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1 Introduction

BV functions of a single variable were first introduced by Camille Jordan, in a paper
[21] that deals with the convergence of Fourier series. Soon after Jordan’s work, many
mathematicians began to study notions of bounded variation for functions of several
variables. There are various approaches to the notion of variation for functions of
several variables. We can mention those belonging to Vitali, Hardy, Krause, Arzela,
Frechét, Tonelli, Hahn, Kronrod-Vitushkin, Minlos, and others. Functions of bounded
variation in n variables (n > 1) belonging to each of these classes havemore or less the
same properties as the functions of bounded variation of one variable. However, there
are some properties in the one-dimensional case that cannot be transferred automati-
cally to the multidimensional one (see [22]). On the other hand, functions of bounded
variation inRn can be identified with n-dimensional normal currents inRn . This point
of view is due to Federer [18].

In the literature, the many notions of bounded variation are mainly studied for
functions defined on a rectangle J ⊂ R

n . A definition of the variation in the sense
of Hardy and Krause is given in [22]. Let f : [0, 1]n → R. Let a = (a1, . . . , an)
and b = (b1, . . . , bn) be elements of [0, 1]n such that a < b (see Sect. 2). The n-
dimensional difference operator�n , which assigns to the axis-parallel rectangle [a, b]
a n-dimensional quasi-volume

�(n)( f ; [a, b]) :=
1∑

j1=0

· · ·
1∑

jn=0

(−1) j1+···+ jn f (b1 + j1(a1 − b1), . . . , bn

+ jn(an − bn)).

For s = 1, . . . , n let 0 = x (s)
0 < x (s)

1 < . . . x (s)
ms = 1 be a partition of [0, 1], and P be

the partition of [0, 1]n which is given by

P =
{[

x (1)
l1

, x (1)
l1+1

]
× · · · ×

[
x (n)
ln

, x (n)
ln+1

]
, ls = 0, . . . ,ms − 1, s = 1, . . . , n

}
.

(1.1)

Then the variation of f on [0, 1]n in the sense of Vitali is given by

V (d)( f ; [0, 1]n) := sup
P

∑

A∈P
|�(n)( f ; A)|,

where the supremum is extended over all partitions of [0, 1]n into axis-parallel boxes
generated by d one-dimensional partitions of [0, 1], as in (1.1).

If the same functions restricted to the various faces of [0, 1]s with s = 1, . . . , n are
of bounded variation in the sense of Vitali over each of them, then f is said to be of
bounded variation on [0, 1]s in the sense of Hardy and Krause, that is, for 1 ≤ s ≤ n
and 1 ≤ i1 < · · · < is ≤ n, let V (s)( f ; i1, . . . , is; [0, 1]n) denote the s-dimensional
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variation in the sense of Vitali of the restriction of f to the face

U (i1,...,is )
d = {(x1, . . . , xn) ∈ [0, 1]n : x j = 1 for all j �= i1, . . . , is}

of [0, 1]n . Then the variation of f on [0, 1]n in the sense of Hardy andKrause anchored
at 1, abbreviated by HK-variation, is given by

VarHK ( f ; [0, 1]n) =
n∑

s=1

∑

1≤i1<···<is≤n

V (s)( f ; i1, . . . , is; [0, 1]n). (1.2)

Note that for the definition of the HK-variation in (1.2), we add the n-dimensional
variation in the sense of Vitali plus the variation in the sense of Vitali on all lower
dimensional faces of [0, 1]n which are adjacent to 1.

On the other hand, a function f : Rn → R is said to be of bounded Tonelli-variation
if a.e. in (x1, . . . , x j−1, x j+1, . . . , xn) it is of bounded variation in each variable x j
for all 1 ≤ j ≤ n and if these variations BV j ( f (x)) := BVx j∈R( f (x)) are Lebesgue
integrable as functions of the other n − 1 variables x1, x2, . . . , x j−1, x j+1, . . . , xn :

VT( f ) :=
n∑

j=1

∫

Rn−1
BV j ( f (x))

n∏

k=1
k �= j

dxk,

which for a smooth enough function f , it is equal to

VT( f ) =
∫

R

n∑

j=1

∣∣∣∣
∂ f (x)

∂x j

∣∣∣∣ dx .

Among the sources dealing with the Tonelli variation, let us mention [2,7,9,16,27].
Until now it seems ([20,22]) that only the approach due to Vitali–Hardy–Krause

gives a notion of variation for real-valued functions of several variables such that
a complete analogue of the Helly theorem holds with respect to the pointwise con-
vergence of extracted subsequences. However, the point of view which is nowadays
accepted in the literature as most efficient generalization of the 1-dimensional theory
is due to De Giorgi and Fichera (see [17,19]).

Thus, the unvarying interest generated by the classical notion of function of bounded
variation has led to some generalizations of the concept, mainly, intended to the search
of bigger classes of functions whose elements have pointwise convergent Fourier
series or to find applications in geometric measure theory, calculus of variations, and
mathematical physics. As in the classical case, these generalizations have found many
applications in the study of certain differential and integral equations (see e.g., [8]).

In this paper, we present a detailed study of the space of functions of boundedRiesz-
�-variation, which was introduced previously in [5,6], for real-valued functions of
several variables.

This extends the work done in [3] (resp. in [4]), in which the authors present the
notion of real-valued function (resp. vector valued) of bounded Riesz-�-variation,
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that are defined on a rectangle of R2. In particular, we extend some results due to
Chistyakov ([15]) and give a version of Riesz’s Lemma for the case of functions of
several real variables which take values in a reflexive Banach space.

2 Notation and preliminary

To start, we give some notations and definitions that will be used throughout the rest
of this paper (see [5,12,13]).

As usual,N,N0 andR denotes the set of all positive integers, non-negative integers
and real numbers, respectively. A typical point of Xn (N,N0 or R) is denoted as
x = (x1, x2, . . . , xn) := (xi )ni=1, but the canonical unit vectors of R

n are denoted by

ej ( j = 1, 2, . . . , n); that is, ej := (e j1 , e
j
2 , . . . , e

j
n) where, e

j
r :=

{
0 if r �= j
1 if r = j.

. The

zero n-tuple (0, 0, . . . , 0) will be denoted by 0, and by 1 we will denote the n-tuple
1 = (1, 1, . . . , 1).

If α = (α1, α2, . . . , αn) is a n-tuple of non-negative integers then we call α a
multi-index ([1]).

If a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ R
n we use the notation a < b to

mean that ai < bi for each i = 1, . . . , n and similarly are defined a = b, a ≤ b, a ≥ b
and a > b. If a < b, the set J := [a, b] =∏n

i=1[ai , bi ]will be called a n-dimensional
closed interval. The Euclidean volume of an n-dimensional closed interval will be
denoted by Vol[a, b]; that is, Vol[a, b] =∏n

i=1(bi − ai ).
In addition, for α = (α1, α2, . . . , αn) ∈ N

n
0 and x = (x1, x2, . . . , xn) ∈ R

n we will
use the notations |α| := α1 + α2 + · · · + αn and αx := (α1x1, α2x2, . . . , αnxn).

In this work, we will consider functions whose domain is a n-dimensional closed
interval [a, b] and whose range is an invariant metric semigroup (X, d,+, ·); i.e.,
(X, d) is a complete metric space, d is a translation invariant metric on X , (X,+) is
an commutative semigroup. In particular, the triangle inequality implies that, for all
u, v, p, q ∈ X ,

d(u, v) ≤ d(p, q) + d(u + p, v + q) and

(u + p, v + q) ≤ d(u, v) + d(p, q). (2.1)

Clearly any normed space is a metric semigroup.
The following standard notation (see [14]) will be used: N will denote the set of

all continuous convex functions � : [0,+∞) → [0,+∞) such that �(t) = 0 if and
only if t = 0, and N∞ the set of all functions � ∈ N , for which the Orlicz condition

(also called ∞1 condition) holds: limt→∞
�(t)

t
= +∞. Following [23], functions

from N are called ϕ-functions. Any function � ∈ N is strictly increasing, and so,

its inverse �−1 is continuous and concave; besides, the functions t 	−→ �(t)

t
and

t 	−→ t�−1
(
1

t

)
are nondecreasing for t > 0.

One says that a function � ∈ N satisfies a �2 condition, and writes � ∈ �2, if
there are constants K > 2 and t0 > 0 ∈ R such that
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�(2t) ≤ K�(t) for all t ≥ t0. (2.2)

For instance, if �(x) := t p, p > 1, one may choose the optimal constant K = 2p.
Now we define two sets that will play an important role in this work:

E(n) := {θ ∈ N
n
0 : θ ≤ 1 and |θ | is even},

O(n) := {θ ∈ N
n
0 : θ ≤ 1 and |θ | is odd}.

Notice that these sets are related in one-to-one correspondence; indeed, if θ =
(θ1, . . . , θn) ∈ E(n) then we can define θ̃ := (θ1, . . . , θi−1, 1 − θi , θi+1, . . . θn) ∈
O(n), and this operation is clearly invertible.

Definition 2.1 [10,11,26] Given f : [a, b] → X , we define the n-dimensional Vitali
difference of f over an n-dimensional interval [x, y] ⊆ [a, b], by

�n( f, [x, y]) := d

⎛

⎝
∑

θ∈E(n)

f (θ x + (1 − θ)y),
∑

θ∈O(n)

f (θ x + (1 − θ)y)

⎞

⎠ .

(2.3)

Note that in the case n = 2, we have E(2) := {(0, 0), (1, 1)} and O(2) =
{(1, 0), (0, 1)}, thus�2( f, [x, y]) = d( f (x1, x2)+ f (y1, y2), f (y1, x2)+ f (x1, y2)).

Even when �n( f, [x, y]), in (2.3), is defined for x < y, note that if xi = yi for
some i , then the right-hand side of (2.3) is equal to zero for all maps f : [a, b] → X .
This difference is also calledmixed difference and it is usually associated to the names
of Vitali, Lebesgue, Hardy, Krause, Fréchet and De la Vallée Poussin ([10,11,20]).

Now,weare going todefine the�-variationof a function f : [a, b] → X (see [5,6]).
To that end, we consider net partitions of [a, b] = ∏n

i=1[ai , bi ]; that is, partitions of
the kind

ξ = ξ1 × ξ2 × · · · × ξn with ξi :=
{
t (i)j

}ki
j=0

, i = 1, . . . , n, (2.4)

where {ki }ni=1 ⊂ N and for each i , ξi is a partition of [ai , bi ]. The set of all net
partitions of an interval [a, b] will be denoted by 	([a, b]).

A point in a net partition ξ is called a node ([25]) and it is of the form

tα := (t (1)α1
, t (2)α2

, t (3)α3
, . . . , t (n)

αn
),

where 0 ≤ α = ( αi )
n
i=1 ≤ κ , with κ := (ki )ni=1, as a result, t

( j)
αi ∈ [a j , b j ].

For the sake of simplicity in notation, we will simply write ξ = {tα}, to refer to all
nodes determined by a given partition ξ.

A cell of an n-dimensional interval [a, b] is an n-dimensional subinterval of the
form [tα−1, tα], for 0 < α ≤ κ .
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Note that

t0 = (t (1)0 , t (2)0 , . . . , t (n)
0 ) = (a1, a2, . . . , an) and tκ = (t (1)k1

, t (2)k2
, . . . , t (n)

kn
)

= (b1, b2, . . . , bn).

3 RVn
�([a, b]; X)

Now we introduce the Riesz-�-variation of a function f .

Definition 3.1 Let f : [a, b] → X and � ∈ N . The �-variation, in the sense of
Vitali–Riesz of f is defined as

RVn
�( f, [a, b]) := sup

ξ∈	([a,b])
RVn

�( f, [a, b], ξ), (3.1)

where ξ = {tα}, and

RVn
�( f, [a, b], ξ) :=

∑

1≤α≤κ

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα].

The main objective of this section is to define the Riesz-�-variation of a function
f . To do that it will be necessary to define the variation of a function when we consider
that certain variables are fixed, thus as it was done in [11], we nowdefine the truncation
of a point, of an interval and of a function, by a given multi-index 0 ≤ η ≤ 1, with
0 �= η. Notice that in this case, the entries of a such η are either 0 or 1.

• The truncation of a point x ∈ R
n by a multi-index 0 ≤ η ≤ 1 with 0 �= η,

which is denoted by x�η, is defined as the |η|-tuple that is obtained if we suppress
from x the entries for which the corresponding entries of η are equal to 0. That is,
x�η = (xi : i ∈ {1, 2, . . . , n}, ηi = 1). For instance, if x = (x1, x2, x3, x4, x5)
and η = (0, 1, 1, 0, 1) then x�η = (x2, x3, x5).

• The truncation of an n-dimensional interval [a, b] by a multi-index 0 ≤ η ≤ 1
with 0 �= η, is defined as [a, b]�η := [a�η, b�η].

• Given a function f : [a, b] → X , a multi-index 0 ≤ η ≤ 1 with 0 �= η and a point
z ∈ [a, b], we define f z

η : [a, b]�η → X , the truncation of f by η, by the formula

f z
η (x�η) := f (ηx + (1 − η)z), x ∈ [a, b].

Note that the function f z
η depends only on the |η| variables xi for which ηi = 1.

Remark 3.2 Given a function f : [a, b] → X and a multi-index η �= 0, then the
|η|-dimensional Vitali difference for f a

η (cf. (2.3)), is given by
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�|η|( f a
η , [x, y])

:= d

⎛

⎜⎜⎜⎝
∑

θ∈E(n)
θ≤η

f (η(θx + (1 − θ)y) + (1 − η)a) ,
∑

θ∈O(n)
θ≤η

f (η(θx + (1 − θ)y) + (1 − η)a)

⎞

⎟⎟⎟⎠ .

The Vitali-type nth variation of f : [a, b] → X is defined by

Vn( f, [a, b]) := sup
∑

1≤η≤κ

�|η|( f a
η , [x, y]),

the supremum being taken over all multiindices κ and all net partitions of [a, b].
The total variation of f : [a, b] → X in the sense of Hildebrandt and Leonov (see

[20,22]) is defined by

TV( f, [a, b]) :=
∑

0 �=α≤1

V|α|( f a
α , [a, b]�α),

the summations here and throughout the paper being taken over n-dimensional mul-
tiindices in the ranges specified under the summation sign.

Definition 3.3 Let � ∈ N and let f : [a, b] → X be a function. We call

TRV�( f, [a, b]) :=
∑

0 �=η≤1

RV|η|
� ( f a

η , [a, b]�η)

the �-variation of f in the sense of Vitali–Hardy–Riesz, briefly: Riesz-�-variation of
f , in [a, b]. The set of all functions f satisfying the condition TRV�( f, [a, b]) < ∞
will be denoted by RVn

�([a, b]; X).

It is easy to check that if f is a constant function then �n( f, [x, y]) = 0 and con-
sequently TRV�( f, [a, b]) = 0. In fact, TRV�( f, [a, b]) = 0 if and only if f is
constant, as we show next.

Theorem 3.4 TRV�( f, [a, b]) = 0 if and only if f is a constant function.

Proof We just prove the necessity of the condition. Suppose TRV�( f, [a, b]) = 0
and let x = (x1, . . . , xn) be a point in [a, b]. Then, x determines, for each 1 ≤ i ≤ n,
the partitions ξi := {ai , xi , bi } := {t (i)0 , t (i)1 , t (i)2 }.

Since TRV�( f, [a, b]) = 0, we must have �|η|( f a
η , [tα−1, tα]) = 0 for every

1 ≤ α ≤ 2 and every 0 �= η ≤ 1. Consequently, if η = ei and α = 1 we obtain

0 = d ( f (ηt1 + (1 − η)a), f (a)) .

Hence,

f (a1, . . . , xi , ai+1, . . . , an) = f (ηt1 + (1 − η)a) = f (a), for all 1 ≤ i ≤ n.

(3.2)
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On the other hand, if η = ei + e j with i < j then

d( f (ηt1 + (1 − η)a) + f (a), f (e j t1 + (1 − e j )a) + f (ei t1 + (1 − ei )a)) = 0.

(3.3)

Thus, using (3.3) and (3.2) we have

f (ηt1 + (1 − η)a) + f (a) = f (e j t1 + (1 − e j )a) + f (ei t1 + (1 − ei )a)

f (ηt1 + (1 − η)a) + f (a) = f (a) + f (a).

Equivalently

f (ηx + (1 − η)a) = f (a). (3.4)

Now, suppose that (3.4) holds for any multi-index η, 0 ≤ η ≤ 1, 0 �= η, with k
non-zero entries.

Then, if λ is a multi-index such that 0 ≤ λ ≤ 1, 0 �= λ, with k + 1 non-zero entries
and �|λ|( f a

λ , [tα−1, tα]) = 0 for all 1 ≤ α ≤ 2, then

∑

θ∈E(n)
θ≤λ

f (λ(θ t0+(1−θ)t1)+(1 − λ)a) =
∑

θ∈O(n)
θ≤λ

f (λ(θ t0+(1 − θ)t1) + (1 − λ)a) .

(3.5)

Notice that if θ �= 0 then λ(θ t0 +(1−θ)t1)+(1−λ)a has at most k entries equal
to the corresponding entries of x and the remaining entries equal to the corresponding
entries of a. In this case, (3.4) implies that f (λ(θ t0 + (1 − θ)t1) + (1 − λ)a) = f (a).
Hence, since E(n) has the same number of elements asO(n), it follows from identity
(3.4) that f (λt1 + (1 − λ)a) = f (a). We conclude that f is a constant function. �

Remark 3.5 Note that if X is a normed space, then (2.3) can be replaced by

�n( f, [x, y]) :=
∥∥∥∥∥∥

∑

θ≤1

(−1)|θ | f (θ x + (1 − θ)y)

∥∥∥∥∥∥
.

Example 3.6 Let c0 be the space of all null sequences with the ∞-norm, and let
f : [0, 1] × [0, 1] × [0, 1] → c0 be defined by

f (x) :=
{

3∑

i=1

(−1)i+1 xi
n

}

n≥1

.
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If ξ = ξ1 × ξ2 × ξ3, where ξi := {t (i)1 , t (i)2 , . . . , t (i)ki
}, i = 1, 2, 3. Then,

∥∥∥∥∥∥

∑

θ≤ei

(−1)|θ | f (ei (θ tα−1 + (1 − θ)tα) + (1 − ei )0)

∥∥∥∥∥∥∞
= ‖ f (ei tα) − f (ei tα−1)‖∞

=
∥∥∥∥∥

(
t (i)αi − t (i)αi−1

n

)

n∈N

∥∥∥∥∥∞
.

Hence,

∑

1≤α≤κ

�

(
�1
(
f 0ei , [tα−1, tα]�ei

)

Vol [tα−1, tα]�ei

)
Vol [tα−1, tα]�ei

=
∑

1≤α≤κ

�

⎛

⎜⎜⎜⎜⎜⎝

∥∥∥∥∥

(
t (i)αi − t (i)αi−1

n

)

n∈N

∥∥∥∥∥∞
t (i)αi − t (i)αi−1

⎞

⎟⎟⎟⎟⎟⎠
(t (i)αi

− t (i)αi−1
)

=
∑

1≤α≤κ

�

⎛

⎜⎜⎜⎝

(t (i)αi − t (i)αi−1)

∥∥∥∥

(
1

n

)

n∈N

∥∥∥∥∞
t (i)αi − t (i)αi−1

⎞

⎟⎟⎟⎠ (t (i)αi
− t (i)αi−1

)

=
∑

1≤α≤κ

�(1) (t (i)αi
− t (i)αi−1

) = �(1). (3.6)

Consequently, for each i = 1, 2, 3 we must have RV1
�( f 0ei , [a, b]) := �(1). In addi-

tion,

∥∥∥∥∥∥

∑

θ≤e1+e2

(−1)|θ | f ((e1 + e2)(θ tα−1 + (1 − θ)tα) + (1 − (e1 + e2))0)

∥∥∥∥∥∥∞

=
∥∥∥∥∥

(
t (1)α1 −t (2)α2

n

)
−
(
t (1)α1−1 − t (2)α2

n

)
−
(
t (1)α1 − t (2)α2−1

n

)
+
(
t (1)α1−1 − t (2)α2−1

n

)∥∥∥∥∥ = 0,

and therefore, RV2
�( f 0(1,1,0), [a, b]) = 0.

It can be verified similarly that RV2
�( f 0

e1+e2+e3, [a, b]) = RV2
�( f 0

ei+e j
, [a, b]) = 0,

where i, j = 1, 2, 3 with i �= j .
From (3.2) we conclude that TRV�( f, [a, b]) = 3�(1).

A proof of the following lemma can be found in [5] or in [6].

Lemma 3.7 [5,6] If X is a normed space, then the functional TRV�(·, [a, b]) is
convex.
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4 Further properties

Theorem 4.1 Let X be a normed space. If f ∈ RV�([a, b]; X), then f is bounded.

Proof It is well known that if f : [a, b] → X, [a, b] ⊂ R, is a function of bounded
Riesz-�-variation, then f is bounded (see [15]). Hence, if f : [a, b] → X is a function
of bounded �-variation on [a, b] := [a1, b1] × [a2, b2] then there are constants C1
and C2 such that

‖ f a
ei (x�ei )‖X ≤ Ci , (i = 1, 2) for all x ∈ [a, b].

Suppose that f is not bounded. Then, for each m ∈ N that satisfies m > C1 + C2,
there exists xm = (xm1 , xm2 ) ∈ [a, b] such that ‖ f (xm) + f (a)‖ ≥ m. Hence, for all
m > C1 + C2,

‖ f (x) + f (a) − f (xm1 , a2) − f (a1, x
m
2 )‖

≥ ‖ f (x) + f (a)‖ − ‖ f (xm1 , a2)‖ − ‖ f (a1, x
m
2 )‖

≥ ‖ f (x) + f (a)‖ − C1 − C2

≥ m − C1 − C2. (4.1)

If Vol [a, x] ≤ 1, then (4.1) implies

�(m − C1 − C2) ≤ �

(
Vol [a, x]‖ f (x) + f (a) − f (xm1 , a2) − f (a1, xm2 )‖

Vol [a, x]
)

≤ �

(‖ f (x) + f (a) − f (xm1 , a2) − f (a1, xm2 )‖
Vol [a, x]

)
Vol [a, x]

≤ RV2
�( f, [a, b]),

a contradiction (since limm→∞ �(m − C1 − C2) = ∞).
On the other hand, if Vol [a, x] > 1 then from (4.1) we obtain

�

(
m − C1 − C2

Vol [a, x]
)

≤ �

(‖ f (x) + f (a) − f (xm1 , a2) − f (a1, xm2 )‖
Vol [a, x]

)

≤ �

(‖ f (x) + f (a) − f (xm1 , a2) − f (a1, xm2 )‖
Vol [a, x]

)
Vol [a, x]

≤ RV2
�( f, [a, b]),

which again leads to a contradiction; thus, f is a bounded function.
Suppose that the result holds for all the cases in which [a, b] is a k-dimensional

interval with k < n.
Consider now the case in which f : [a, b] → X where [a, b] is an n-dimensional

interval. Then, for all multi-index 0 < η ≤ 1(0 < η) that satisfies |η| < n there exists
a constant Mη such that

‖ f a
η (x�η)‖ ≤ Mη.
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In this case, if we suppose that f is not bounded, then for all m >
∑

0<η<1 Mη there
is a point xm = (xm1 , xm2 , . . . , xmn ) such that

‖ f (xm) + (−1)n f (a)‖ > m,

and hence

�n( f, [a, xm]) =
∥∥∥∥∥∥

∑

θ≤1

(−1)|θ | f (θ a + (1 − θ)xm)

∥∥∥∥∥∥

≥ ∥∥ f (xm) + (−1)n f (a)
∥∥−

∑

0 �=θ≤1
θ �=1

‖ f (θ a + (1 − θ)xm)‖

= ∥∥ f (xm) + (−1)n f (a)
∥∥−

∑

0 �=θ≤1
θ �=1

∥∥ f a
1−θ (xm�(1 − θ))

∥∥

≥ m −
∑

0 �=θ≤1
θ �=1

M1−θ .

The result now follows, as in the n = 2 case, from the fact that

lim
m→∞ �

⎛

⎜⎜⎝m −
∑

0 �=θ≤1
θ �=1

M1−θ

⎞

⎟⎟⎠ = ∞,

again, by considering the two cases Vol([a, xm]) ≤ 1 and Vol([a, xm]) > 1. �

Theorem 4.2 Let X be a normed space. Let�1,�2 ∈ N such that�1(x) ≤ K�2(x)
for all x and some constant K , then RV�2([a, b]; X) ⊆ RV�1([a, b]; X).

Proof Let f ∈ RV�2([a, b]; X), then for all net partition ξ = {tα} ∈ 	([a, b]) we
have

�1

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα] ≤ K�2

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα],

from which the proposition follows. �

Theorem 4.3 Let � ∈ N satisfying condition �2 and let X be a normed space. Then
RV�([a, b]; X) is a linear space.

Proof Let K and x0 ∈ R be as in (2.2) and suppose f, g ∈ RV�([a, b]; X). Then, for
any net partition ξ = {tα} ∈ 	([a, b])



144 M. Bracamonte et al.

�n ( f + g, [tα−1, tα]) =
∥∥∥∥∥∥

∑

θ≤1

(−1)|θ | ( f + g)(θ x + (1 − θ)y)

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

∑

θ≤1

(−1)|θ | f (θ x + (1 − θ)y)

∥∥∥∥∥∥

+
∥∥∥∥∥∥

∑

θ≤1

(−1)|θ | g(θ x + (1 − θ)y)

∥∥∥∥∥∥
= �n ( f, [tα−1, tα]) + �n (g, [tα−1, tα]) .

Put An = �n ( f, [tα−1, tα]) + �n (g, [tα−1, tα])
Vol [tα−1, tα] , then

RVn
�( f + g, [a, b], ξ)

=
∑

1≤α≤κ

�

(
�n ( f + g, [tα−1, tα])

Vol [tα−1, tα]
)
Vol [tα−1, tα]

≤
∑

1≤α≤κ

� (An)Vol [tα−1, tα]

=
∑

1≤α≤κ
An<x0

�(An)Vol [tα−1, tα] +
∑

1≤α≤κ
An≥x0

�(An)Vol [t(α−1), tα]

≤
∑

1≤α≤κ

� (x0)Vol [tα−1, tα]

+
∑

1≤α≤κ

�

(
1

2

2�n ( f, [tα−1, tα])
Vol [tα−1, tα] + 1

2

2�n (g, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

≤ �(x0)Vol[a, b]
+

∑

1≤α≤κ

1

2
�

(
2�n ( f, [tα−1, tα])

Vol [tα−1, tα]
)

+ 1

2
�

(
2�n (g, [tα−1, tα])

Vol [tα−1, tα]
)
Vol [tα−1, tα]

≤ �(x0)Vol[a, b]
+

∑

1≤α≤κ

K

2
�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
+ K

2
�

(
�n (g, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

= �(x0)Vol[a, b] + K

2

(
RVn

�( f, [a, b], ξ) + RVn
�(g, [a, b], ξ)

)
.

Since this holds for all n, it follows that

TRV�( f + g, [a, b])≤�(x0)Vol[a, b]+ K

2
(TRV�( f, [a, b])+TRV�(g, [a, b])) ,

from which we conclude that f + g ∈ RV�([a, b]; X). On the other hand, if γ is any
scalar, then
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�n (γ f, [tα−1, tα]) =
∥∥∥∥∥
∑
θ≤1

(−1)|θ | γ f (θ x + (1 − θ)y)

∥∥∥∥∥

= |γ |
∥∥∥∥∥
∑
θ≤1

(−1)|θ | f (θ x + (1 − θ)y)

∥∥∥∥∥ = |γ |�n ( f, [tα−1, tα]) .

Thus,

RVn
�(γ f, [a, b], ξ) =

∑

1≤α≤κ

�

(
�n (γ f, [tα−1, tα])

Vol [tα−1, tα]
)
Vol [tα−1, tα]

=
∑

1≤α≤κ

�

( |γ |�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα].

If |γ | ≤ 1, then

RVn
�(γ f, [a, b], ξ) =

∑

1≤α≤κ

�

( |γ |�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

≤ |γ |
∑

1≤α≤κ

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

= |γ |RVn
�( f, [a, b], ξ).

On the other hand, if |γ | > 1 then, again by (2.2), there is a constant K ′ and a point
x0 such that

RVn
�(γ f, [a, b], ξ) =

∑

1≤α≤κ

�

( |γ |�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

≤ �(x0)Vol[a, b] + K ′ ∑

1≤α≤κ

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

≤ �(x0)Vol[a, b] + K ′ RVn
�( f, [a, b], ξ).

It follows that γ f ∈ RV�([a, b]; X). We conclude that RV�([a, b]; X) is a linear
space. �

Lemma 4.4 Let X be a metric semigroup and suppose f ∈ RV�([a, b]; X). If x,y ∈
[a, b] are such that xk = yk for some 0 ≤ k ≤ n, then

∑

θ∈E(n)

f (θ x + (1 − θ)y) =
∑

θ∈O(n)

f (θ x + (1 − θ)y).

Proof Let f , x and y be as in the statement. If θ = (θ1, θ2, . . . , θn) ∈ E(n) then
θ̃ := (θ1, θ2, . . . , 1− θk, . . . , θn) ∈ O(n), thus, (θ x + (1 − θ)y) has the same entries
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as (θ̃ x + (1 − θ̃ )y) since the kth entry θ̃k xk + (1 − θ̃k)yk = (1 − θk) xk + θk yk =
(1 − θk) yk + θk xk . Hence,

∑

θ∈E(n)

f (θ x + (1 − θ)y) =
∑

θ∈E(n)

f (θ̃ x + (1 − θ̃ )y) =
∑

θ∈O(n)

f (θ x + (1 − θ)y).

�
Lemma 4.5 Let X be a metric semigroup and let [x, y] be an n-dimensional interval.
Suppose that t ( j) ∈ [x j , y j ] for some 1 ≤ j ≤ n. Then

�n( f, [x, y]) ≤ �n( f, [x, ỹ]) + �n( f, [̃x, y]),

where x̃ := (̃x1, . . . , x̃n)with x̃i = xi if i �= j and x̃ j = t ( j), and ỹ := (ỹ1, . . . , ỹn)
with ỹi = yi if i �= j and ỹ j = t ( j).

Proof Note that the interval [x, y] can be divided into two intervals, namely [x, ỹ] and
[̃x, y], thus, by virtue of property (2.1) and lemma 4.4 we have

�n( f, [x, y])

:= d

⎛

⎝
∑

θ∈E(n)

f (θ x + (1 − θ)y),
∑

θ∈O(n)

f (θ x + (1 − θ)y)

⎞

⎠

= d

⎛

⎝
∑

θ∈E(n)

f (θ x + (1 − θ)y) +
∑

θ∈E(n)

f (θ x̃ + (1 − θ )̃y),

∑

θ∈O(n)

f (θ x + (1 − θ)y) +
∑

θ∈E(n)

f (θ x̃ + (1 − θ )̃y)

⎞

⎠

= d

⎛

⎝
∑

θ∈E(n)

[ f (θ x + (1 − θ)y) + f (θ x̃ + (1 − θ )̃y)],

∑

θ∈O(n)

[ f (θ x + (1 − θ)y) + f (θ x̃ + (1 − θ )̃y)]
⎞

⎠

= d

⎛

⎜⎜⎜⎝
∑

θ∈E(n)
θ j=1

[ f (θ x + (1 − θ)y)

+ f (θ x̃ + (1 − θ )̃y)] +
∑

θ∈E(n)
θ j=0

[ f (θ x + (1 − θ)y) + f (θ x̃ + (1 − θ )̃y)],
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∑

θ∈O(n)
θ j=1

[ f (θ x + (1 − θ)y)

+ f (θ x̃ + (1 − θ )̃y)] +
∑

θ∈O(n)
θ j=0

[ f (θ x + (1 − θ)y) + f (θ x̃ + (1 − θ )̃y)]

⎞

⎟⎟⎠

= d

⎛

⎝
∑

θ∈E(n)

f (θ x + (1 − θ )̃y) +
∑

θ∈E(n)

f (θ x̃ + (1 − θ)y),

∑

θ∈O(n)

f (θ x + (1 − θ )̃y) +
∑

θ∈O(n)

f (θ x̃ + (1 − θ)y)

⎞

⎠

≤ �n( f, [x, ỹ]) + �n( f, [̃x, y]).

�

Theorem 4.6 Let X be a metric semigroup. If f : [a, b] → X is a function, then

RVn
�( f, [a, b], ξ1 × · · · × {ξz ∪ {t (z)}} × · · · × ξn) ≥ RVn

� ( f, [a, b], ξ)

for any net partition ξ =∏n
i=1 ξi of [a, b].

Proof Suppose ξ = ∏n
i=1 ξi where ξi = {ai = t (i)0 , t (i)1 , . . . , t (i)ki

= bi }. Assume z ∈
{1, . . . , n} and let t (z) be such that t (z)0 < t (z)1 < · · · < t (z)r−1 < t (z) < t (z)r < · · · < t (z)k j

.

Put � :=∏n
i=1 �i where �i = {ai = s(i)

0 , s(i)
2 , . . . , s(i)

k̂i
= bi }, with

s(l)
j = t (l)j , for l �= z and

⎧
⎪⎨

⎪⎩

s(z)
l = t (z)l if 0 ≤ l ≤ r − 1
s(z)
r = t (z)

s(z)
l = t (z)l−1 if l ≥ r + 1.

Then,

∑

1≤α≤κ̂
αz<r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
=

∑

1≤α≤κ
αz<r

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
and

∑

1≤α≤κ̂
αz>r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
=

∑

1≤α≤κ
αz>r

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
.
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Hence,

∑

1≤α≤κ̂

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
[sα−1, sα]

−
∑

1≤α≤κ

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

=
∑

1≤α≤κ̂
αz=r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r

�

(
�n ( f, [tα−1, tα])
Vol [tα−1, tα]

)
Vol [tα−1, tα]

+
∑

1≤α≤κ̂
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα].

Now if t̃ (i)αi = t (i)αi for i �= z and t̃ (z)αz = t (z), by Lemma 4.5, we obtain

=
∑

1≤α≤κ̂
αz=r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r

�

(
�n
(
f, [̃tα−1, tα])

Vol [tα−1, tα] + �n
(
f, [tα−1, t̃α])

Vol [tα−1, tα]

)
Vol [tα−1, tα]

+
∑

1≤α≤κ̂
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

=
∑

1≤α≤κ̂
αz=r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r

�

(
�n
(
f, [̃tα−1, tα])

Vol [̃tα−1, tα]
Vol [̃tα−1, tα]
Vol [tα−1, tα]

+ �n
(
f, [tα−1, t̃α])

Vol [tα−1, t̃α]
Vol [tα−1, t̃α]
Vol [tα−1, tα]

)
Vol [tα−1, tα]

+
∑

1≤α≤κ̂
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]
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and, by the convexity of � we get:

≥
∑

1≤α≤κ̂
alphaz=r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r

Vol [̃tα−1, tα]
Vol [tα−1, tα]�

(
�n
(
f, [̃tα−1, tα])

Vol [̃tα−1, tα]

)
Vol [tα−1, tα]

−Vol [tα−1, t̃α]
Vol [tα−1, tα]�

(
�n
(
f, [tα−1, t̃α])

Vol [tα−1, t̃α]

)
Vol [tα−1, tα]

+
∑

1≤α≤κ̂
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

=
∑

1≤α≤κ̂
αz=r

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα]

−
∑

1≤α≤κ
αz=r

�

(
�n ( f,Vol [sα−1, sα])

Vol [sα−1, sα]
)
Vol [sα−1, sα]

+
∑

1≤α≤κ̂
αz=r+1

�

(
�n ( f, [sα−1, sα])
Vol [sα−1, sα]

)
Vol [sα−1, sα] = 0.

It follows that

∑

1≤α≤κ̂

� (�n ( f, [sα−1, sα])) Vol [sα−1, sα]

−
∑

1≤α≤κ

� (�n ( f, [tα−1, tα])) Vol [tα−1, tα] ≥ 0,

and therefore, RVn
�

(
f, [a, b], ξ1 × · · · × ξz ∪ {t (z)} × · · · × ξn

) ≥ RVn
�( f, [a, b],∏n

i=1 ξi ). �

Corollary 4.7 Let X be a metric semigroup. If f : [a, b] → X, ξ and δ are any net
partitions of [a, b], such that ξ ⊆ δ, then V n( f, [a, b], ξ) ≤ V n ( f, [a, b], δ) .

Proof It suffices to apply Theorem 4.6 finitely many times. �
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5 A representation theorem

In our next result, we present a counterpart of the classical Riesz’s lemma (cf., [24],
[3]) in the n-dimensional case. It will be assumed that X = R and the following
well-known notation will be used: given any multi-index β = (β1, . . . , βk) we define

Dβ := ∂β1+···+βk

∂xβ1
1 · · · ∂xβk

k

.

Theorem 5.1 Let � ∈ N . If f ∈ RV�([a, b];R) and is of class Cn, then

∑

0 �=η≤1

(n − |η|)!
∫

[a,b]�η
�
(∣∣∣Dη f a

η (x�η)

∣∣∣
)
d(x�η) = TRV�( f, [a, b]). (5.1)

Proof Let ξi := {t (i)1 , t (i)2 , . . . , t (i)ki
}, i = 1, . . . , n and let ξ =∏n

i=1 ξi = {tα} be a net
partition of [a, b] with κ = (k1, k2, . . . , kn). Then, for all α ≤ κ we have

∑

θ≤1

(−1)|θ | f (θ tα−1 + (1 − θ)tα) =
∑

θ≤1
θi=1

(−1)|θ | f (θ tα−1 + (1 − θ)tα)

−
∑

1≤α≤κ
αz=r

∑

θ≤1
θi=0

(−1)|θ |+1 f (θ tα−1 + (1 − θ)tα),

where z ≤ kz .
Let x = (x1, x2, . . . , xn) , v = θ t(α−1) + (1 − θ)tα and define the function

g1(x1) :=
∑

θ≤1
θ1=1

(−1)|θ | f (e1x + (1 − e1)v)

(ei denotes the canonical unit vectors of Rn). Then, since f is differentiable, g1 :
[t1α1−1, t

1
α1

] → R, satisfies the conditions of the ordinary mean value theorem and

thus, there is an x1α1 ∈ (t1α1−1, t
1
α1

) such that,

g′
1(x

1
α1

) = g1(t1α1) − g1(t1α1−1)

t1α1 − t1α1−1

.

That is,

∑

θ≤1
θ1=1

(−1)|θ | De1 f
x1α1e1
1−e1 (v�(1 − e1)) =

∑
θ≤1
θ1=1

(−1)|θ | f (v) −∑ θ≤1
θ1=0

(−1)|θ |+1 f (v)

t1α1 − t1α1−1

.
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Now define g2 : [t2α2−1, t
2
α2

] → R, by

g2(x2) :=
∑

θ≤1
θ1=θ2=1

(−1)|θ | De1 f
x1α1e1+x2 e2
1−e1 (v�(1 − e1)).

Then, as before, since g2 depends only in the second variable, x2, an application of
the mean value theorem implies that there is x2α2 ∈ (t2α2−1, t

2
α2

) such that

g′
2(x

2
α2

) = g2(t2α2) − g2(t2α2−1)

t2α2 − t2α2−1

.

Thus,

∑

θ≤1
θ1=θ2=1

(−1)|θ | De2De1 f
x1α1e1+x2α2 e2
1−e1−e2 (v�(1 − e1 − e2))

=

∑
θ≤1(−1)|θ | f (v)

t1α1 − t1α1−1

t2α2 − t2α2−1

=
∑

θ≤1(−1)|θ | f (v)

(t1α1 − t1α1−1)(t
2
α2

− t2α2−1)
.

By repeating this procedure n times, we obtain that there is xα ∈ [tα−1, tα] such that

De1+e2+···+en f (xα) =
∑

θ≤1(−1)|θ | f (v)

Vol [t(α−1), tα] ,

and hence

�
(∣∣De1+e2+···+en f (xα)

∣∣)Vol [tα−1, tα] = �

(∣∣∑
θ≤1(−1)|θ | f (v)

∣∣

Vol [tα−1, tα]

)
Vol [tα−1, tα].

(5.2)

Since this holds for each tα , α ≤ κ , of any net partition ξ of [a, b], we must have

∑

1≤α≤κ

�
(∣∣De1+e2+···+en f (xα)

∣∣)Vol[tα−1, tα]

=
∑

1≤α≤κ

�

(∣∣∑
θ≤1(−1)|θ | f (v)

∣∣

Vol [tα−1, tα]

)
Vol[t(α−1), tα].

Now define,

mα := inf
{
�
(∣∣De1+e2+···+en f (x)

∣∣) : x ∈ [tα−1, tα]} and

Mα := sup
{
�
(∣∣De1+e2+···+en f (x)

∣∣) : x ∈ [tα−1, tα]} ,
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then

S( f, ξ) :=
∑

1≤α≤κ

mα Vol[tα−1, tα]

≤
∑

1≤α≤κ

�
(∣∣De1+e2+···+en f (xα)

∣∣)Vol[t(α−1), tα]

= RVn
�( f, [a, b], ξ)

≤
∑

1≤α≤κ

Mα Vol[tα−1, tα]

=: S( f, ξ).

Notice that the lower sum, S, and RVn
�( f, [a, b], ξ) are increasing with respect to

refinements of the partition ξ while the upper sums, S, are decreasing. This means that
if ki → ∞ then the upper sums decrease to the limit

∫

[a,b]
�
(∣∣De1+e2+···+en f (x)

∣∣)Vol[tα−1, tα]dx,

and the lower sums increase to the limit
∫

[a,b]
�
(∣∣De1+e2+···+en f (x)

∣∣)Vol[tα−1, tα]dx,

whereas RVn
�( f, [a, b], ξ) increases to the limit RVn

�( f, [a, b]), and consequently

RVn
�( f, [a, b]) =

∫

[a,b]
�
(∣∣De1+e2+···+en f (x)

∣∣) dx.

Now, since this holds for any function of n variables, with n ≥ 1, in particular it
holds for any truncated function f a

η , where η ≤ 1, which yields (5.1), since there are
(n − |η|)! truncations. �
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