(Tu, T v) = B(u, v), ∀ u, v ∈ V }.

O(V ) is called an orthogonal Lie group. For the standard orthogonal space (Rm, g),
this group is denoted by O(m) and it can be identified with the linear Lie group
{A ∈ Mat(m × m,R) | At A = Im}. Then we simply write O(m) when no confu-
sion can arise. An element T ∈ O(V ) is called an orthogonal transformation. The
corresponding orthogonal Lie algebra o(V ) is given by

o(V ) = {X ∈ End(V ) | B(Xu, v) + B(u, Xv) = 0, ∀ u, v ∈ V },

and for the standard orthogonal space (Rm, g), the corresponding Lie algebra can be
identified with the linear Lie algebra of skew-symmetric matrices o(m). Hence, we
simply write o(m) when no confusion can arise. We say that two linear operators
X1, X2 ∈ o(V ) are similar if they are congruent under the action of the adjoint map
of the Lie group O(V ) into its Lie algebra o(V ).

The linear Lie groups Sp(2n), O(m) and their corresponding linear Lie algebras
are called classical. A very well known and interesting problem in Lie Theory is to
determine a classification of the adjoint orbits of classical Lie algebras sp(2n,R) and
o(m) for non-zero natural numbers m, n. This problem has been solved by means
of different techniques (see for example, [1,4] and the references given there). In
particular, observe that the problem of providing an explicit classification for the
Sp(2n,R)-adjoint orbits of sp(2n,R) is equivalent to the problem of determining
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the real canonical form of a Hamiltonian matrix X ∈ sp(2n,R) under symplectic
similarity, and it has been solved in [3,5,8], for example.

Symplectic similarity is more restrictive than ordinary similarity. For example, the
Hamiltonianmatrices X1 = [ 0 1

−1 0

]
and X2 = [ 0 −1

1 0

]
are both the real Jordan forms for

the harmonic oscillator; however, there does not exist a real symplectic transformation
T ∈ Sp(2,R) such that X2 = T−1 ◦ X1 ◦ T (see [5] for more details). Therefore, X1
and X2 determine different Sp(2,R)-orbits in the Lie algebra sp(2,R). This implies
that one should expect more canonical forms than the usual Jordan canonical forms.
Analogously to the ordinary similarity case, the eigenvalue structure of a Hamiltonian
operator plays an important role to determine its canonical form under symplectic
similarity. Then the aim of this work is to provide a new solution to this problem
through basic elementary concepts studied in first course on linear algebra, as follows:

Let B : V × V → R be either a symplectic or an orthogonal geometry in V and
denote byg(V, B) its correspondingLie algebra. For any endomorphism X ∈ g(V, B),
let σ(X) be the spectrum of X , that is, σ(X) is the set of all the eigenvalues of
X : V → V . Suppose that X has r (not necessarily distinct) eigenvalues λ1, . . . , λr ,
and let us consider the decomposition of V in terms of the (X − λi IdV )|Vλi

-cyclic
subspaces Vλi associated to the spectrum σ(X) of X :

V = Vλ1 ⊕ · · · ⊕ Vλr . (1)

We say that each Vλi in (1) is a cyclic subspace for short. Observe that each Vλi

is indecomposable in the sense that if Vλi is written as a direct sum of two (X −
λi IdV )|Vλi

-invariant subspaces, then one of them has to be zero.

For each cyclic subspace Vλi , there exists a cyclic basis {ei1, . . . , eimi
} such that the

restriction X |Vλi
: Vλi → Vλi satisfies X (ei1) = λi ei1 and X (eik) = λi eik + eik−1 for

2 ≤ k ≤ mi . In this basis, the matrix representation of X |Vλi
: Vλi → Vλi is given by

[X |Vλi
] =

⎡

⎢⎢⎢⎢⎢
⎣

λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
0 0 0 . . . λi

⎤

⎥⎥⎥⎥⎥
⎦

.

Let mi = dimR Vλi , then [X |Vλi
] = λi Imi + Nmi , where Imi ∈ Mat(mi × mi ,R)

denotes the identity matrix, and Nk ∈ Mat(k × k,R) denotes the matrix given by

Nk =

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥⎥
⎥⎥
⎦

.
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Since λi is assumed given, [X |Vλi
] = λi Imi + Nmi is a Jordan block on the Jordan

canonical form of [X ], and it is completely specified by its size, mi = dimR Vλi .
Furthermore, it is a well known fact that each Vλi is an (X − λi Id |Vλi

)-invariant
subspace of V . Then, the Jordan form Theorem implies the existence of a Jordan
matrix associated to X : V → V with q (not necessarily distinct) Jordan blocks
[X |Vλi

] written in terms of the cyclic bases of each Vλi .
Thus, given either a symplectic or an orthogonal geometry B : V × V → R in V ,

we shall first understand how the different cyclic subspaces Vλi mutually interact.
For simplicity of the following calculations, in each cyclic subspace Vλi we fix a

cyclic basis {ei1, . . . , eimi
}, and we define ei0 := 0 for all 1 ≤ i ≤ r .

Lemma 2.1 Let X ∈ g(V, B) be a linear transformation having λi , λ j ∈ σ(X) as
two (not necessarily distinct) eigenvalues. Let Vλi and Vλ j be the cyclic subspaces of

V associated to λi and λ j , respectively. If {ei1, . . . , eimi
} and {e j1 , . . . , e jm j } are cyclic

bases of Vλi and Vλ j , respectively, then

(λi + λ j )B(eik, e
j
l ) = −B(eik−1, e

j
l ) − B(eik, e

j
l−1)

for all 1 ≤ k ≤ mi and 1 ≤ l ≤ m j .

Proof Since X ∈ g(V, B) satisfies that B(Xu, v) + B(u, Xv) = 0 for all u, v ∈ V, it
is enough to take u = eik for all 1 ≤ k ≤ mi and v = e jl for all 1 ≤ l ≤ m j . ��
Proposition 2.2 Let X ∈ g(V, B) be a linear transformation having λi , λ j ∈ σ(X)

as two (not necessarily distinct) eigenvalues. Let Vλi and Vλ j be cyclic subspaces of
V associated to λi and λ j , respectively.

(1) If λi + λ j �= 0, then the restriction B|Vλi ×Vλ j
: Vλi × Vλ j → R is identically

zero.
(2) If λi + λ j = 0 and the restriction B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )

: (Vλi ⊕ Vλ j ) × (Vλi ⊕
Vλ j ) → R is a non-degenerate bilinear form, then there exist bases for Vλi and
Vλ j for which the matrix of the restriction B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )

is given by

[B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )
] =

[
0 Imi

−Imi 0

]
,

where mi = dimR Vλi .

Proof Assume that X ∈ g(V, B) satisfies the conditions stated above. Then,

(1) If λi + λ j �= 0, it follows from Lemma 2.1 that B(ei1, e
j
1) = 0. Now, applying

again Lemma 2.1 to B(ei1, e
j
l ) for l ≥ 2, we obtain that

(λi + λ j )B(ei1, e
j
l ) = −B(ei0, e

j
l ) − B(ei1, e

j
l−1)

= −B(ei1, e
j
l−1),
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and then B(e j1 , e
i
l ) = 0 for all 1 ≤ l ≤ mi . Analogously, we have that B(e j2 , e

i
1) =

0 and hence B(e j2 , e
i
l ) = 0 for all 1 ≤ l ≤ mi . In the same way we conclude that

B(e jk , e
i
l ) = 0 for all 1 ≤ k ≤ mi and 1 ≤ l ≤ m j .

(2) Suppose now that λi + λ j = 0. Since λi = −λ j , the bases for Vλi and Vλ j have
the same cardinality, let us say that it is mi . From Lemma 2.1 it follows that

B(eik, e
j
l−1) = −B(eik−1, e

j
l ) for all 1 ≤ k, l ≤ mi .

Consequently, we have that B(ei1, e
j
p) = 0 for all 1 ≤ p ≤ mi − 1 and

B(ei1, e
j
mi ) �= 0 since B is a non-degenerate bilinear form. In the same man-

ner we can see that B(e jk , e
i
l ) = 0 when k + l ≤ mi , whereas B(e jk , e

i
l ) =

(−1)mi−l B(e jk−(mi−l), e
i
mi

) when k + l > mi .

Letting Bkl = (−1)mi−l B(e jk−(mi−l), e
i
mi

) when k + l > mi , it follows that the
matrix [Bkl ] representation of B|Vλi ×Vλ j

is given by

[Bkl ] =

⎡

⎢⎢⎢
⎣

0 0 . . . 0 B1,mi

0 0 . . . −B1,mi B2,mi
...

...
...

...

(−1)mi−1B1,mi (−1)mi−2B2,mi . . . −Bmi−1,mi Bmi ,mi

⎤

⎥⎥⎥
⎦

,

which it is clearly non-singular.

A straightforward calculation shows that [Bkl ]−1 is given by

[Bkl ]−1 =

⎡

⎢⎢⎢
⎣

A11 −A12 . . . (−1)mi−2A1,mi−1 (−1)mi−1A1,mi

A12 −A13 . . . (−1)mi−2A1,mi 0
...

...
...

...

A1,mi 0 . . . 0 0

⎤

⎥⎥⎥
⎦

.

Observe that taking f ik = ∑mi−k+1
s=1 (−1)s−1A1,k+s−1eis , the matrix [Bkl ]−1

changes the basis {ei1, . . . , eimi
} into a basis { f i1 , . . . , f imi

} such that B( f ik , e
j
l ) =

δlk . Thus, the matrix representation of B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )
is given by

[B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )
] =

[
0 Imi

−Imi 0

]
.

��
Remark 2.3 Since the second statement of Proposition 2.2 above implies that there
exist bases of Vλi and Vλ j such that

[B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )
] =

[
0 Imi

−Imi 0

]
,
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we can identify the cyclic subspace Vλ j with its dual space V ∗
λi
. In this case we say

that the subspace Vλ j is a dual pair of Vλi .

Corollary 2.4 Let X ∈ g(V, B) be a linear transformation as in Proposition 2.2(2)
above. Then, the matrix representation of X |Vλi ⊕Vλ j

: Vλi ⊕Vλ j → Vλi ⊕Vλ j is given
by

[X |Vλi ⊕Vλ j
] =

[−λ j Imi − Nt
mi

0
0 λ j Imi + Nmi

]
.

Proof Since λi + λ j = 0, there exist bases { f i1 , . . . , f imi
} and {e j1 , . . . , e jmi } of Vλi

and Vλ j , respectively, such that

[B|(Vλi ⊕Vλ j )×(Vλi ⊕Vλ j )
] =

[
0 Imi

−Imi 0

]
.

Then, it will be enough to understand the action of the restriction X |Vλi
: Vλi → Vλi

in the basis { f i1 , . . . , f imi
}. Recalling that f ik = ∑mi−k+1

s=1 (−1)s−1A1,k+s−1eis, for
1 ≤ k < mi we have that

X ( f ik ) =
mi−k+1∑

s=1

(−1)s−1A1,k+s−1X (eis)

=
mi−k+1∑

s=1

(−1)s−1A1,k+s−1

(
λi e

i
s + eis−1

)

= λi

mi−k+1∑

s=1

(−1)s−1A1,k+s−1e
i
s +

mi−k+1∑

r=1

(−1)s−1A1,k+s−1e
i
s−1

= λi f
i
k − f ik+1

= −λ j f
i
k − f ik+1,

whereas for k = mi , it follows that

X ( f imi
) = A1,mi X (ei1)

= λi A1,mi e
i
1 = λi f

i
mi

= −λ j f
i
mi

.

Then, the matrix representation of X |Vλi
: Vλi → Vλi is given by

[X |Vλi
] = [−λ j Imi − Nt

mi
],

where Nt
mi

is the transpose matrix of Nmi . ��
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Remark 2.5 Without loss of generality, consider the standard symplectic space
(R2n, ω). Clearly, a Hamiltonian matrix X ∈ sp(2n,R) satisfies that [X ]t [B] +
[B][X ] = 0, and hence

[X ] =
[
A C
D −At

]
, (2)

where A,C, and D ∈ Mat(n × n,R) with C and D symmetric.
Observe that the Jordan canonical form of such X ∈ sp(2n,R) is not necessarily

a Hamiltonian matrix. However, if X ∈ sp(2n,R) has eigenvalues λi , λ j ∈ σ(X)

satisfying the conditions given in Proposition 2.2 (2), then Vλi ⊕ Vλ j ⊂ V is
a symplectic subspace and, as a consequence, X |Vλi ⊕Vλ j

is also a Hamiltonian
transformation. Thus, from Corollary 2.4 we conclude that the canonical form of
X |Vλi ⊕Vλ j

: Vλi ⊕ Vλ j → Vλi ⊕ Vλ j is a Hamiltonian matrix:

[X |Vλi ⊕Vλ j
] =

[−λ j Imi − Nt
mi

0
0 λ j Imi + Nmi

]
. (3)

From Proposition 2.2 we also have the following corollaries:

Corollary 2.6 Let X ∈ g(V, B) be a linear transformation as in Proposition 2.2
above. Ifμ �= 0 and 0 are eigenvalues of X, then the restriction B|V0×Vμ : V0×Vμ →
R is identically zero.

Remark 2.7 If X ∈ g(V, B) is a linear transformation satisfying the conditions stated
in Corollary 2.6 above, it follows that the restriction B|V0×V0 : V0 × V0 → R is
non-degenerate. Furthermore, Proposition 2.2 (2) implies that there exists a basis of
V0 such that

[B|V0×V0 ] =
[

0 Imi

−Imi 0

]
.

Hence, V0 can be decomposed as follows:

V0 = U1 ⊕ · · · ⊕Ur ⊕ (Us1 ⊕U∗
s1) ⊕ · · · ⊕ (Usk ⊕U∗

sk ),

where for each 1 ≤ i ≤ r, Ui is a subspace endowed with the same type of geometry
as V ; whereas for each 1 ≤ j ≤ k, U∗

s j is the dual pair of the subspace Usj . Then it
follows that (Usj ⊕U∗

s j ) is endowed with the same type of geometry as V .

Corollary 2.8 Let X ∈ g(V, B) be a linear transformation as in Proposition 2.2
above. If λ �= 0 is an eigenvalue of X, then the restriction B|Vλ×Vλ : Vλ × Vλ → R is
identically zero.

Corollary 2.9 Let X ∈ g(V, B) be a linear transformation as in Proposition 2.2 (2)
above. If λ �= 0 is an eigenvalue of X, then −λ is also an eigenvalue of X.

Corollary 2.10 Let X ∈ g(V, B) be a linear transformation as in Proposition 2.2
above. If λ = a + bi is a complex eigenvalue of X with a �= 0 and b ∈ R, then −λ, λ

and −λ are also eigenvalues of X.
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Now, we can state the main Theorem of this section:

Theorem 2.11 Let B : V ×V → R be a geometry on V and consider the Lie algebra
g(V, B). Then, any linear transformation X ∈ g(V, B) induces a decomposition of
V as an orthogonal sum of the cyclic subspace V0 associated to λ = 0 (if any), and
dual pairs associated to the nonzero eigenvalues ±λ1, . . . ,±λt of the spectrum σ(X)

of X:

V = V0 ⊕ (Vλ1 ⊕ V−λ1) ⊕ · · · ⊕ (Vλt ⊕ V−λt ).

Moreover, V0 also admits a similar decomposition, that is,

V0 = U1 ⊕ · · · ⊕Ur ⊕ (Us1 ⊕U∗
s1) ⊕ · · · ⊕ (Usk ⊕U∗

sk ),

where each one of the subspaces Ui (1 ≤ i ≤ r),Usj ⊕ U∗
s j (1 ≤ j ≤ k) and

Vλr ⊕ V−λr (1 ≤ r ≤ t) are endowed with the same type of geometry as V .

Proof It is a direct consequence of Proposition 2.2. ��

Remark 2.12 Let ρ : g → gl(V ) be a finite dimensional representation of a Lie
algebra g and let B : V ×V → R be a bilinear form in V .We say that B is ρ-invariant
if

B(ρ(x)u, v) = B(u, ρ(x)v) ∀x ∈ g, ∀u, v ∈ V .

Suppose that (V, B) is a vector space endowed with either a symplectic or an orthog-
onal geometry B : V × V → R, and let ρ : g(V, B) → gl(V ) be a completely
reducible finite dimensional representation of g(V, B). If B is ρ-invariant, then V can
be decomposed as follows:

V = U1 ⊕ · · · ⊕Uk ⊕ (W1 ⊕ W ∗
1 ) ⊕ · · · ⊕ (Wl ⊕ W ∗

l ),

where each one of the subspaces Ui (1 ≤ i ≤ k) and Wj ⊕ W ∗
j (1 ≤ j ≤ l) are

endowed with the same type of geometry as V (see [6]).

3 Real canonical forms of a linear transformation X ∈ g(V, B) for
symplectic and orthogonal geometries

Let V be a real vector space endowed with either a symplectic or an orthogonal
geometry B : V × V → R, and consider its corresponding Lie algebra g(V, B).
Using the results obtained in Sect. 2, in this section we shall to determine the real
canonical form of a Hamiltonian operator X ∈ sp(V ) under symplectic similarity,
and the canonical form of a linear operator X ∈ o(V ) under similarity.
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3.1 Real canonical forms of Hamiltonian operators

From Theorem 2.11 we know that X ∈ sp(V ) induces a decomposition of V as an
orthogonal sum of the cyclic subspaces associated to the spectrum σ(X) of X; hence,
we shall first compute the real canonical forms of the restrictions X |Vλ : Vλ → Vλ

for any λ ∈ σ(X) and secondly, we shall determine how these real canonical forms
mutually interact.

To do this, recall that the complex eigenvalues of a Hamiltonian transformation
X appear in foursomes λ,−λ, λ,−λ where λ = a + bi with a, b ∈ R, or in real
pairs λ,−λ, in each case with equal algebraic multiplicities. First suppose that X ∈
sp(V ) has a pair of nonzero real eigenvalues λ,−λ satisfying the conditions stated
in Proposition 2.2 (2). Then Vλ ⊕ V−λ is a symplectic space and as consequence,
X |Vλ⊕V−λ ∈ sp(Vλ ⊕ V−λ). If X |Vλ⊕V−λ is diagonalizable, we are done. On the other
case, from Corollary 2.4 follows that the matrix representation of X |Vλ⊕V−λ : Vλ ⊕
V−λ → Vλ ⊕ V−λ is a Hamiltonian matrix:

[X |Vλ⊕V−λ ] =
[−λIm − Nt

m 0
0 λIm + Nm

]
.

Suppose now that λ,−λ, λ,−λ are nonzero complex eigenvalues of X ∈ sp(V ),
where λ = a + bi with a, b ∈ R. Then real canonical form of X |Vλ⊕V−λ is not
necessarily given by a Hamiltonian matrix, but we can determine a suitable real basis
of the symplectic space W = (Vλ ⊕ Vλ) ⊕ (V−λ ⊕ V−λ̄) for which the restriction
X |W ∈ sp(V ) is represented by a Hamiltonian matrix.

Lemma 3.1 Let X ∈ sp(V ) be a linear transformation having a nonzero complex
eigenvalue λ = a + ib with a, b ∈ R. Suppose that Vλ is an m-dimensional complex
cyclic subspace of V . Then, there exists a basis of the symplectic subspace W = (Vλ ⊕
Vλ̄)⊕(V−λ⊕V−λ̄) such that the real canonical form of the restriction X |W : W → W
is given by

[X |W ] =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

A I2 0 . . . 0
0 A I2 . . . 0
... 0 A . . . 0

. . . I2
0 . . . 0 A

−AT 0 0 . . . 0
−I2 −AT 0 . . . 0
0 −I2 −AT . . . 0

. . . 0
0 . . . 0 −I2 −AT

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

where A =
[

a b
−b a

]
and I2 =

[
1 0
0 1

]
.
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Proof Let X ∈ sp(V ) be a Hamiltonian operator having λ,−λ, λ,−λ as nonzero
complex eigenvalues where λ = a + bi with a, b ∈ R. Since Vλ̄, V−λ and V−λ̄

are also m-dimensional complex subspaces of V , there exist real bases {e1 . . . e2m} of
Vλ⊕Vλ̄, and { f1 . . . f2m} of V−λ⊕V−λ̄, such that the canonical form of the restrictions
X |Vλ⊕Vλ̄

: Vλ ⊕Vλ̄ → Vλ ⊕Vλ̄ and X |V−λ⊕V−λ̄
: V−λ ⊕V−λ̄ → V−λ ⊕V−λ̄ are given

by

[X |Vλ⊕Vλ̄
] =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

A I2 0 . . . 0
0 A I2 . . . 0
... A . . . 0

. . . I2
0 . . . 0 A

⎤

⎥⎥⎥⎥⎥
⎥
⎦

and

[X |V−λ⊕V−λ̄
] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−A I2 0 . . . 0
0 −A I2 . . . 0
... −A . . . 0

. . . I2
0 . . . 0 −A

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (4)

where A =
[

a b
−b a

]
and I2 =

[
1 0
0 1

]
.

Then, to obtain the required Hamiltonian matrix, it will be enough to choose a
suitable basis of V−λ ⊕ V−λ̄. Observe that from Eq. (4) follows that the action of
X |V−λ⊕V−λ̄

in the basis { f1 . . . f2m} of V−λ ⊕ V−λ̄ is given by:

X ( f1) = −a f1 + b f2,

X ( f2) = −b f1 − a f2,

X ( fi ) = fi−2 − a fi + b fi+1, for odd i such that 3 ≤ i ≤ 2m − 1,

X ( fi ) = fi−2 − b fi − a fi+1, for even i such that 4 ≤ i ≤ 2m.

Now, defining f̃k = (−1)[2+ k−1
2 ] f2r−(k−1) for 1 ≤ k ≤ 2m, we have that

X ( f̃1) = −a f̃1 − b f̃2 − f̃3,

X ( f̃2) = b f̃1 − a f̃2 + f̃4,

X ( f̃i ) = −a f̃i − 1 f̃i+2 − b f̃i+3, for odd i such that 3 ≤ i < 2m − 1,

X ( f̃i ) = −a f̃i − b f̃i+1 − 1 f̃i+2, for even i such that 4 ≤ i < 2m,

X ( f̃2r−1) = −a f̃2r−1 − b f̃2r ,

X ( f̃2r ) = b f̃2r−1 − a f̃2r .
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Hence { f2m, f2m−1, . . . , (−1)[m+1] f2, (−1)[m+1] f1} is a basis ofV−λ⊕V−λ̄ forwhich
the canonical form of the restriction X |V−λ⊕V−λ̄

is given by:

[X |V−λ⊕V−λ̄
] =

⎡

⎢
⎢⎢⎢⎢
⎣

−At 0 0 . . . 0
−I2 −At 0 . . . 0

−I2 −At . . . 0
. . . 0

0 . . . −I2 −At

⎤

⎥
⎥⎥⎥⎥
⎦

.

As a consequence, lettingW = Vλ ⊕Vλ̄ ⊕V−λ ⊕V−λ̄, the restriction X |W : W → W
has a canonical form given by a Hamiltonian matrix. ��
Remark 3.2 If α = bi with b �= 0 is an eigenvalue of X ∈ sp(2n,R), we can apply 3.1
to obtain the real canonical form of X |Vλ⊕Vλ̄

. For example, if X ∈ sp(4,R) has only
one eigenvalueα = bi with b �= 0, its real canonical forms under symplectic similarity
are:

⎡

⎢⎢
⎣

0 ±b 0 0
∓b 0 0 0
0 0 0 ∓b
0 0 ±b 0

⎤

⎥⎥
⎦ .

Now, if X ∈ sp(V ) is a linear transformation having λ = 0 as an eigenvalue, from
Proposition 2.2 (2) follows the well known result:

Corollary 3.3 Let X ∈ sp(V ) and suppose that 0 ∈ σ(X). Then the algebraic multi-
plicity of 0 is even.

Remark 3.4 If the linear transformation X ∈ sp(V ) is such that 0 ∈ σ(X), recall that
Theorem 2.11 implies that the corresponding cyclic subspace V0 can be decomposed
as follows:

V0 = U1 ⊕ · · · ⊕Ur ⊕ (Us1 ⊕U∗
s1) ⊕ · · · ⊕ (Usk ⊕U∗

sk ),

where for each 1 ≤ i ≤ r (if any)Ui is a symplectic subspace endowed with the same
type of geometry as V ; whereas for each 1 ≤ j ≤ k, U∗

s j denotes the dual pair of the
subspace Usj and moreover, Usj ⊕ U∗

s j is also a symplectic subspace. Since Ui and
Usj ⊕U∗

s j are symplectic subspaces of V , we can apply the ideas described before to
determine the canonical form of the restriction X |V0 : V0 → V0.

Without loss of generality let us suppose that λ,μ ∈ σ(X) are two not necessarily
distinct eigenvalues of X ∈ sp(V ). Now, the following Lemma indicates how to obtain
the canonical form of the restriction X |(Vλ⊕V−λ)⊕(Vμ⊕V−μ) : (Vλ ⊕ V−λ) ⊕ (Vμ ⊕
V−μ) → (Vλ ⊕ V−λ) ⊕ (Vμ ⊕ V−μ), in such a way that its matrix representation
[X |(Vλ⊕V−λ)⊕(Vμ⊕V−μ)] satisfies Eq. (2).
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Lemma 3.5 Let X ∈ sp(V ) be a Hamiltonian operator and consider the decom-
position of V induced by X, as an orthogonal direct sum of symplectic subspaces
[see Theorem 2.11)]. If Vλ ⊕ V−λ and Vμ ⊕ V−μ are two symplectic subspaces in
this decomposition, then the canonical form of the restriction X |(Vλ⊕V−λ)⊕(Vμ⊕V−μ) :
(Vλ ⊕ V−λ) ⊕ (Vμ ⊕ V−μ) → (Vλ ⊕ V−λ) ⊕ (Vμ ⊕ V−μ) is given by

[X |(Vλ⊕V−λ)⊕(Vμ⊕V−μ)] =

⎡

⎢⎢
⎣

−λIm − Nt
m 0

0 −μIn − Nt
n

λIm + Nm 0
0 μIn + Nn

⎤

⎥⎥
⎦ .

Proof Let Vλ ⊕V−λ and Vμ ⊕V−μ be two symplectic subspaces in the decomposition
of V induced by X . Then there exist bases {e1, . . . , er , f1, . . . , fr } of Vλ ⊕ V−λ and
{g1, . . . gs, h1, . . . , hs} of Vμ ⊕V−μ, respectively, such that the restrictions X |Vλ⊕V−λ

and X |Vμ⊕V−μ have the following matrix representations:

[X |Vλ⊕V−λ ] =
[−λIm − Nt

m
λIm + Nm

]
,

[X |Vμ⊕V−μ ] =
[−μIn − Nt

n
μIn + Nn

]
.

Now, it is enough to observe that {ei , g j , fi , h j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of
the symplectic subspace (Vλ ⊕ V−λ) ⊕ (Vμ ⊕ V−μ), and for this basis we have that:

[X |(Vλ⊕V−λ)⊕(Vμ⊕V−μ)] =

⎡

⎢⎢
⎣

−λIm − Nt
m 0

0 −μIn − Nt
n

λIm + Nm 0
0 μIn + Nn

⎤

⎥⎥
⎦ .

��
Summarizing, we can compute the real canonical form of a given Hamiltonian opera-
tor X ∈ sp(V ) under symplectic similarity as follows: first we compute the spectrum
σ(X) of X and consider the indecomposable cyclic subspaces Vλi , i = 1, . . . , r ,
associated to the spectrum σ(X) of X . Then following Theorem 2.11, we decom-
pose the vector space V as an orthogonal direct sum of symplectic subspaces,
V = (Vλ1 ⊕ V−λ1) ⊕ · · · ⊕ (Vλt ⊕ V−λt ), and we may reorder this decomposition in
terms of the increasing dimension of each Vλi . Now, for those pairs of real eigenvalues
λ�,−λ�, Corollary 2.4 indicates how to compute the canonical form of the restriction
X |Vλ�

⊕V−λ�
under symplectic similarity. Whereas for those foursome complex eigen-

values λ j , λ j ,−λ j ,−λ j , from Lemma 3.1 we can obtain the real canonical form of
the restriction X |W under symplectic similarity, whereW = Vλ j ⊕Vλ̄ j

⊕V−λ j ⊕V−λ̄ j
.

The next step is to apply Lemma 3.5 to Vλ1 ⊕ V−λ1 and Vλ2 ⊕ V−λ2 to obtain the real
canonical form of the restriction X |(Vλ1⊕V−λ1 )⊕(Vλ2⊕V−λ2 ) under symplectic similarity.
Finally, to obtain the canonical form of a Hamiltonian operator X ∈ sp(V ), we shall
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continue with this process a finite number of times up to Vλt ⊕ V−λt . Observe that in
this setting, we can apply the ideas presented above to deal with the cases of zero and
pure imaginary complex eigenvalues.

3.2 Real canonical forms for linear transformations in the orthogonal Lie
algebra o(V )

Given a linear transformation X ∈ o(V ), we are interested in obtaining its real canon-
ical form under similarity. Since Theorem 2.11 also holds for this case, we can get a
decomposition of the vector space V in terms of indecomposable cyclic subspaces Vλ

associated to the spectrum σ(X) of X. Again, we may reorder the decomposition of
V in terms of the increasing dimension of the subspaces Vλ, and we can repeat the
procedure described in Sect. 3.1, just noticing that in this case it is not necessary to use
Lemma 3.5 because (V, B) is a vector space endowed with an orthogonal geometry
B : V × V → R.

4 Classification of low-dimensional quadratic Hamiltonians

In this section we describe the non-equivalent quadratic Hamiltonians for a standard
real symplectic space of dimension 2 and 4. Our motivation comes from [7], since
in this work the coadjoint orbits of the (2n + 1)-dimensional Heisenberg Lie algebra
are used to describe mechanical systems for quadratic Hamiltonians on a standard
symplectic space (Rn, ω), where [ω] = [ 0 −In

In 0

]
. In particular, the motion of n uncou-

pled harmonic oscillators is described with this setting. For this reason, in this section
we shall apply the results obtained in Sects. 2 and 3 before, to provide a list of the
nonequivalent quadratic Hamiltonians defined in the standard real symplectic spaces
(R2, ω) and (R4, ω).

Consider the standard symplectic space (R2n, ω). A quadratic Hamiltonian is a
quadratic form H : R2n → R such that

H(u) = 1

2
g(Su, u), (5)

where the vector u = (u1, . . . , un, v1, . . . , vn) ∈ R
2n is written in terms of a sym-

plectic basis and S : R2n → R
2n is a symmetric linear transformation with respect to

the canonical inner product g of R2n , that is, S satisfies that g(Su, v) = g(u, Sv) for
all u, v ∈ R

2n . It is usual to say that such linear transformation S is a Hamiltonian
operator, and we denote by M the space of Hamiltonian operators, that is,

M := {S ∈ gl(R2n) | g(Su, v) = g(u, Sv) for all u, v ∈ R
2n}.

It is a well known fact that the Hamiltonian equation can be written as follows:

u′ = J Su, (6)

where J =
[

0 In
−In 0

]
is a complex structure in R2n .
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Observe that the symplectic space (R2n, ω) is also an abelian Lie algebra equipped
with two ad-invariant non-degenerate bilinear forms: the symplectic form ω : R2n ×
R
2n → R and the canonical inner product g : R2n × R

2n → R (moreover, ω is an
integrable form). Then, there exists a linear transformation R : R2n → R

2n such that
for all u, v ∈ R

2n ,
ω(u, v) = g(u, Rv). (7)

Hence, fixing a symplectic basis for R2n , it is easy to verify that R : R2n → R
2n

corresponds to the complex structure J given in Eq. (6).
Now consider a linear transformation X ∈ sp(2n,R), then by Eq. (7) we have that

g(Xu, Jv) + g(u, J Xv) = 0.

Since for all u, v ∈ R
2n, g(Ju, v)+ g(u, Jv) = 0 and J 2 = −I2n , we conclude that

g(J Xu, v) = g(u, J Xv).

That is, J X is a symmetric linear transformation with respect to the canonical inner
product g of R2n .

On the other hand, consider now a Hamiltonian operator S ∈ M. Since (R2n, ω)

is an abelian Lie algebra and the canonical inner product g : R
2n × R

2n → R is
ad-invariant, it follows that g(v, Su) = g(Su, v) = g(u, Sv) for all u, v ∈ R

2n . Thus,
by Eq. (7), this is equivalent to:

ω(v, J Su) = ω(u, J Sv);

that is,

−ω(J Su, v) − ω(u, J Sv) = 0;

and therefore −J S ∈ sp(2n,R). Summarizing, we have proved:

Proposition 4.1 There is a bijection between the space of Hamiltonian operators and
the symplectic Lie algebra sp(2n,R).

Nowwe are interested in determining the conditions underwhich two quadraticHamil-
tonians are equivalent.

We say that two quadraticHamiltonians H1 and H2 are equivalent if and only if there
exists a map T ∈ Sp(2n,R) such that H1(u) = H2(Tu) for all u ∈ R

2n . By definition
we know that H1(u) = 1

2g(S1u, u) and H2(T (u)) = 1
2g(S2Tu, Tu) = g(Tu, S2Tu)

for all u ∈ R
2n , where S1 and S2 ∈ M are Hamiltonian operators. Thus fixing a

symplectic basis for (R2n, ω), condition H1(u) = H2(Tu) holds if and only if the
corresponding matrix representations satisfy

[S1]t = [T ]t [S2][T ].
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Table 1 Nonequivalent quadratic Hamiltonians for R2

Eigenvalues
λ ∈ σ(X)

Decomposition of
R
2 given by case

Canonical
forms for
X ∈ sp(2,R)

Quadratic
Hamiltonian
H(x, y)

λ = 0 4.1.1.1 0 0

λ = 0 4.1.1.2

[
0 ±1
0 0

]
±y2/2

λ ∈ R − {0} 4.1.2.1

[
λ 0
0 −λ

]
λxy

λ = bi, b ∈ R − {0} 4.1.2.2

[
0 ±b

∓b 0

]
∓b(x2 + y2)/2

Since T : R2n → R
2n is a linear transformation in the symplectic Lie groupSp(2n,R),

it is easy to verify that [T ]t = −J [T ]−1 J and hence,

[T ]t [S2][T ] = −J [T ]−1 J [S2][T ].

Now from Proposition 4.1 above it follows that J X2 ∈ sp(2n,R). Thus, the classifi-
cation problem for quadratic Hamiltonians corresponds to the classification problem
for the orbits of the adjoint action of the symplectic Lie group Sp(2n,R) into its
symplectic Lie algebra sp(2n,R):

Sp(2n,R) × sp(2n,R) → sp(2n,R),

(T, X) 	→ T−1XT .

Hence, the results established in Sect. 2 can be used to determine the canonical form
of a Hamiltonian transformation X : R2n → R

2n under symplectic similarity. We
shall exemplify this in the following setting: first, consider the real symplectic space
(R2, ω). To determine when two quadratic Hamiltonians H1 and H2 are equivalent, we
shall compute the canonical forms of the corresponding Hamiltonian transformations
X1, X2 ∈ sp(2n,R) under symplectic similarity. Thenwe consider the real symplectic
space (R4, ω) and we proceed in the same way. Hence, following the notation intro-
duced in Sects. 4.1 and 4.2 below, the next Theorem summarizes the main results of
this section:

Theorem 4.2 For n = 1, 2 consider the standard symplectic vector space (R2n, ω).
Given a Hamiltonian transformation X ∈ sp(2n,R) with spectrum σ(X), let [X ]
denote its canonical form under symplectic similarity.

(i) For n = 1, consider X ∈ sp(2,R), then the list of non-equivalent quadratic
Hamiltonians H : R2 → R is given by Table 1 as above.

(ii) For n = 2, consider X ∈ sp(4,R). Then the list of non-equivalent quadratic
Hamiltonians H : R4 → R is given by Table 2 as follows:
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Table 2 Nonequivalent quadratic Hamiltonians for R4

Eigenvalues
λ ∈ σ(X)

Decomposition of
R
4 given by case

Canonical form for
X ∈ sp(4,R)

Quadratic
Hamiltonian
H(u1, u2, v1, v2)

λ = 0 4.2.1.1 0 0

λ = 0 4.2.1.2

⎡

⎢⎢
⎣

0 1 0 0
0 0 0 ±1
0 0 0 0
0 0 −1 0

⎤

⎥⎥
⎦ u2v1 ± v2

2/2

λ = 0 4.2.1.3

⎡

⎢⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎤

⎥⎥
⎦ u2v1

λ = 0
μ ∈ R − {0} 4.2.1.4

⎡

⎢⎢
⎣

μ 0 0 0
0 0 0 0
0 0 −μ 0
0 0 0 0

⎤

⎥⎥
⎦ μu1v1

λ = 0
μ = bi, b ∈ R − {0} 4.2.1.5

⎡

⎢⎢
⎣

0 0 ±b 0
0 0 0 0

∓b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ ±b(u21 + v21)/2

λ = 0
μ ∈ R − {0} 4.2.1.6

⎡

⎢
⎢
⎣

μ 0 0 0
0 0 0 ±1
0 0 −μ 0
0 0 0 0

⎤

⎥
⎥
⎦ μu1v1 ± v22/2

λ = 0
μ = bi, b ∈ R − {0} 4.2.1.7

⎡

⎢⎢
⎣

0 0 b 0
0 0 0 ±1

−b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 −b 0
0 0 0 ±1
b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦

(b(u21 + v21) ± v22)/2
(−b(u21 + v21) ± v22)/2

μ = a + bi
a, b ∈ R − {0} 4.2.2.1

⎡

⎢⎢
⎣

a b 0 0
−b a 0 0
0 0 −a b
0 0 −b −a

⎤

⎥⎥
⎦ a(u1v1 + u2v2) + b(u2v1 − u1v2)

μ = bi
b ∈ R − {0} 4.2.2.2

⎡

⎢⎢
⎣

0 0 0 ∓b
0 0 ∓b 0
0 ±b 0 0

±b 0 0 0

⎤

⎥⎥
⎦ ∓b(u1u2 + v1v2)

μ = bi
b ∈ R − {0} 4.2.2.3

⎡

⎢
⎢
⎣

0 ±b 1 0
∓b 0 0 1
0 0 0 ±b
0 ∓b 0 0

⎤

⎥
⎥
⎦ (v21 + v22)/2 ± b(u2v1 − u1v2)
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Table 2 continued

Eigenvalues
λ ∈ σ(X)

Decomposition of
R
4 given by case

Canonical form for
X ∈ sp(4,R)

Quadratic
Hamiltonian
H(u1, u2, v1, v2)

μ = bi
ν = ci
b, c ∈ R − {0}

4.2.2.4

⎡

⎢
⎢
⎣

0 0 ∓c 0
0 0 0 −b

±c 0 0 0
0 b 0 0

⎤

⎥
⎥
⎦

⎡

⎢⎢
⎣

0 0 ∓c 0
0 0 0 b

±c 0 0 0
0 −b 0 0

⎤

⎥⎥
⎦

∓(c(u21 + v21)/2 ± (u22 + v22))/2
∓(c(u21 + v21)/2∓(u22 + v22))/2

μ = bi, b ∈ R − {0}
ν ∈ R − {0} 4.2.2.5

⎡

⎢⎢
⎣

−ν 0 0 0
0 0 0 ∓b
0 0 ν 0
0 ±b 0 0

⎤

⎥⎥
⎦ −νu1v1∓b(u21 + v22)/2

μ ∈ R − {0} 4.2.2.6

⎡

⎢⎢
⎣

μ 0 0 0
0 μ 0 0
0 0 −μ 0
0 0 0 −μ

⎤

⎥⎥
⎦ μ(u1v1 + u2v2)

μ ∈ R − {0} 4.2.2.7

⎡

⎢
⎢
⎣

μ 1 0 0
0 μ 0 0
0 0 −μ 0
0 0 −1 −μ

⎤

⎥
⎥
⎦ μ(u1v1 + u2v2) + u2v1

μ, ν ∈ R − {0}
μ �= ν

4.2.2.8

⎡

⎢
⎢
⎣

−ν 0 0 0
0 −μ 0 0
0 0 ν 0
0 0 0 μ

⎤

⎥
⎥
⎦ −μu2v2 − νu1v1

Proof Given X ∈ sp(2n,R) for n = 1, 2, we shall analyze the spectrum σ(X) to pro-
vide its possible canonical forms under symplectic similarity, and thus, to establish the
corresponding quadratic Hamiltonian. For this we shall proceed by cases, as follows.

4.1 Case 1

(R2, ω). Let J = [ 0 −1
1 0

]
be a complex structure on (R2, ω) and let X ∈ sp(2,R) be

a Hamiltonian operator with spectrum σ(X). Since R
2 is an irreducible symplectic

space, we have to consider the following cases:
4.1.1. Suppose that R2 = V0, that is, λ = 0 is the unique eigenvalue of X ∈ sp(2,R).
Thus, we have the following:
4.1.1.1 When X ∈ sp(2,R) is diagonalizable (that is, X is identically zero), we have
that H(x, y) = 0 for all (x, y) ∈ R

2.

4.1.1.2 If X ∈ sp(2,R) is not diagonalizable, then their canonical forms under sym-
plectic similarity are given by

[X ] =
[
0 ±1
0 0

]
,
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and the corresponding quadratic Hamiltonians are H(x, y) = ±y2/2.
4.1.2. Suppose that R2 = Vλ ⊕ V−λ with λ �= 0, that is, σ(X) = {λ,−λ|λ �= 0}, and
let (x, y) ∈ (R2, ω). We shall consider two cases: either λ ∈ R− {0} or λ ∈ C− {0}.
4.1.2.1 In the first case, X is diagonalizable, its canonical form under simplectic
similarity is given by

[X ] =
[

λ 0
0 −λ

]
,

and the corresponding quadratic Hamiltonian is H(x, y) = λxy.
4.1.2.2 In the second case we necessarily have Re(λ) = 0, that is, λ = bi with b �= 0.
Then the non-equivalent real canonical forms of X under symplectic similarity and
their corresponding quadratic Hamiltonians are given by

[X ] =
[

0 ±b
∓b 0

]
, H(x, y) = ∓b(x2 + y2)/2.

4.2 Case 2

(R4, ω). Let X : R4 → R
4 be a Hamiltonian operator with spectrum σ(X). Analo-

gously to Case 1 above, we shall decompose R4 as a direct sum of cyclic subspaces,
according to λ = 0 ∈ σ(X) or λ = 0 /∈ σ(X).
4.2.1. If λ = 0 ∈ σ(X), then its algebraic multiplicity must be either 2 or 4.

Suppose that λ = 0 is an eigenvalue of algebraic multiplicity 4 and let
(u1, u2, v1, v2) ∈ (R4, ω). Then R4 = V0 or it can be decomposed as R4 = U ⊕U∗,
where U ⊂ R

4 is a two-dimensional subspace and U∗ is its dual pair.
4.2.1.1 Suppose that R4 = V0. The trivial case is obtained when X : V0 → V0 is
diagonalizable (that is, X is identically zero) and thus, H(u1, u2, v1, v2) = 0.
4.2.1.2 If X : V0 → V0 is not diagonalizable, we compute its Jordan form on the basis
of eigenvectors. From this basis we can obtain suitable symplectic bases to obtain two
non-equivalent Hamiltonian matrix representations for X :

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 1 0 0
0 0 0 ±1
0 0 0 0
0 0 −1 0

⎤

⎥⎥
⎦ ,

and hence H(u1, u2, v1, v2) = u2v1 ± v2
2/2.

4.2.1.3 Suppose now thatR4 = U⊕U∗,whereU ⊂ V is a two-dimensional subspace
andU∗ is its dual space. Then the Jordan form of X can be turned into a Hamiltonian
matrix:
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⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ → [X ] =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎤

⎥
⎥
⎦ ,

and the corresponding quadratic Hamiltonian is H(u1, u2, v1, v2) = u2v1.
Suppose that λ = 0 is an eigenvalue of algebraic multiplicity 2. Then, V0 is an

irreducible two-dimensional symplectic space and thus, R4 = V0 ⊕ (Vμ ⊕ V−μ) with
μ ∈ F − {0}. From Case 1 above follows that:
4.2.1.4 R

4 = V0 ⊕ (Vμ ⊕ V−μ), where both X |V0 and X |Vμ⊕V−μ are diagonalizable
over R. In this case necessarily, μ ∈ R − {0}, then

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 μ 0
0 0 0 −μ

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

μ 0 0 0
0 0 0 0
0 0 −μ 0
0 0 0 0

⎤

⎥⎥
⎦ ,

and the corresponding quadratic Hamiltonian is H(u1, u2, v1, v2) = μu1v1.
4.2.1.5 R

4 = V0 ⊕ (Vμ ⊕ V−μ), where X |V0 is diagonalizable over R but X |Vμ⊕V−μ

is not. In this case, we necessarily have that μ = −bi with b ∈ R − {0}. Then we
obtain twonon-equivalent realHamiltonianmatrices and their corresponding quadratic
Hamiltonians:

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 ±b
0 0 ∓b 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 0 ±b 0
0 0 0 0

∓b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ ,

with H(u1, u2, v1, v2) = ±b(u21 + v21)/2.
4.2.1.6 R

4 = V0 ⊕ (Vμ ⊕ V−μ), where X |Vμ⊕V−μ is diagonalizable over R but X |V0
is not. In this case it follows that μ ∈ R − {0}. Then we obtain two non-equivalent
Hamiltonian matrices and their corresponding quadratic Hamiltonians:

⎡

⎢⎢
⎣

0 ±1 0 0
0 0 0 0
0 0 μ 0
0 0 0 −μ

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

μ 0 0 0
0 0 0 ±1
0 0 −μ 0
0 0 0 0

⎤

⎥⎥
⎦ ,

with H(u1, u2, v1, v2) = μu1v1 ± v22/2.
4.2.1.7R4 = V0 ⊕ (Vμ ⊕V−μ), where neither X |V0 nor X |Vμ⊕V−μ are diagonalizable
over R. In this case it follows that μ = −bi with b ∈ R − {0}, and we obtain four
non-equivalent canonical forms under symplectic similarity:

⎡

⎢⎢
⎣

0 ±1 0 0
0 0 0 0
0 0 0 b
0 0 −b 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 0 b 0
0 0 0 ±1

−b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ ,
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where H(u1, u2, v1, v2) = (b(u21 + v21) ± v22)/2, and
⎡

⎢⎢
⎣

0 ±1 0 0
0 0 0 0
0 0 0 −b
0 0 b 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 0 −b 0
0 0 0 ±1
b 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = (−b(u21 + v21) ± v22)/2.
4.2.2. If λ = 0 /∈ σ(X), according to Sect. 2 we shall analyze the possibilities for the
decomposition of R4 as a direct sum of cyclic subspaces associated to the spectrum
σ(X):
4.2.2.1 R

4 = Vμ ⊕ V−μ ⊕ Vμ̄ ⊕ V−μ̄ with μ = a + bi, a, b ∈ R − {0}.
⎡

⎢⎢
⎣

a b 0 0
−b a 0 0
0 0 −a −b
0 0 b −a

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

a b 0 0
−b a 0 0
0 0 −a b
0 0 −b −a

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = a(u1v1 + u2v2) + b(u2v1 − u1v2).
4.2.2.2 R

4 = Vμ ⊕ V−μ, with μ = bi, b ∈ R − {0} an eigenvalue of geometric
multiplicity 2. In this case we obtain two non-equivalent real canonical forms under
symplectic similarity:

⎡

⎢
⎢
⎣

0 ±b 0 0
∓b 0 0 0
0 0 0 ±b
0 0 ∓b 0

⎤

⎥
⎥
⎦ → [X ] =

⎡

⎢
⎢
⎣

0 0 0 ∓b
0 0 ∓b 0
0 ±b 0 0

±b 0 0 0

⎤

⎥
⎥
⎦ ,

where H(u1, u2, v1, v2) = ∓b(u1u2 + v1v2).
4.2.2.3 R

4 = Vμ ⊕ V−μ, with μ = bi, b ∈ R − {0} an eigenvalue of geometric
multiplicity 1. In this case we also obtain two non-equivalent real canonical forms
under symplectic similarity:

⎡

⎢⎢
⎣

0 ±b 1 0
∓b 0 0 1
0 0 0 ±b
0 0 ∓b 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 ±b 1 0
∓b 0 0 1
0 0 0 ±b
0 ∓b 0 0

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = (v21 ± 2b(u2v1 − u1v2) + v22)/2.
4.2.2.4 R

4 = (Vμ ⊕ V−μ) ⊕ (Vν ⊕ V−ν), with μ �= ν non-zero purely imaginary
eigenvalues such that μ = bi and ν = ci with b, c ∈ R − {0}. In this case we have
four non-equivalent real canonical forms under symplectic similarity:

⎡

⎢⎢
⎣

0 b 0 0
−b 0 0 0
0 0 0 ±c
0 0 ∓c 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 0 ∓c 0
0 0 0 −b

±c 0 0 0
0 b 0 0

⎤

⎥⎥
⎦ ,
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where H(u1, u2, v1, v2) = ∓(c(u21 + v21) − b(u22 + v22))/2,

⎡

⎢⎢
⎣

0 −b 0 0
b 0 0 0
0 0 0 ±c
0 0 ∓c 0

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

0 0 ∓c 0
0 0 0 b

±c 0 0 0
0 −b 0 0

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = ∓(c(u21 + v21) + b(u22 + v22))/2.
4.2.2.5 R

4 = (Vμ ⊕ V−μ) ⊕ (Vν ⊕ V−ν), with μ = bi, b, ν ∈ R − {0}. In this case
we have two non-equivalent canonical forms under symplectic similarity:

⎡

⎢⎢
⎣

0 ±b 0 0
∓b 0 0 0
0 0 ν 0
0 0 0 −ν

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

−ν 0 0 0
0 0 0 ∓b
0 0 ν 0
0 ±b 0 0

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = −νu1v1∓b(u21 + v22)/2.
4.2.2.6 R

4 = Vμ ⊕ V−μ, with μ �= 0 and X |Vμ is diagonalizable over R:

⎡

⎢
⎢
⎣

μ 0 0 0
0 μ 0 0
0 0 −μ 0
0 0 0 −μ

⎤

⎥
⎥
⎦ → [X ] =

⎡

⎢
⎢
⎣

μ 0 0 0
0 μ 0 0
0 0 −μ 0
0 0 0 −μ

⎤

⎥
⎥
⎦ ,

where H(u1, u2, v1, v2) = μ(u1v1 + u2v2).
4.2.2.7 R

4 = Vμ ⊕ V−μ, with μ �= 0 and X |Vμ is not diagonalizable over R:

⎡

⎢⎢
⎣

μ 1 0 0
0 μ 0 0
0 0 −μ 1
0 0 0 −μ

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

μ 1 0 0
0 μ 0 0
0 0 −μ 0
0 0 −1 −μ

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = μ(u1v1 + u2v2) + u2v1.
4.2.2.8 R

4 = (Vμ ⊕ V−μ) ⊕ (Vν ⊕ V−ν), with μ �= ν and μ, ν ∈ R − {0}.
⎡

⎢⎢
⎣

μ 0 0 0
0 −μ 0 0
0 0 ν 0
0 0 0 −ν

⎤

⎥⎥
⎦ → [X ] =

⎡

⎢⎢
⎣

−ν 0 0 0
0 −μ 0 0
0 0 ν 0
0 0 0 μ

⎤

⎥⎥
⎦ ,

where H(u1, u2, v1, v2) = −μu2v2 − νu1v1. ��
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