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Abstract In this note, it is shown that the Hilbert–Poincaré series for the rational
homology of the free loop space on a moment-angle complex is a rational func-
tion if and only if the moment-angle complex is a product of odd spheres and a
disk. A partial result is included for the Davis–Januszkiewicz spaces. The opportu-
nity is taken to correct the result (Bahri et al., Proceedings of the Steklov Institute
of Mathematics, Russian Academy of Sciences, vol. 286, pp. 219–223. doi:10.1134/
S0081543814060121, 2014) which used a theorem from Berglund and Jöllenbeck (J
Algebra 315:249–273, 2007).
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1 Introduction

Let

ZK = Z(K ; (D2, S1))

be a moment-angle complex (a special case of a polyhedral product), where K is a
finite simplicial complex with m vertices of dimension n − 1 [1,4,5]. In the special
cases for which K is a polytopal sphere, ZK is a manifold with orbit space given by
a simple convex polytope

Pn(K ) = ZK /Tm,

where the torus of rank m, Tm , acts naturally on ZK . The topology/geometry of the
free loop space of the Davis–Januszkiewicz space DJ (K ) = ETm ×Tm ZK and
related spaces here is tightly tied to the geometry of Pn(K ).

Félix and Halperin showed [11,12] that there is a dichotomy for simply connected
finite CW -complexes X . Their theorem is the following.

Theorem 1.1 Either

(1) π∗(X)⊗Q is a finiteQ-vector space, in which case X is called rationally elliptic
or,

(2) π∗(X) ⊗Q grows exponentially, in which case X is called rationally hyperbolic.

The purpose of this note is to develop the dichotomy in the next Theorem 1.2 arising
from LX the free loop space of a space X together with the connections to Pn(K ).
For a definition of the term exponential growth, see [16, p. 9].

Theorem 1.2 The Hilbert–Poincaré series for the rational homology of

LZ(K ; (D2, S1))

has exponential growth if and only if Z(K ; (D2, S1)) contains a wedge of two spheres
as a rational retract, and so is hyperbolic. Thus the following are equivalent:

(1) The Hilbert–Poincaré series for the rational homology of LZ(K ; (D2, S1)) has
sub-exponential growth.

(2) The space Z(K ; (D2, S1)) has totally finite rational homotopy groups, in other
words Z(K ; (D2, S1)) is elliptic.

The previous theorem follows by combining theorems of Lambrechts [15],
Neisendorfer and Miller [18] together with Theorem 1.3 of [2], which illustrates this
dichotomy in the case of ZK . (The opportunity is taken here to correct this result in
Section 2.) The growth of free loop spaces has also been developed in [10].
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Gurvich in his thesis [14] showed that in the case K is a polytopal sphere, then ZK

is elliptic if and only if Pn(K ) is a product of simplices. (This result is generalized for
any K in [2].) The next corollary follows fromGurvich’s result together with Theorem
1.2.

Corollary 1.3 Let K be a polytopal sphere. Then following are equivalent:

(1) The Hilbert–Poincaré series for the rational homology of LZ(K ; (D2, S1)) has
sub-exponential growth.

(2) The space Z(K ; (D2, S1)) is elliptic, and so has totally finite rational homotopy
groups.

(3) The simple polytope Pn(K ) is a product of simplices.

In what follows, a related theorem is stated in which Z(K ; (D2, S1)) is replaced
by either DJ (K ) the associated Davis–Januszkiewicz space or mildly more general
spaces.

Remarks addressing earlier work on irrational Hilbert–Poincaré series follow next.
Roos first proved that the Hilbert–Poincaré series for the free loop space of S3 ∨ S3 is
irrational [19], following Serre’s method for proving that the Hilbert–Poincaré series
for �2(S3 ∨ S3) is irrational [21]. One common theme here is the application of
the Lech–Mahler–Skolem theorem which identifies whether certain infinite series are
given by rational functions [19,21]. However, it is unclear whether these methods
extend directly to many of the cases in this paper.

A result due to Lambrechts is described next [15]. Lambrechts proves that if X is a
coformal, 1-connected CW complex of finite type, and is hyperbolic, then the rational
Betti numbers of the free loop space have exponential growth. Examples are wedges
of two spheres each of dimension greater than 1. [Aside: let X be a simply connected
CW complex with rational cohomology of finite type. Let�(V ; d) denote the Sullivan
minimal model for X . Then �(V ; d) is said to be coformal provided d2(V ) ⊂ �2V .]

By Theorem 1.3 in [2] (corrected below), either ZK is rationally homotopy equiv-
alent to a finite product of odd spheres in which case ZK is elliptic, or rationally ZK

has a wedge of two spheres both of dimension greater than one as a retract in which
case, it is hyperbolic. The structure of the minimal non-faces determines whether the
moment-angle complex is elliptic or hyperbolic.

A related result holds for the Davis–Januszkiewicz spaces andmild generalizations.

Theorem 1.4 Let X = DJ (K ) or X = ETm ×T q ZK where T q ⊂ Tm. Then if the
space Z(K ; (D2, S1)) is elliptic (and so has totally finite rational homotopy groups),
the Hilbert–Poincaré series for the rational homology of LX has sub-exponential
growth.

Example Let K be the simplicial complex consisting of two disjoint points and Q a
simplicial complex with one edge and a disjoint point. Then, Z(K ; (D2, S1)) = S3 is
elliptic, and Z(Q; (D2, S1)) is a wedge of spheres and so is hyperbolic. Further,

DJ (K ) � CP∞ ∨ CP∞.
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On the other hand, the Hilbert–Poincaré series for the rational homology of

LDJ (Q) � L
((
CP∞ × CP∞) ∨ CP∞)

may have exponential growth.

Since the Hochschild homology of the cohomology ring for DJ (K ) is the coho-
mology of the free loop space of DJ (K ) as a special case of [13], the next result
follows.

Corollary 1.5 The Hochschild homology of the Stanley–Reisner ring (or face ring
of K ) has Hilbert–Poincaré series having sub-exponential growth, if the space
Z(K ; (D2, S1)) is elliptic. Furthermore, if K is a polytopal sphere, the Hochschild
homology of the Stanley–Reisner ring has Hilbert–Poincaré series which is a rational
function if the simple polytope Pn(K ) is a product of simplices.

A related question is to work out the precise cohomology of LX . In the paper
[9], Fadell and Husseini computed the cohomology ring of LM for M a sphere or a
complex projective space. The Chas–Sullivan rings of the homology of these M have
been computed by Cohen et al. [7]. Using more elementary means, the calculation
has been done also by Seeliger [20]. In the special case for which Z(K ; (D2, S1)) is
rationally elliptic, the homology of the free loop space is just that of a product of odd-
dimensional sphereswith a product of pointed loop spaces of odd-dimensional spheres.
Towork out the homology of LDJ (K ) in the rationally elliptic case, it suffices to work
out the differentials in the spectral sequence for L(Z(K ; (D2, S1))) → L(DJ (K )) →
L(CP(∞))m where there is a homotopy equivalence

L(CP(∞))m → CP(∞)m × (S1)m .

The examples above arise from Ganea’s fibration

S3 → CP∞ ∨ CP∞ → CP∞ × CP∞.

In this case K has two vertices without an edge between the vertices, ZK = S3 and
DJ (K ) = CP∞ ∨ CP∞. The upshot is that Hilbert–Poincaré series for L(CP∞ ∨
CP∞) has sub-exponential growth.

2 The dichotomy for Z(K; (D2, S1)): a correction to [2, Theorem 1.3]

In the paper [2], a result from [3] is used to prove that the moment-angle complex
Z(K ; (D2, S1)) is rationally elliptic if and only if it is the product of odd spheres and
a disk. This occurs if and only if K is the iterated join of simplices and boundaries of
simplices.

Recently, counterexamples to the relevant result from [3] have appeared in the
literature. This necessitates a repair to [2, Theorem 1.3 ] which is included below. Our
goal is to prove that if a simplicial complex K does not have pairwise disjoint non-
faces, then rationally, Z(K ; (D2, S1)) has a wedge of odd spheres as a retract, and so
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it will be rationally hyperbolic. Notice that, by [2, Corollary 2.7 ], the hypothesis here
is equivalent to K not being the iterated join of simplices and boundaries of simplices.
The next proposition will reduce the proof to a simple induction.

Definition 2.1 Let Am be the collection of all simplicial complexes on m vertices
which have a pair of intersecting minimal non-faces, but no proper full subcomplex
with that property.

Example Let m = 4 and K have minimal non-faces corresponding to relations in the
Stanley–Reisner ring: v1v2v3, v1v2v4 and v1v4. Here, K has no proper full subcomplex
with intersecting non-faces.

Proposition 2.2 Let K ∈ Am, then Z(K ; (D2, S1)) has a wedge of odd spheres as a
retract.

Proof Suppose that K has minimal intersecting non-faces corresponding to the fol-
lowing relations in the Stanley–Reisner ring

v1 . . . vkw1 . . . wt and u1 . . . urw1 . . . wt .

(Notice that minimality dictates that k, t and r are all ≥ 1.) It follows that the vertex
set of K must be

{v1, . . . , vk, u1, . . . , ur , w1, . . . , wt } (1)

for otherwise, removing a vertex from K , which is not among these, will produce a
proper full subcomplex contradicting K ∈ Am . Next, setting

I = {v1, . . . , vk, w1, . . . , wt } and J = {u1, . . . , ur , w1, . . . , wt }

gives retractions off Z(K ; (D2, S1)):

ZKI = S2(k+t)−1 and ZKJ = S2(r+t)−1

corresponding to the full subcomplexes KI and KJ , [8, Theorem 2.2.3]. The stable
splitting theorem of [1] distinguishes these two spheres. This gives a map

S2(k+t)−1 ∨ S2(r+t)−1 −→ Z(K ; (D2, S1)).

It remains to show that rationally no cells are attached to this wedge of spheres inside
Z(K ; (D2, S1)). Now, the results of [1] imply that all non-trivial attaching maps to
this wedge of spheres must be stably trivial. The Hilton–Milnor theorem [17, Theorem
4.3.2], gives

πn(S
2(k+t)−1 ∨ S2(r+t)−1) ∼= πn(S

2(k+t)−1) ⊕ πn(S
2(r+t)−1)

⊕ πn
(
�(S2(k+t)−2 ∧ S2(r+t)−2)

)

⊕ j≥2 πn
(
�(S2 j (k+t)− j ∧ S2(r+t)−1)

)
.
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The rational homotopy groups of spheres is well known. The only stably trivial
non-trivial classes occur in the groups π4q−1(S2q). In the decomposition above, this
requires

n ≥ 4(2k + 3t + r − 1) − 1.

The vertex set of K is given by (1) and so the largest cell possible in Z(K ; (D2, S1))
has dimension 2(k + r + t) − 1. Now

2(k + r + t) − 1 < 4(2k + 3t + r − 1) − 1

because k, t and r are all ≥ 1. So rationally, no non-trivial attaching map is possible.
��

An induction argument now gives the result.

Theorem 2.3 Let K be a simplicial complex which contains a pair of minimal inter-
secting non-faces, then Z(K ; (D2, S1)) is rationally hyperbolic.

Proof It is straightforward to check that all simplicial complexes on three vertices,
which have pairwise intersecting non-faces have a wedge of spheres as a retract and
so are rationally hyperbolic.

Suppose by way of induction, that all simplicial complexes with fewer than m
vertices, which have pairwise intersecting non-faces, have a wedge of spheres as a
rational retract. Let K be a simplicial complex on m vertices, which has pairwise
intersecting non-faces. If K ∈ Am , the result is true for K by Proposition 2.2. If
K /∈ Am , then K has a proper full subcomplex L which has a pair of intersecting
non-faces. The induction hypothesis and [8, Theorem 2.2.3] now imply the result.

��

3 Proof of Theorem 1.2

Assume that Z(K ; (D2, S1)) is rationally hyperbolic. Thus Z(K ; (D2, S1)) has a
rational wedge of two simply connected spheres as a retract. Awedge of two spheres is
coformal by a result of Neisendorfer andMiller [18, p. 573]. Appealing to Lambrecht’s
theorem [15], the Hilbert–Poincaré series for the rational homology of the free loop
space of Z(K ; (D2, S1)) has exponential growth as the Hilbert–Poincaré series for the
free loop space of a wedge of two simply connected spheres has exponential growth.
Thus the rational homology of LZ(K ; (D2, S1)) has exponential growth.

Conversely, note that Z(K ; (D2, S1)) is rationally elliptic if and only if it is ratio-
nally homotopy equivalent to a product of odd spheres. The free loop space of a product
of odd spheres is rationally (or indeed after inverting 2) homotopy equivalent to the
product of odd spheres with the pointed loop space of the finite product of odd spheres.
This product has a cohomology algebra which has sub-exponential growth.

These remarks imply Theorem 1.2 since any space of the homotopy type of a finite,
simply connected CW-complex is either elliptic, or hyperbolic.
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Remark 3.1 The calculations of the Chas–Sullivan string topology rings of H∗(LM)

for M = Sn and CPn , mentioned above [7,20], yield a quotient of a finitely gen-
erated free associative algebra by an ideal. In particular, using the Chas–Sullivan
product one sees that the homology of these free loops are rationally elliptic. Now
Z(K ; (D2, S1)) is a manifold if K is a triangulation of a sphere. So, the string topol-
ogy rings of LZ(K ; (D2, S1)) are defined for such K . It follows from Theorem 1.2
that the Chas–Sullivan string topology of the free loops on a moment angle manifold
Z(K ; (D2, S1)) cannot be a quotient of a finitely generated free associative algebra
unless Z(K ; (D2, S1)) is a product of odd spheres.

4 Proof of Theorem 1.4

Suppose condition (1) holds, namely that the rational cohomology LZ(K ; (D2, S1)
has sub-exponential growth. In this case, Z(K ; (D2, S1) is rationally elliptic and so,
by the results of [2], must be rationally homotopy equivalent to a product of odd
spheres. Recall next ([6, p. 339], for example), that there is a homotopy equivalence

�(DJ (K )) −→ �(Z(K ; (D2, S1))) × Tm . (2)

This implies that the rational cohomology of �(DJ (K )) is a tensor product of a
polynomial algebra and an exterior algebra. Next, the Serre spectral sequence of the
fibration

�(DJ (K )) −→ L(DJ (K )) −→ DJ (K ) (3)

has an E2 term which is a tensor product of a polynomial algebra, an exterior algebra
and the Stanley–Reisner ring. So, the rational cohomology L(DJ (K ))must have sub-
exponential growth. This completes the proof of the theorem for the case of DJ (K ).
The proof of the theorem for the space ETm ×T q ZK is entirely analogous.

5 Free loop spaces in the elliptic case

Assume that ZK = Z(K ; (D2, S1)) is rationally elliptic, then it is a finite product of
odd-dimensional spheres by [2]. The free loop space L(S2n+1) is homotopy equivalent
to

S2n+1 × �(S2n+1)

as long as the prime 2 has been inverted. In this case of L(ZK ), the free loop space is
a product of free loop spaces of odd-dimensional spheres.

One remark is that the natural spectral sequence for

L(DJ (K )) → L(CP∞)m
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frequently supports a non-trivial differential as in the case of the free loops of Ganea’s
fibration

L(S3) → L(CP∞ ∨ CP∞) → L(CP∞ × CP∞)

for which K is two points, and DJ (K ) = CP∞ ∨ CP∞. This differential propagates
to several related cases.

It is natural to conjecture that if ZK is rationally elliptic, then the Hilbert–Poincaré
series for the free loop space of L(ETm ×T q ZK ) is a rational function.
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