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Abstract We give p-local homotopy decompositions of the suspensions of real toric
spaces for odd primes p. Our decomposition is compatible with the one given by
Bahri, Bendersky, Cohen, and Gitler for the suspension of the corresponding real
moment-angle complex, or more generally, the polyhedral product. As an application,
we obtain a stable rigidity property for real toric spaces.
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1 Introduction

For a simplicial complex K on m-vertices [m] = {1, . . . ,m} the real moment-angle
complex RZK (or the polyhedral product (D1, S0)K ) of K is defined as follows:

RZK = (D1, S0)K

:=
⋃

σ∈K

{
(x1, . . . , xm) ∈ (D1)m | xi ∈ S0 when i /∈ σ

}
,

where D1 = [0, 1] is the unit interval and S0 = {0, 1} is its boundary. It should be
noted that RZK is a topological manifold if K is a simplicial sphere [2, Lemma 6.13],
and that there is a canonical F

m
2 -action on RZK which comes from the F2-action on

the pair (D1, S0).
Let n ≤ m. A map λ : V = [m] → F

n
2 is called a (mod 2) characteristic function

of K if it has the property that

λ(i1), . . . , λ(i�) are linearly independent in F
n
2 if {i1, . . . , i�} ∈ K . (1)

For convenience, a characteristic function λ is frequently represented by an (n ×
m) F2-matrix � = (λ(1) . . . b λ(m)), called a characteristic matrix. Define a map
θ : [m] → F

m
2 so that θ(i) is the i th coordinate vector of F

m
2 . Then the homomorphism

� (viewed as a matrix multiplication) satisfies � ◦ θ = λ. We will see in Lemma 3.1
that Condition (1) ensures that the group ker� ∼= F

m−n
2 acts freely on RZK . We

denote by Mλ the associated real toric space, which is defined to be RZK / ker�. If
K is a polytopal (n − 1)-sphere then Mλ is known as a small cover [8] and if K is a
star-shaped (n−1)-sphere then Mλ is known as a real topological toric manifold [10].

In [1, Theorem 2.21] it is shown that there is a homotopy equivalence

�RZK � �
∨

I /∈K
�|KI |, (2)

where KI is the full subcomplex of K on the vertex set I and |KI | is its geometric
realization. In this short note, we give an analogous odd primary decomposition of the
suspension of Mλ.

Theorem 1.1 Let Mλ be a real toric space. Localized at an odd prime p or the
rationals (denoted by p = 0) there is a homotopy equivalence

�(Mλ) �p �
∨

I∈Row(λ)

�|KI |,

where Row(λ) is the space of m-dimensional F2-vectors spanned by the rows of �

associated to λ.

The restriction to odd primes arises because the free action of ker� on RZK

implies that when | ker�| is inverted in a coefficient ring R then the quotient map
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RZK −→ Mλ induces an injection in cohomology with image the invariant subring
H∗(RZK ; R)ker�. This will be used to help analyze the topology ofRZK . As | ker�|
has order a power of 2 we can take R to be Z(p) or Q. In fact, Theorem 1.1 fails
when p = 2 in simple cases. For example, if K is the boundary of a triangle and

λ =
(
1 0 1
0 1 1

)
, then Mλ = RP2 but each �|KI | is contractible.

Recent work of Yu [12] gave a different decomposition of the suspension of certain
quotient spaces of RZK . He considers a homomorphism� : F

m
2 → F

n
2 which is asso-

ciated to a partition on the vertices of K , and proves that �RZK / ker� decomposes
analogously to the Bahri, Bendersky, Cohen and Gitler decomposition. Yu’s decom-
position has the advantage of working integrally and also for some non-free actions,
but it has the disadvantage of working only for particular homomorphisms �. Our
decomposition, by contrast, works only after localizing at an odd prime but holds for
all characteristic maps derived from free actions.

2 Polyhedral product and its stable decomposition

Let us first recall Bahri, Bendersky, Cohen and Gitler’s argument in [1]. To make it
more clear, we present it in its full polyhedral product form. Let K be a simplicial
complex on the vertex set [m] and for 1 ≤ i ≤ m let (Xi , Ai ) be pairs of pointed
CW -complexes. If σ is a face of K let

(X , A)σ =
m∏

i=1

Yi where Yi =
{
Xi if i ∈ K
Ai if i /∈ K .

The polyhedral product is

(X , A)K =
⋃

σ∈K
(X , A)σ .

Notice that (X , A)K is a subspace of the product
∏m

i=1 Xi . There is a canonical quotient
map from the product to the smash product,

∏m
i=1 Xi −→ ∧m

i=1 Xi . The smash

polyhedral product (̂X , A)
K
is the image of the composite (X , A)K −→ ∏m

i=1 Xi −→
∧m

i=1 Xi . In particular, mapping onto the image gives a map (X , A)K −→ (̂X , A)
K
.

Let I ⊂ [m]. As in [9, 2.2.3(i)], projecting
∏m

i=1 Xi onto
∏

i∈I Xi induces a map
of polyhedral products (X , A)K −→ (X , A)KI . We then obtain a composition into a
smash polyhedral product:

pI : (X , A)K −→ (X , A)KI −→ (̂X , A)
KI

.

Suspending, we can add every such composition over all full subcomplexes of K ,
giving a composition
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H : �(X , A)K
comul−→

∨

I⊂[m]
�(X , A)KI

∨�pI−−−→
∨

I⊂[m]
�(̂X , A)

KI
.

Bahri, Bendersky, Cohen and Gitler [1, Theorem 2.10] show that H is a homotopy
equivalence.

Further, in the special case when each Xi is contractible, they show that there

is a homotopy equivalence (̂X , A)
KI � �(|KI | ∧ ÂI ) [1, Theoerem 2.19], where

ÂI = ∧k
j=1 Ai j for I = (i1, . . . , ik). Consequently, when each Xi is contractible the

map H specializes to a homotopy equivalence

H : �(X , A)K −→
∨

I⊂[m]
�(X , A)KI −→

∨

I⊂[m]
�(̂X , A)

KI �−→
∨

I⊂[m]
�2(|KI |∧ ÂI ).

In our case, each pair (Xi , Ai ) equals (D1, S0) and D1 is contractible. As there
is a homotopy equivalence S0 ∧ S0 � S0, each ÂI is homotopy equivalent to S0.
Therefore there are homotopy equivalences

R̂ZKI := ̂(D1, S0)
KI �−→ �|KI | ∧ ÂI � �|KI | ∧ S0 � �|KI |. (3)

Thus the map H becomes a homotopy equivalence

H : �RZK −→
∨

I⊂[m]
�RZKI −→

∨

I⊂[m]
�R̂ZKI

�−→
∨

I⊂[m]
�2|KI |.

It is in this form that we will use the Bahri, Bendersky, Cohen and Gitler decompo-
sition because, as we will see shortly, it corresponds to a module decomposition of a
differential graded algebra RK whose cohomology equals H∗(RZK ). But it is worth
pointing out that in [1, Theorem 2.21] it was shown that when each Xi is contractible

then (̂X , A)
KI

is contractible if I ∈ K . So the usual Bahri, Bendersky, Cohen and
Gitler decomposition is of the form

�(X , A)K �
∨

I /∈K
�2(|KI | ∧ ÂI ),

giving the special case

�RZK � �
∨

I /∈K
�|KI |,

which is the statement in (2).

3 Proof of the main theorem

First, recall that Mλ is the quotient of RZK by ker�.
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Lemma 3.1 Under Condition (1), ker� acts on RZK freely.

Proof Let ḡ = (x1, x2, . . . , xm) ∈ RZK = (D1, S0)K be the fixed point of an element
g = (g1, g2, . . . , gm) ∈ ker� ⊂ F

m
2 . This means either gi = 0 or xi ∈ (D1)F2 =

{1/2} for all i ∈ [m]. Let σ ∈ K be the maximal simplex such that x ∈ (D1, S0)σ and
�σ be the sub-matrix of � consisting of columns corresponding to σ . Let gσ be the
sub-vector of g corresponding to σ . Since g ∈ ker�, we have

�g = �σ gσ + �[m]\σ g[m]\σ = 0.

Since F2 acts on S0 freely, we have gi = 0 for i /∈ σ . Then, by the previous equation
we have �σ gσ = 0. Therefore Condition (1) implies gσ = 0 and we have g = 0. �

Next, consider the following diagram

�RZK
H̄

�q

�
∨

I⊂[m] R̂ZKI
�

�
∨

I⊂[m] �|KI |

�Mλ �
∨

I∈Row(λ) R̂ZKI

�incl

φ �
�

∨
I∈Row(λ) �|KI |

(4)

where, by definition, φ = �q ◦ H̄−1 ◦ �incl.
To proveTheorem1.1wewill show thatφ∗ induces an isomorphismon cohomology

with Z(p)-coefficients. From now on, assume that coefficients in cohomology are Q

or Z(p), where p is an odd prime.
First, by [4, Theorem 5.1] the cohomology ring of RZK is given as follows. Let

Z(p)〈u1, . . . , um, t1, . . . , tm〉 be the free associative algebra over the indeterminants
of deg ui = 1, deg ti = 0 (i = 1, . . . ,m). Define a differential graded algebra RK by

RK = Z(p)〈u1, . . . , um, t1, . . . , tm〉
(uσ | σ /∈ K , u2i , uiu j + u jui , ui ti − ui , ti ui , ti u j − u j ti , t2i − ti , ti t j − t j ti )

where i �= j and d(ti ) = ui for each i = 1, . . . ,m. Then H∗(RZK ) = H∗(RK ). We
shall use the notation uσ (respectively, tσ ) for the monomial ui1 . . . uik (respectively,
ti1 . . . tik ) where σ = {i1, . . . , ik}, i1 < · · · < ik , is a subset of [m]. For I ⊂ [m],
denote by RKI the differential graded sub-module of RK spanned by the monomials
{uσ tI\σ | σ ∈ KI }. Observe from the definitions of RK and RKI that there is an
additive isomorphism RK = ⊕

I⊂[m] RKI .

Lemma 3.2 There is an additive isomorphism

H∗(RKI ) � H̃∗(̂RZKI )

and the projection pI : RZK → R̂ZKI induces the inclusion p∗
I : H∗(RKI ) ↪→

H∗(RK ).

Proof The first assertion follows from R̂ZKI � �|KI | [see (3)] and the isomorphism
H∗(RKI ) � H̃∗−1(|KI |) given by
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RKI → C∗(KI )

uσ tI\σ �→ σ ∗,

where C∗(KI ) is the simplicial cochain complex of KI ([4, Proposition 3.3]).
To show the second assertion, we lookmore closely at the isomorphism H∗(RK ) �

H∗(RZK ). From [4, §3.2], the monomials uσ tI\σ are mapped into the image of
p∗
I : C∗

e (RZKI ) → C∗
e (RZK ), where C∗

e denotes the cellular cochain complex.
By combining this with the first assertion, we deduce the second assertion. �


Now we investigate the maps appearing in (4). Since the action of ker� on RZK

is free and | ker�| is a unit in the coefficient ring Z(p), the map q∗ is injective with
image H∗(RZK )ker�. Notice that in cohomology incl induces the projection incl∗ :⊕

I⊂[m] H∗(RKI ) → ⊕
I∈Row(λ) H

∗(RKI ). Recall that H̄ = �
∨

I⊂[m] pI ◦ comul

and φ = �q ◦ H̄−1 ◦ �incl. So φ∗ is the composite

φ∗ : H∗(�Mλ) � H∗(�RZK )ker� ↪→ H∗(�RZK )
�−→

⊕

I⊂[m]
H∗(�RKI )

→
⊕

I∈Row(λ)

H∗(�RKI ),

where � for graded modules means the degree shift in the positive degree parts.
We aim to show that φ∗ is an isomorphism. To see this, first observe that

H∗(RZK )ker� � H∗(Rker�
K ). We need two lemmas.

Lemma 3.3 ([7, Section 4]) The Reynolds operator

N (x) := 1

| ker�|
∑

g∈ker�
gx

induces an additive isomorphism
⊕

I∈Row(λ) RKI

�−→ Rker�
K , where Rker�

K is the
ker�-invariant ring of RK . Furthermore, for a monomial x = uσ tI\σ , N (x) has the
unique maximal term x, where the order is given by the containment of the index set.

�

Lemma 3.4 The composite


 : Rker�
K ↪→ RK �

⊕

I⊂[m]
RKI

π−→
⊕

I∈Row(λ)

RKI

is an isomorphism, where π is the projection.

Proof We first show this is surjective. Take an element x ∈ ⊕
I∈Row(λ) RKI . We

induct on the size of the index set of x . By Lemma 3.3, the terms in π(N (x) −
x) ∈ ⊕

I∈Row(λ) RKI has an index set strictly smaller than that for x . By induction
hypothesis, there is an element y ∈ Rker�

K such that 
(y) = π(N (x) − x). Put
z = N (x) − y ∈ Rker�

K and we have 
(z) = π(N (x)) − 
(y) = π(x) = x .
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On the other hand, suppose 
(y) = 0 for some y ∈ Rker�
K . By Lemma 3.3, there

is x ∈ ⊕
I∈Row(λ) RKI such that y = N (x) and y must contain the maximal terms in

x . Thus, 
(y) = 0 implies x = 0 and y = N (x) = 0. �

Proof of Theorem 1.1 Since H∗(RZK )ker� � H∗(Rker�

K ), the definitions of φ and

 imply that 
∗ = φ∗. Therefore, by Lemma 3.4, φ∗ is an isomorphism. �

Remark 3.5 In [7], they only consider the case when the coefficients ring is either Q

or Z/qZ for q > 2. However, since H∗(Mλ) = H∗(RZK / ker�) � H∗(RZK )ker�

holds for any coefficients ring such that 2 is invertible, their theorem is valid also for
Z(p) for an odd prime p.

4 Stable rigidity of real toric spaces

In this section, we give an application of Theorem 1.1 to a stable rigidity property of
real toric spaces.

Corollary 4.1 Let Mλ be a real toric space over K . When KI for any I ∈ Row(λ)

suspends to a wedge of spheres after localization at an odd prime p,�Mλ is homotopy
equivalent to a wedge of spheres after localization at p. Let Nμ be another real toric
spaces over K ′, where K ′

I for any I ∈ Row(μ) suspends to a wedge of spheres
after localization at p. Then, if H∗(Mλ; Fp) � H∗(Nμ; Fp) as modules, we have
�Mλ �p �Nμ. �


Real toric spaces associated to graphs

Given a connected simple graph G with n+1 nodes [n+1], the graph associahedron
PG ([5]) of dimension n is a convex polytopewhose facets correspond to the connected
subgraphs of G. Let K be the boundary complex of PG . We can describe K directly
from G: the vertex set of K consists proper subsets T � [n + 1] such that G|T are
connected and the simplices are the tubings of G. We define a mod 2 characteristic
map λG on K as follows:

λG(T ) =
{∑

t∈T et , if n + 1 /∈ T ;∑
t /∈T et , if n + 1 ∈ T,

where et is the t th coordinate vector ofFn
2. Thenwehave a real toricmanifoldM(G) :=

MλG associated to G.
The signed a-number sa(G) of G is defined recursively by

sa(G) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if G = ∅;
0, if G has a connected component with odd

number of nodes;
−∑

T�[n+1] sa(G|T ), otherwise,

and the a-number a(G) of G is the absolute value of sa(G). As shown in [6], there
is a bijection ϕ from Row(λG) to the set of subgraphs of G having an even number
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nodes and |KI | for I ∈ Row(λG) is homotopy equivalent to
∨a(ϕ(I )) S|ϕ(I )|/2−1 where

|ϕ(I )| is the number of nodes of ϕ(I ). By Theorem 1.1 we obtain the following.

Corollary 4.2 We have a homotopy equivalence

�M(G)(p) �p

∨

I∈Row(λG )

a(ϕ(I ))∨
S|ϕ(I )|/2+1 for any odd prime p.

�

Now, we define the ai -number ai (G) of G by

ai (G) =
∑

T⊆[n+1]
|T |=2i

a(G|T ).

Then, ai (G) coincides the i th Betti number β i (M(G); Fp) of M(G). It should be
noted that, by Corollary 4.2, if two graphs G1 and G2 have the same ai -numbers for
all i’s, then �M(G1) �p �M(G2) for any odd prime p.

Example 4.3 Let P4 be a path graph of length 3, and K1,3 a tree with one internal
node and 3 leaves (known as a claw). One can compute ai (G) := ∑

T⊆[n+1]
|T |=2i

a(G|T )

as follows:

a0(P4) = a0(K1,3) = 1,

a1(P4) = a1(K1,3) = 3,

a2(P4) = a2(K1,3) = 2,

ai (P4) = ai (K1,3) = 0 for i > 2.

Hence, by Corollary 4.2, �M(P4) �p �M(K1,3) for any odd prime p although
�M(P4) and �M(K1,3) are not homotopy equivalent since they have different mod-
2 cohomology.

Real toric spaces over fillable complexes

There is a wide class of simplicial complexes on which every real toric space satisfies
the assumption in Corollary 4.1.

Definition 4.4 ([11, Definition 4.8]) Let K be a simplicial complex. Let K1, . . . , Ks

be the connected components of K , and let K̂i be a simplicial complex obtained from
Ki by adding all of its minimal non-faces. Then K is said to be Fp-homology fillable if
(1) for each i there areminimal non-facesMi

1, . . . , M
i
r of K such that Ki∪Mi

1∪· · ·∪Mi
r

is acyclic over Fp, and (2) K̂i is simply connected for each i .
Moreover, we say that K is totally Fp-homology fillable when KI is Fp-homology

fillable for any ∅ �= I ⊂ [m].
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Proposition 4.5 ([11, Proposition 4.15]) If K is Fp-homology fillable, then �|K |(p)
is a wedge of p-local spheres. �


There is a large class of simplicial complexes which are totally homology fillable.

Proposition 4.6 ([11, Propositions 5.18 and 5.19]) If the Alexander dual of K is
sequentially Cohen–Macaulay over Fp ([3]), then K is totally Fp-homology fillable.

Note that theAlexander duals of shifted and shellable simplicial complexes are sequen-
tially Cohen–Macaulay over Fp.
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