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Abstract In this short note we prove the Borel conjecture for a family of aspherical
manifolds that includes higher graph manifolds.
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1 Introduction

The Borel conjecture is a statement about topological rigidity. It states that a homotopy
equivalence between two compact aspherical manifolds is homotopic to a homeomor-
phism.

A lot of work in geometric topology has been done in the last years with the aim to
prove the Borel conjecture using methods involving controlled topology and algebraic
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K-theory. In particular, the Borel conjecture was shown by Frigerio et al. to hold for
the class of graph manifolds studied in [11].

On the other hand, relationships between several generalizations of the concept of
finite asymptotic dimension in connection with isomorphism conjectures, in algebraic
K and L- theory, as well as coarse versions of these have been carried out by Carlsson
and Goldfarb in [7,8,12].

The method of proof of the Borel conjecture in this note uses these previous devel-
opments.

Consider the following construction of smooth n-manifolds M , for n ≥ 3:

Definition 1 1. For every i = 1, . . . , r take a complete finite-volume non-compact
pinched negatively curved ni -manifold Vi , where 2 ≤ ni ≤ n.

2. Denote byMi the compact smoothmanifoldwith boundary obtained by “truncating
the cusps” of Vi , i.e., by removing from Vi a (nonmaximal) horospherical open
neighborhood of each cusp.

3. Take fiber bundles Zi → Mi with fiber Ni finitely covered by a compact quotient
of an aspherical simply connected Lie group ˜Ni by the action of a uniform lattice
�i , of dimension n − ni , i.e., Ni is diffeomorphic to Hi\(˜Ni/�i ), where ˜Ni is a
simply connected Lie group, �i a uniform lattice, and Hi a finite group.

4. Fix a complete pairing of diffeomorphic boundary components between distinct
Zi s, provided one exists, and glue the paired boundary components using diffeo-
morphisms, to obtain a connected manifold of dimension n.
We will call the Zi ’s the pieces of M and when dim(Mi ) = n, then we say Zi = Mi

is a pure piece, (short for purely negatively curved).

Remark 1 The construction in the previous definition includes:

1. The class of generalized graph manifolds of Frigerio et al. [11]. The pieces Vi
in item (1) above are required to be hyperbolic with toral boundary cusps, the
Ni in item (3) are required to be tori, and the gluing diffeomorphisms in item
(4) are required to be affine diffeomorphims. These authors produce examples of
manifolds within this class that do not admit any CAT (0) metric.

2. The family of cusp-decomposable manifolds of Phan [14], where interesting
(non)rigidity properties are explored. These manifolds only have pure pieces.

3. The affine twisted doubles of hyperbolic manifolds, for whichAravinda and Farrell
study in [1] the existence of nonpositively curved metrics.

4. The higher graph manifolds studied in [9] by Connell and the third named author.
In that family, item (3) consists of infra-nilmanifold bundles with affine structure
group, which are, moreover, trivial near the cusp boundary of the negatively curved
pieces in the base. In item (4) the gluing diffeomorphisms are restricted to those
which are isotopic to affine diffeomorphisms. These two restrictions are used in [9]
to prove statements about collapsing and computations of minimal volume. They
turn out not to be needed in the arguments we present for the Borel conjecture to
hold true.

The following theorem is our main result:
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Theorem 1 Let M be an n-dimensional manifold constructed as in Definition 1, for
n ≥ 6, then M satisfies the Borel conjecture, that is, given a homotopy equivalence
f : M → M

′
, where M

′
is an aspherical n-dimensionalmanifold, then f is homotopic

to a homeomorphism.

The following section explains the notions of asymptotic dimension, weak regular
coherence, and finite decomposition complexity. In the last section a proof of Theorem
1 that uses these properties can be found, and also a proof that presents a slight
extension of the general strategy proposed by Frigerio–Lafont–Sisto, and we verify it
for the higher graph manifolds whose pieces are trivial bundles.

2 Finite asymptotic dimension and weak regular coherence

2.1 Asphericity

Consider the next definition, following [11], which will be used later on:

Definition 2 The boundaries of the pieces Zi that are identified together in Definition
1 will be called the internal walls of M .

Now we will prove, via an adaptation of the arguments of Frigerio et al. that the
manifolds we are interested in are in fact aspherical.

Lemma 2 If M is a manifold (possibly with boundary) constructed as in Definition
1, then M is aspherical.

Proof This proof is by induction on the number of internal walls c of M . If c = 0
then M = Z for some bundle Z over a closed, negatively curved base. It follows
from the homotopy exact sequence for the bundle Z that M is aspherical in this case,
establishing the base case for our inductive argument.

Assume c > 0, and that the result holds for manifolds constructed as in Definition
1, with strictly less than c internal walls. Cut open M along an arbitrary internal wall
W . Our inductive hypothesis implies that now M is obtained by gluing one or two
(depending on whether W separates M or not) aspherical spaces. Since the inclusion
ofW in the piece(s) in M it belongs to is π1-injective, it follows from a classical result
of Whitehead [16] that M is aspherical. ��

2.2 Finite asymptotic dimension

Let G be a finitely presented group. Fix a finite generator set S and consider the word
metric dS induced by the generating set. With this metric, the group G is a proper
metric space.

Definition 3 A family {U } of subsets in a metric space X is D-disjoint if d(U,U
′
) >

D for all subsets in the family. The asymptotic dimension asdim X of X is the smallest
number n such that for any D > 0 there is a uniformly bounded cover of X by n + 1-
families of D-disjoint families of subsets.
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An example of spaces (and groups) for which their asymptotic dimension can be
explicitly computed are precisely quotients of simply connected Lie groups:

Theorem 3 (Carlsson andGoldfarb, Corollary 3.6 in [6]) Let� be a cocompact lattice
in a connected Lie group G with maximal compact subgroup K. Then asdim � =
dim(G/K ).

For spaces that are built up using smaller subsets, there is a theorem that allows us
to bound the asymptotic dimension of the total space. Let X be a metric space. The
family {Xα} of subsets of X is said to satisfy the inequality asdimXα ≤ n uniformly if
for every r < ∞ a constant R can be found so that for every α there exists R-disjoint
families U 0

α,U 1
α,U 2

α, . . . ,Un
α of R-bounded subsets of Xα covering Xα .

Theorem 4 (Union theorem, Bell and Dranishnikov, Theorem 25 in [3]) Let X =
⋃

α

Xα be a metric space where the family {Xα} satisfies the inequality asdim Xα ≤ n

uniformly. Suppose further that for every r there is a Yr ⊂ X with asdim Yr ≤ n so
that d(Xα − Yr , Xα′ − Yr ) ≥ r whenever Xα 
= Xα′ . Then asdim X ≤ n.

Lemma 5 The fundamental groupπ1(M) of amanifold M of dimension n constructed
as in Definition 1 has finite asymptotic dimension.

Proof The fundamental groups of the pieces π1(Zi ) fit in an exact sequence

1 → π1(Ni ) → π1(Zi ) → π1(Mi ) → 1.

The asymptotic dimension ofπ1(Mi ) equals n−ni by theCartan–Hadamard Theorem.
On the other hand, the asymptotic dimension of the fibers, which are finitely covered
by quotients of Lie groups G under the action of a uniform lattice, is finite itself
because dim(G/K ) < ∞ by Theorem 3.

Finally, we invoke Theorem 4, from which we conclude that the asymptotic dimen-
sion of π1(X) is finite. ��

Alternatively, another result of Bell and Dranishnikov, Theorem 77 in [3], shows
that the asymptotic dimension of a graph of groups is finite provided each vertex group
has finite asymptotic dimension.

2.3 Finite decomposition complexity

Wewill briefly define the notion of straight finite decomposition complexity, since we
use it as a key property in the proof of the main result presented below.

Let X and Y be two families of metric spaces, and R > 0. The family X is called
R-decomposable overY if, for any space X inX there are collections of subsets {U1,α}
and {U2,β} such that

X =
⋃

i=1,2,γ=α,β

Ui,γ .
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Each Ui,γ is a member of the family Y , and each of the collections {U1,α} and {U2,β}
is R-disjoint. A family of metric spaces is called bounded if there is a uniform bound
on the diameters of the spaces in the family.

Definition 4 A metric space X has straight finite decomposition complexity if, for
any sequence R1 ≤ R2 ≤ . . . of positive numbers, there exists a finite sequence
of metric families V1, V2, . . . , Vn such that X is R1-decomposable over V1, V1 is
R2-decomposable over V2, etc., and the family Vn is bounded.

The following well-known lemma ties this notion with that of asymptotic dimen-
sion, for completeness we include a proof.

Lemma 6 If a group has finite asymptotic dimension, then it has straight finite decom-
position complexity.

Proof Itwas shownbyGuentner et al. that a countablemetric space of finite asymptotic
dimension has finite decomposition complexity in [13]. As part of their study of
straight finite decomposition complexity, Dranishnikov and Zarichnyi showed in [10]
that groups with finite decomposition complexity have straight finite decomposition
complexity. ��

3 Two proofs

3.1 The Carlsson–Goldfarb approach to the Borel conjecture

Let � be the fundamental group of a manifold constructed as in Definition 1. The
strategy for proving Theorem 1 for manifolds with fundamental group � consists of
showing that � satisfies the following properties:

1. � has finite asymptotic dimension.
2. � has a finite model for the classifying space B�.

A group satisfying these two conditions has been proven to also satisfy the integral
isomorphism conjecture in algebraic K-theory, according to Theorem 3.11 of Goldfarb
in [12].

Proof (of Theorem 1)
Item (1) was shown in Lemma 5 above.
Item (2) follows from the fact that these are fundamental groups of compact aspher-

ical manifolds (possibly with boundary). Therefore, the Borel conjecture holds for the
manifolds in Definition 1. ��

This simple strategy provides an alternative to the one laid out by Frigerio et al. in
[11]. We also present in the following a modified version of their strategy, and verify
that it can be carried out for certain manifolds within those of Definition 1.

In a series of articles, Goldfarb and Carlsson have investigated several notions
which generalize that of regular coherence for the group ring of infinite groups. The
main geometric interest on this situation relies on the fact that these conditions are
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strong enough to allow the vanishing of the Whitehead group and negative algebraic
K-theory groups of group rings, and weak enough to be handled with methods dealing
with coarse versions of the isomorphism conjecture in algebraic K-theory [6,12].

We will recall some definitions and fundamental results related to finite asymptotic
dimension and the coarse assembly map in the boundedly controlled setting. See, for
example [5,12], for further reference.

Let P(G) be the power set viewed as a category where morphisms are inclusions
of subsets. Let R be a noetherian ring and consider a finitely generated R[G]-module
M. A G-filtration of M is a functor f : P(G) → R − Sub(M) to the category
of R-submodules of M such that f (G) = M, and each bounded set in the word
metric dS , T ⊂ G is mapped to a finitely generated R-submodule. Such a functor f
is equivariant if f (gS) = g f (S).

Definition 5 A homomorphism φ : F1 → F2 between finitely generated R[G]-
modules with fixed filtrations f1, f2 is boundedly controlled with respect to the bound
D > 0 if φ( f1(S)) ⊂ f2(BD(S)) for each subset S ⊂ G. If φ also satisfies φF1 ∩
f2(S) ⊂ φF1(BD(S)), then F is called boundedly bicontrolled.

Definition 6 Let M be a finitely presented R[G]-module. A finite presentation
F : R[G]m → R[G]n → M is admissible if the homomorphism F is boundedly
bicontrolled.

Definition 7 A group ring R[G] is weakly coherent if every R[G]-module with an
admissible presentation has a projective resolution of finite type. Similarly, a group
ring is weakly regular coherent if every R[G]-module with an admissible presentation
has finite homological dimension.

Theorem 7 (Carlsson and Goldfarb, Corollary 3.9 in [12]) Let R be a noetherian ring
and let G be a group of finite asymptotic dimension. Then, the group ring R[G] is
weakly regular coherent.

Weak regular coherence has been verified to be enough to guarantee the vanishing
of Whitehead groups and negative algebraic K-theory.

Theorem 8 (Goldfarb, Theorem 3.11 in [12]). Let G be a group of finite asymptotic
dimension (or more generally of finite decomposition complexity, as explained in
[12]). Assume that there is a finite model for the classifying space K (G, 1). Then, the
assembly map in algebraic K-theory is an isomorphism. In particular, the Whitehead
group of G vanishes.

As a consequence of Theorem 8 and Lemma 5, we obtain:

Corollary 9 The group ring Zπ1(M) of a manifold M constructed as in Definition 1
is weakly regular coherent.

3.2 An extension of the Frigerio–Lafont–Sisto approach to the Borel conjecture

The proof of the Borel conjecture for the class of manifolds studied by Frigerio et
al. in [11] in fact developed a general strategy to be carried out for a given family
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of manifolds. In their Theorem 3.1 they proved that if a manifold is built up from a
geometric decomposition, as are the higher graph manifolds in this paper, and satisfies
the following six conditions, then it also satisfies the Borel conjecture:

1. Each of the inclusions Wi, j → Zi is π1-injective.
2. Each of the pieces Zi and each of the walls Wi, j are aspherical.
3. Each of the pieces Zi and each of the walls Wi, j satisfy the Borel Conjecture.
4. The rings Zπ1(Wi, j ) are all regular coherent.
5. Whk(Zπ1(Wi, j )) = 0 = Whk(Zπ1(Zi )) for k ≤ 1.
6. Each of the inclusions π1(Wi, j ) → π1(Zi ) is square root closed.

We propose a slightly modified version of this strategy, where we replace the last
three conditions, (4), (5) and (6), by a couple of new requirements. So that we obtain
the following:

Lemma 10 Let M be a compact manifold of dimension n ≥ 6 with a topological
decomposition (as described in [11]). Assume the following conditions hold:

1. Each of the inclusions Wi, j → Zi is π1-injective.
2. Each of the pieces Zi and each of the walls Wi, j are aspherical.
3. Each of the pieces Zi and each of the walls Wi, j satisfy the Borel Conjecture.
4. The group � = π1(M) has finite decomposition complexity.
5. There exists a finite model for the classifying space K (�, 1).

Then the manifold M also satisfies the Borel conjecture.

Proof Conditions (4) and (5) imply that the Whitehead groups Whi (Z�) = 0, for
i ≤ 1, as proved in [12].

Therefore, the rest of the proof presented in Theorem 3.1 [11] goes through, and
the result holds. ��

Now we will concentrate on certain higher graph manifolds, explained briefly in
the introduction (see [9]).

Lemma 11 Assume M is a higher graph manifold, all of whose pieces are trivial as
bundles. Then, each of the pieces Zi ∼= Ni × Mi , and each of the walls Wi, j , satisfy
the fibered isomorphism conjecture (FIC) of Farrell–Jones.

Proof First notice that the validity of FIC for the walls Wi, j follows from the work
of Bartels et al. in [2], since these are quotients of Lie groups (see also their Remark
2.13).

As each piece Zi is a trivial fibre bundle

Zi ∼= Ni × Mi

the fundamental group of Zi is a product

π1(Zi ) ∼= π1(Ni ) × π1(Mi ).

Recall that Mi is a manifold that admits a pinched negatively curved metric. So it
also admits a CAT (0) metric, and therefore FIC holds for π1(Mi ). The fibres satisfy
FIC following [2]. Therefore, π1(Zi ) also satisfies FIC, by Theorem 2.9 in [2]. ��
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As a consequence we obtain that the Borel conjecture holds for each of the pieces
Zi , with trivial fibration structure, and each of the walls Wi, j , and so condition (3) is
verified.

Lemma 12 Let M be a higher graph manifold, all of whose pieces Zi are trivial as
bundles, and let Wi, j denote its internal walls. Then, the rings Zπ1(Wi, j ) are weakly
regular coherent.

Proof From the proof of Lemma 5, we conclude that these groups have finite asymp-
totic dimension. Now the result follows from Theorem 7. ��
Lemma 13 Let M be a higher graph manifold, all of whose pieces Zi are trivial
as bundles, and let Wi, j denote its internal walls. Then, Whk(Zπ1(Wi, j )) = 0 =
Whk(Zπ1(Zi )) for k ≤ 1.

Proof Since each of the walls and pieces are aspherical, their fundamental groups are
torsion free. By the previous Lemma 11, the result holds for each of the pieces and
walls. Alternatively, the result follows from Theorem 8. ��
Lemma 14 Let M be a manifold constructed as in Definition 1. For every 1 ≤ i ≤ r ,
the map Ni → X is π1-injective. Moreover, the image of π1(Ni ) is a square root
closed subgroup in the group π1(X).

Proof Consider the long exact sequence of homotopy groups of a fibration:

· · · → πn(Ni ) → πn(Zi ) → πn(Mi ) → · · · .

The connectedness of Ni implies the π1-injectivity condition.
Using propositionVII.2 in page 168 of [4], it suffices to verify the square root closed

condition in the fundamental groups of the edgesπ1(Wi , j) → π1(Zi ). Using the long
exact sequence of the fibration again, this is equivalent to showing that there are no
2-torsion elements in π1(Mi ). This is certainly the case, since Mi is an aspherical
manifold. ��
Lemma 15 Let M be a manifold constructed as in Definition 1 and� = π1(M). Then
there exists a finite model for K (�, 1).

Proof Notice that the manifold M is aspherical and hence it is itself a finite model for
K (�, 1). ��

Now we collect all of these auxiliary results to present:

Theorem 16 Let M be a higher graph manifold of dimension ≥ 6. Assume that all of
the pieces of M are trivial bundles. Then M satisfies the Borel conjecture.

Proof Notice that these higher graph manifolds satisfy all the hypothesis of Lemma
10, as has been shown in Lemmas 6, 11, 13, 14, and 15. ��
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