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Abstract We provide local formulae for Poisson bivectors and symplectic forms on
the leaves of Poisson structures associated with wrinkled fibrations on smooth 4-
manifolds. When such a fibration structure does not have 2-spheres in its fibres, the
associated Poisson structure is integrable.
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1 Introduction

The study of smooth manifolds of dimension four has led to various interesting types
of fibrations. One of the origins of this research direction can be found in the seminal
paper by Auroux et al. [1]. They described near-symplectic forms adapted to a type of
fibration that has since been calledbrokenLefschetz fibration, this namewas introduced
by Perutz [9].
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Definition 1.1 On a smooth 4-manifold X , a broken Lefschetz fibration is a smooth
map f : X → S2 that is a submersion outside the singularity set. Moreover, the
allowed singularities are of the following type:

(i) Lefschetz singularities: finitely many points

{p1, . . . , pk} ⊂ X,

which are locally modelled by complex charts

C2 → C, (z1, z2) �→ z21 + z22,

(ii) indefinite fold singularities, also called broken, contained in the smooth embedded
1-dimensional submanifold � ⊂ X \ {p1, . . . , pk}, which are locally modelled
by the real charts

R4 → R2, (t, x1, x2, x3) �→
(
t,−x21 + x22 + x23

)
.

The term indefinite in (ii) refers to the fact that the quadratic form −x21 + x22 +
x23 is neither negative nor positive definite. In the language of singularity theory,
these subsets are known as fold singularities of corank 1. Since X is closed, � is
homeomorphic to a collection of disjoint circles. For this reason, throughout this work,
we will often refer to � as singular circles. On the other hand, we can only assert that
f (�) is a union of immersed curves. In particular, the images of the components of �

need not be disjoint, and the image of each component can self-intersect.
In [6] the first named author together with García-Naranjo and Vera exhibited

a Poisson structure whose symplectic leaves coincide with the fibres of a broken
Lefschetz fibration, and the singular sets of both structures coincide.

The notion of wrinkled fibration on a smooth 4-manifold was introduced by Lekili
[8], who showed that these wrinkled fibrations exist in every closed oriented smooth
4-manifold. Broken Lefschetz fibrations are not stable, as maps. In contrast, wrinkled
fibrations are stable. So if one is interested in perturbations of broken Lefschetz fibra-
tions, one is led naturally to the study of wrinkled fibrations. Lekili described a set
of moves that include, up to homotopy, all the possible one-parameter deformations
of broken and wrinkled fibrations. These were then further studied by Williams [12].
Both [8] and [12] are motivated by the Lagrangian matching invariants defined by
Perutz [9]. These moves preserve the diffeomorphism type of the underlying smooth
4-manifold.

Let X be a closed 4-manifold, and� be a 2-dimensional surface.Amap f : X → �

is said to have a cusp singularity at a point p in X , if around p, f is locally modelled
in oriented charts by the map:

(t, x, y, z) �→
(
t, x3 − 3xt + y2 − z2

)
.

The critical point set is a smooth arc, {x2 = t, y = 0, z = 0}, the critical value set
is a cusp given by {(t, s) : 4t3 = s2} (see Fig. 1).
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Fig. 1 A diagram depicting a
fibration with a cusp singularity
along the critical values depicted
in green, which is a subset of the
base of this fibration. The black
lines indicate the points over
which each of the fibres lie
(color figure online)

Following Lekili we state:

Definition 1.2 Awrinkled fibration on a closed 4-manifold X is a smooth map f to a
closed surface which is a broken fibration when restricted to X \C , where C is a finite
set such that around each point in C , f has cusp singularities. We say that a fibration
is purely wrinkled if it has no isolated Lefschetz-type singularities.

Wrinkled fibrations may be obtained from broken Lefschetz fibrations by perform-
ing wrinkling moves. These eliminate a Lefschetz type singularity and introduce a
wrinkled fibration structure. Conversely, it is possible to modify a wrinkled fibra-
tion locally by smoothing out the cusp singularity by introducing a Lefschetz type
singularity, so obtaining a broken fibration (see [8,12]).

Next we will introduce the deformations of wrinkled fibrations that will appear in
our Poisson structures. As Lekili, by a deformation of wrinkled fibrations we mean a
one-parameter family of maps which is a wrinkled fibration for all but finitely many
values. One of Lekili’s major contributions in [8] was to show that any one-parameter
family deformation of a purely wrinkled fibration is homotopic (relative endpoints)
to one which realises a sequence of births, merges, flips, their inverses, and isotopies
staying within the class of purely wrinkled fibrations. Moreover, these moves do not
change the diffeomorphism type of the 4-manifold X on which they take place.

Let us briefly describe these moves, readers may consult both [8,12] for the cor-
responding descriptions in terms of how the fibres change and how these moves can
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Fig. 2 Birthmove: bs (x, y, z, t) = (t, x3−3x(t2−s)+ y2−z2). For s < 0 the critical set is empty. Then
when s = 0 the fibre above the critical point is shown to develop a singularity. As s becomes positive the
wrinkled critical set appears, here depicted by the green line, which is a subset of the base of this fibration.
The black lines indicate the points over which each of the fibres lies (color figure online)

be described using handlebodies. The moves we are interested in are to be considered
as maps R × R3 → R, given by the following equations, each depending on a real
parameter s:

Move 1 (Birth, Fig. 2)

bs(x, y, z, t) = (t, x3 − 3x(t2 − s) + y2 − z2).

Move 2 (Merging, Fig. 3)

ms(x, y, z, t) = (t, x3 − 3x(s − t2) + y2 − z2).

Move 3 (Flipping, Fig. 4)

fs(x, y, z, t) = (t, x4 − x2s + xt + y2 − z2).

Move 4 (Wrinkling)

ws(x, y, z, t) = (t2 − x2 + y2 − z2 + st, 2t x + 2yz).

The proof of the existence of a Poisson structure presented in [6] also implies that
there exists a Poisson structure associated with wrinkled fibrations, where the fibres
are leaves of the symplectic foliation and both structures share the same singularities.

The constructions presented in this paper use a general procedure to construct
Poisson structureswith prescribedCasimir functions. These ideas, in a general context,
can be traced back to Damianou’s thesis [3], to work of Damianou–Petalidou [4], and
have also been attributed to Flaschka–Ratiu. However, the synthetic nature of the
proof in [6], while complete, does not provide any information about the local forms
of the Poisson bivector for wrinkled fibrations. The purpose of this note is to provide
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Fig. 3 Merging move: ms (x, y, z, t) = (t, x3 − 3x(s − t2) + y2 − z2). For s < 0 the critical set shows
two connected components. Then when s = 0 these two components touch, and the fibre above the critical
point is shown to develop a singularity. As s becomes positive the critical set (shown in green) separates
again. The black lines indicate the points over which each of the fibres lies (color figure online)

Fig. 4 Flipping move: fs (x, y, z, t) = (t, x4− x2s+ xt+ y2− z2). For s < 0 the critical set corresponds
to that of a broken Lefschetz fibration. As s becomes positive the critical set (shown in green) crosses itself.
The black lines indicate the points over which each of the fibres lies (color figure online)

these details. In this paper, we continue to exploit the techniques of [6] in order to
present local formulae for both the Poisson bivector and for the symplectic forms on
the leaves of Poisson structures whose symplectic foliation and singularities are given
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by wrinkled fibrations and their deformations. Let us summarise the contributions of
this paper in the following:

Theorem 1.3 Let X be a closed, orientable, smooth 4-manifold equipped with a wrin-
kled fibration, or for a fixed s a fibration given by one of the birth, merging, flipping,
or wrinkiling moves described above. Then there exists a complete Poisson structure
whose symplectic leaves correspond to the fibres of the given fibration structure, and
the singularities of both the fibration and the Poisson structures coincide. Moreover:

(i) In aneighbourhoodof a cusp singularity thePoissonbivector is givenbyEq. (3.2),
and the symplectic form on the leaves by Eq. (3.7).

(ii) In a neighbourhood of a birth move the Poisson bivector is given by Eq. (3.3),
and the symplectic form on the leaves by Eq. (3.8).

(iii) In a neighbourhood of a merging move the Poisson bivector is given by Eq. (3.4),
and the symplectic form on the leaves by Eq. (3.9).

(iv) In a neighbourhood of a flipping move the Poisson bivector is given by Eq. (3.5),
and the symplectic form on the leaves by Eq. (3.10).

(v) In a neighbourhood of awrinklingmove thePoisson bivector is given byEq. (3.6),
and the symplectic form on the leaves by Eq. (3.11).

The existence of a Poisson structure with the stated properties follows from Theo-
rem 2.4, originally shown in [6].

Given a Lie algebra g, the integrability problem for g was solved by Lie’s third
theorem. It gives the existence of a Lie group G such that Lie(G) ∼= g. Crainic and
Fernandes found obstructions for the integrability of Lie algebroids. Their Corollary
5.13 in [2] establishes that any Poisson manifold whose symplectic leaves have trivial
second homotopy groups is integrable.

Therefore we deduce:

Lemma 1.4 A Poisson structure associated with a wrinkled fibration structure or its
deformation moves as in Theorem 1.3, or to a broken Lefschetz fibration as in [6],
none of whose symplectic leaves are, or contain, 2-spheres, is integrable.

Definitions and useful related results can be found in Sect. 2. The computations of
the bivectors and symplectic forms are carried out in Sect. 3.

2 Definitions

2.1 Poisson manifolds

In this section we include basic facts about Poisson geometry that we will use through-
out the paper. Interested readers are invited to consult [5,7,11].

Definition 2.1 A Poisson bracket (or a Poisson structure) on a smooth manifold M
is a bilinear operation {·, ·} on the set C∞(M) of real valued smooth functions on M
that satisfies

(i) (C∞(M), {·, ·}) is a Lie algebra.
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(ii) {gh, k} = g{h, k} + h{g, k} for any g, h, k ∈ C∞(M).

A manifold M with such a Poisson bracket is called a Poisson manifold. Symplectic
manifolds (M, ω) provide examples of Poisson manifolds. In the symplectic case the
bracket of M is defined by

{g, h} = ω(Xg, Xh).

Hamiltonian vector fields Xh in symplectic manifolds are defined by iXhω = dh.
Property (ii) in Definition 2.1 allows us to define Hamiltonian vector fields for

Poisson manifolds. For h ∈ C∞(M) we assign it the Hamiltonian vector field Xh ,
defined via

Xh(·) = {·, h}.
It follows from (ii) that a Poisson bracket {g, h} depends solely on the first deriv-

atives of g and h. Hence we may think of the bracket as defining a bivector field π

determined by
{g, h} = π(dg, dh). (2.1)

A Poisson bivector π can be described locally, for coordinates (x1, . . . , xn), by

π(x) = 1

2

n∑
i, j=1

π i j (x)
∂

∂xi
∧ ∂

∂x j
.

Here π i j (x) = {xi , x j } = −{x j , xi }.
Poisson brackets satisfy the Jacobi identity, which translates into a P.D.E. for the

components of the Poisson bivector [7].
Given a bivector π on M , a point q ∈ M , and αq ∈ T ∗

q M it is possible to define:

B : T ∗M → T M ; Bq(αq)(·) = πq(·, αq).

When π is Poisson, we have that Xh = B(dh).
We then define the rank ofπ at q ∈ M to be equal to the rank ofBq : T ∗

q M → TqM .
This is also the rank of the matrix π i j (x).

The distribution defined by Bq on TqM is called the characteristic distribution of
π . What is known as the Symplectic Stratification Theorem is the celebrated statement
that this characteristic distribution of a Poisson tensor π gives rise to a (possibly
singular) foliation by symplectic leaves. This foliation is integrable in the sense of
Stefan–Sussman [5].

Call�q the symplectic leaf of M through the point q. As a set�q is also the collec-
tion of points that may be joined via piecewise smooth integral curves of Hamiltonian
vector fields. Write ω�q for the symplectic form on �q . Observe that Tq�q is exactly
the characteristic distribution of π through p. Therefore, given uq , vq ∈ Tq�q there
exist αq , βq ∈ T ∗

q M that under Bq go to uq and vq . Using this we can describe ω�q :

ω�q (q)(uq , vq) = πq(αq , βq) = 〈αq , vq〉 = −〈βq , uq〉. (2.2)
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As the rank varies, so do the dimensions of the symplectic leaves of the foliation.
In the special case that the rank of the characteristic distribution of a bivector is less

than or equal to two, the following were shown to hold in [6]:

Proposition 2.2 (i) If π is a bivector field on M whose characteristic distribution is
integrable and has rank less than or equal to two at each point, then π is Poisson.

(ii) Let π be a Poisson structure on M whose rank at each point is less than or equal to
two. Then π1 := kπ is also a Poisson structure where k ∈ C∞(M) is an arbitrary
non-vanishing function.

In order to describe the bivectors locally we will use certain Casimir functions.

Definition 2.3 Let M be a Poisson manifold. A function h ∈ C∞(M) is called a
Casimir if {h, g} = 0 for every g ∈ C∞(M).

Equivalently B(dh) = 0.

The next result was shown in [6]:.

Theorem 2.4 Let M be an orientable n-manifold, N an orientable n − 2 manifold,
and f : M → N a smooth map. Letμ and	 be orientations of M and N, respectively.
The bracket on M defined by

{g, h}μ = k dg ∧ dh ∧ f ∗	, (2.3)

where k is any non-vanishing function on M is Poisson.Moreover, its symplectic leaves
are

(i) the 2-dimensional leaves f −1(s) where s ∈ N is a regular value of f ,
(ii) the 2-dimensional leaves f −1(s) \ {Critical Points of f } where s ∈ N is a sin-

gular value of f .
(iii) the 0-dimensional leaves corresponding to each critical point.

Formula (2.3) appeared in [3] (attributed to H. Flaschka and T. Ratiu).

Definition 2.5 A Poisson manifold M is said to be complete if every Hamiltonian
vector field on M is complete.

Notice that M is complete if and only if every symplectic leaf is bounded in the
sense that its closure is compact.

3 Local expressions for the Poisson structures

3.1 Local formulae for the Poisson bivectors

We will now construct explicit expressions for the Poisson structure and the cor-
responding symplectic forms in a neighbourhood of cusp singularities of wrinkled
fibrations X → �, as well as for all the possible moves described above. All of
the expressions that we will give depend upon a choice of a non-vanishing function
k ∈ C∞(X) (see [6]).
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Before proceeding we will describe the general strategy employed to find the local
bivectors.

Step 1: Consider the coordinate functions C1,C2 that describe each fibration as
Casimir functions for the Poisson structure that we want to find.

Step 2: Calculate the differentials dC1, dC2 of the Casimirs C1,C2.
Step 3: We use formula 2.3 to compute the skew-symmetric matrix with entries:

π i j = {xi , x j }μ = dxi ∧ dx j ∧ dC1 ∧ dC2.

This matrix will then annihilate dC1, dC2, as this matrix is to be the endomorphism
B associated with a Poisson structure with dC1 and dC2 as Casimirs. The components
of the bivector field will be given by:

{xi , x j } = det
(
εi , ε j , dC1, dC2

)
.

Here εi is the 4× 1 canonical basis column vector, whose i-th component is 1 and all
others are zero.

For the cusp singularity and the birth, merging, and flipping moves, t is a Casimir,
so we only have to compute

{x,y}, {x, z} and {y, z}.

In fact, for these four cases if we denote by dCi
2 the components of the column

vector dC2 we obtain

{x, y} = −dC3
2 ,{x, z} = dC2

2 ,{y, z} = −dC1
2 .

Step 4: According to Proposition 2.2 (ii), we write the Poisson bivector using the
skew-symmetric matrix entries.

Near a wrinkling move the Poisson bivector will be obtained using formula 2.3.
For the other cases the bivector admits a general expression given by:

π = k(x, y, z, t)

[
−dC3

2
∂

∂x
∧ ∂

∂y
+ dC2

2
∂

∂x
∧ ∂

∂z
− dC1

2
∂

∂y
∧ ∂

∂z

]
(3.1)

for any non-vanishing smooth function k.
The corresponding results for neighbourhoods of Lefschetz singularities and broken

singular circles were obtained in [6]. We proceed to describe the results this general
strategy yields for cusp singularities and the moves described above.

Attentive readers might wonder why we are not using Eq. (2.3) directly. The com-
putations needed to be carried out to take the volume form from the left hand side
to the right hand side of the Eq. (2.3) are cumbersome and lengthy. The method we
present below yields equivalent results, and may be easily verified.
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3.1.1 Local expressions near a cusp singularity

The local coordinate model around a cusp singularity is given by:

(x, y, z, t) �→ (C1(x, y, z, t),C2(x, y, z, t)) = (t, x3 − 3xt + y2 − z2).

The differentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1),
dC2 = (3x2 − 3t 2y −2z −3x).

The following matrix annihilates dC1 and dC2 and its entries satisfy the Jacobi
identity :

⎛
⎜⎜⎝

0 2kz 2ky 0
−2kz 0 k(3t − 3x2) 0
−2ky k(3x2 − 3t) 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Which means that the Poisson bivector in the local coordinates of a cusp singularity
is described by:

π = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
+ (3t − 3x2)

∂

∂y
∧ ∂

∂z

]
. (3.2)

3.1.2 Local expressions near a birth move

The local coordinate model around a birth move is given by:

bs(x, y, z, t) = (C1(x, y, z, t),C2(x, y, z, t)) = (t, x3 − 3x(t2 − s) + y2 − z2).

The differentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1),
dC2 = (3x2 − 3(t2 − s) 2y −2z −6xt).

From which we can obtain the following matrix:

⎛
⎜⎜⎝

0 2kz 2ky 0
−2kz 0 k

(
3
(
t2 − s

) − 3x2
)

0
−2ky k

(
3x2 − 3

(
t2 − s

))
0 0

0 0 0 0

⎞
⎟⎟⎠ .

Hence the Poisson bivector near a birth move has the form:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− 3(s − t2 + x2)

∂

∂y
∧ ∂

∂z

]
. (3.3)
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3.1.3 Local expressions near a merging move

The local coordinate model around a merging move is given by:

ms(x, y, z, t) = (C1(x, y, z, t),C2(x, y, z, t)) = (t, x3 − 3x(s − t2) + y2 − z2).

The differentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1),
dC2 = (3x2 − 3(s − t2) 2y −2z 6xt).

The associated matrix is then:

⎛
⎜⎜⎝

0 2kz 2ky 0
−2kz 0 k

(
3
(
s − t2

) − 3x2
)

0
−2ky k

(
3x2 − 3

(
s − t2

))
0 0

0 0 0 0

⎞
⎟⎟⎠ .

So the Poisson bivector in a neighbourhood of a merging move is described as:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− 3(s − t2 − x2)

∂

∂y
∧ ∂

∂z

]
. (3.4)

3.1.4 Local expressions near a flipping move

The local coordinate model around a flipping move is given by:

fs(x, y, z, t) = (C1(x, y, z, t),C2(x, y, z, t)) = (t, x4 − x2s + xt + y2 − z2).

The differentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1),
dC2 = (4x3 − 2xs + t 2y −2z x).

The corresponding matrix is:

⎛
⎜⎜⎝

0 2kz 2ky 0
−2kz 0 k

(−4x3 + 2sx − t
)

0
−2ky k

(
4x3 − 2sx + t

)
0 0

0 0 0 0

⎞
⎟⎟⎠ .

The Poisson bivector in a neighbourhood of a flipping move can then be written in
the following way:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− (t − 2sx + 4x3)

∂

∂y
∧ ∂

∂z

]
. (3.5)
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3.1.5 Local expressions near a wrinkling move

The local coordinate model around a wrinkling move is given by:

ws(x, y, z, t)=(C1(x, y, z, t),C2(x, y, z, t)) = (t2 − x2+y2−z2+st, 2t x+2yz).

The differentials dC1 and dC2 are therefore:

dC1 = (−2x 2y −2z 2t + s),
dC2 = (2t 2z 2y 2x).

The matrix we are interested in is given by:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 k(sy + 2t y + 2xz) k(2xy − (s + 2t)z) −2k
(
y2 + z2

)

−k(sy + 2t y + 2xz) 0 k
(
st + 2

(
t2 + x2

))
k(2t z − 2xy)

k((s + 2t)z − 2xy) −k
(
st + 2

(
t2 + x2

))
0 2k(t y + xz)

2k
(
y2 + z2

)
2k(xy − t z) −2k(t y + xz) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The expression for the Poisson bivector in a neighbourhood of a wrinkling move is
then:

πs = k(x, y, z, t)[(−2sy − 4t y − 4xz)
∂

∂x
∧ ∂

∂y
+ (−4xy + 2sz + 4t z)

∂

∂x
∧ ∂

∂z

+(4y2 + 4z2)
∂

∂x
∧ ∂

∂t
− (2st + 4t2 + 4x2)

∂

∂y
∧ ∂

∂z

+4(xy − t z)
∂

∂y
∧ ∂

∂t
− 4(t y + xz)

∂

∂z
∧ ∂

∂t
]. (3.6)

3.1.6 Linearization

We follow chapters 3 and 4 of [5], where more details and examples may be found.
Let l be a finite-dimensional Lie algebra. Denote by r the radical of l, i.e., the maximal
solvable ideal of l. Then g = l/r is a semi-simple Lie algebra. The Levi–Malcev
theorem states that l can be decomposed as a semi-direct product:

l = g � r.

In analogy with this Levi–Malcev decomposition, we have a Levi decomposition
for Poisson structures. Let π be a Poisson structure and denote by π0 its linear part.
By definition we obtain that π0 generates a Lie algebra l. We take the Levi–Malcev
decomposition of l, with the previous notation. Let {x1, . . . , xm, y1, . . . , ym} be a basis
for l, such that {x1, . . . , xm} span g, and {y1, . . . , ym} spans a complement r of g with
respect to the adjoint action of g on l.
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A Levi decomposition for π at 0, with π(0) = 0, provides local coordinates such
that;

{xi , x j } ∈ g and {xi , y j } ∈ r.

Any analytic Poisson structureπ , which vanishes at 0, admits a Levi decomposition
in a neighbourhood of 0.

Now we will focus on the expressions for the bivectors obtained in Eqs. (3.2),
(3.3), (3.4), (3.5), and (3.6). We fix k ≡ 1. It can be seen that in the case of cusp
singularities, the linear part of the corresponding Poisson structure (3.2) defines a Lie
algebra through the commutation relations:

[x, z] = 2y, [x, y] = 2y, [y, z] = 3t.

For the Birth, Merge and Flipping moves, corresponding to the bivectors (3.3),
(3.4), and (3.5), respectively, their linear part in all these cases is generated by:

[x, z] = 2y, [x, y] = 2y.

Notice that this Lie algebra contains a nonzero Abelian ideal; hence, it is not semi-
simple.

So in all these cases the linear part of the Poisson structure admits a decomposition
of the form R × L3, where L3 is a semi-direct product of Lie algebras:

L3 = R �A R
2.

Here R acts on R
2 linearly by the matrix:

A =
(
2 0
0 2

)
.

For the case of wrinkled fibrations, corresponding to (3.6), we see that all the
commutation relations are trivial. Therefore the corresponding linear part of its Poisson
structure spans an Abelian Lie algebra, which is not semi-simple.

Conn’s theorem asserts that, provided the linear part of an analytic Poisson structure
π that vanishes at 0, corresponds to a semi-simple Lie algebra, π admits a local
analytic linearizaton at 0. Hence, in the spirit of Conn’s theorem, the linearization of
all these Poisson structures is not guaranteed. Moreover, the semi-direct product L3
is degenerate (formally, analytically, and smoothly).

Finally, in the general case when k is a non vanishing smooth function, we obtain
other Poisson structures.

Question 3.1 Does there exist a function k such that an expression given by one of
the bivectors (3.2), (3.3), (3.4), (3.5) or (3.6) is linearizable?
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3.2 Equations for the symplectic forms on the leaves near singularities

Proposition 3.2 Let q ∈ B4\{0} and let π be the Poisson structure near a cusp
singularity. Then the symplectic form induced by π on the symplectic leaf �q through
q = (x, y, z, t) at the point q is given by

ω�q = 1

k(x, y, z, t)3
(
x2 − t

)ωArea(q). (3.7)

here ωArea is the area form on �q induced by the euclidean metric on B4.

Proof If uq , vq are tangent vectors to the leaves there exist co-vectors αq , βq ∈ T ∗
q M

such that Bq(αq) = uq and Bq(βq) = vq , where Bq is given by the rule:

Bq(α)(·) = πq(·, α).

Finding two tangent vectors to the symplectic leaves is equivalent to detecting
vectors annihilated simultaneously by the differential of two Casimir functions for the
corresponding Poisson structure. Note that the characteristic distribution has rank 2.

In this case we find that the vectors:

uq = − 1

3
(
t − x2

)
(
2z

∂

∂x
+ 3

(
t − x2

) ∂

∂z

)
,

vq = 1

3(t − x2)

(
2y

∂

∂x
+ 3(t − x2)

∂

∂y

)

are tangent to �q at q. Using the local expression of the Poisson structure for a cusp
singularity given by Eq. (3.2), one can check that Bq(αq) = uq , for

αq = − dy

k(x, y, z, t)3(t − x2)
.

Similarly, Bq(βq) = vq , for

βq = 1

k(x, y, z, t)

(
− 1

2z
dx + y

3(t − x2)z
dy

)
.

A direct calculation now implies that the symplectic form is:

ω�q (q)(uq , vq) = 〈αq , vq〉 = 1

k(x, y, z, t)3(x2 − t)
ωArea(q).

�
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Proposition 3.3 Let q ∈ B4\{0} and πs be the Poisson structure near a birth move.
The symplectic form induced by πs on the symplectic leaf �q through q = (x, y, z, t)
at the point q is given by

ω�q = 1

k(x, y, z, t)3(s − t2 + x2)
ωArea(q). (3.8)

here ωArea is the area form on �q induced by the Euclidean metric on B4.

Proof Making use of the corresponding Casimir functions for the Poisson structure
associated with a birth move we obtain that the vectors

uq = 1

3
(
s − t2 + x2

)
(
2z

∂

∂x
+ 3

(
s − t2 + x2

) ∂

∂z

)
,

vq = − 1

3(s − t2 + x2)

(
2y

∂

∂x
+ 3(s − t2 + x2)

∂

∂y

)

are tangent to �q at q. Using the local expression (3.3) of the Poisson structure one
can check that Bq(αq) = uq , for

αq = dy

k(x, y, z, t)3(s − t2 + x2)
.

Similarly, Bq(βq) = vq , for

βq = 1

k(x, y, z, t)

(
− 1

2z
dx − y

3(s − t2 + x2)z
dy

)
.

The expression for the symplectic form follows from:

ω�q (q)(uq , vq) = 〈αq , vq〉 = −〈βq , uq〉.

�
Proposition 3.4 Let q ∈ B4\{0} and let πs be the Poisson structure near a merging
move. The symplectic form induced by πs on the symplectic leaf �q through q =
(x, y, z, t) at the point q is given by

ω�q = 1

k(x, y, z, t)3(t2 − s + x2)
ωArea(q), (3.9)

here ωArea is the area form on �q induced by the euclidean metric on B4.
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Proof We proceed similarly to the previous cases above. We find that the vectors

uq = 1

3
(
s − t2 − x2

)
(

−2z
∂

∂x
+ 3

(
s − t2 − x2

) ∂

∂z

)
,

vq = 1

3(s − t2 − x2)

(
2y

∂

∂x
+ 3(s − t2 − x2)

∂

∂y

)

are tangent to �q at q. Using the local expression (3.4) of the corresponding Poisson
structure one can check that Bq(αq) = uq , for

αq = − dy

k(x, y, z, t)3(s − t2 − x2)
.

Similarly, Bq(βq) = vq , for

βq = 1

k(x, y, z, t)

(
− 1

2z
dx + y

3(s − t2 − x2)z
dy

)
.

As before the symplectic form is obtained by computing:

ω�q (q)(uq , vq) = 〈αq , vq〉 = −〈βq , uq〉.

�
Proposition 3.5 Let q ∈ B4\{0} and let πs be the Poisson structure near a flipping
move. The symplectic form induced by πs on the symplectic leaf �q through q =
(x, y, z, t) at the point q is given by

ω�q = 1

k(x, y, z, t)(t − 2sx + 4x3)
ωArea(q), (3.10)

here ωArea is the area form on �q induced by the euclidean metric on B4.

Proof In this case, the following vectors:

uq = 1

t − 2sx + 4x3

(
2z

∂

∂x
+ (t − 2sx + 4x3)

∂

∂z

)
,

vq = 1

t − 2sx + 4x3

(
−2y

∂

∂x
+ (t − 2sx + 4x3)

∂

∂y

)

are tangent to �q at q. Using Eq. (3.5) we can check that Bq(αq) = uq , for

αq = − dy

k(x, y, z, t)(−t + 2sx − 4x3)
.
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Similarly, Bq(βq) = vq , for

βq = 1

k(x, y, z, t)

(
− 1

2z
dx − y

(t − 2sx + 4x3)z
dy

)
.

A straightforward calculation shows that:

ω�q = 1

k(x, y, z, t)(t − 2sx + 4x3)z
ωArea(q).

�
Proposition 3.6 Let q ∈ B4\{0} and let πs be the Poisson structure near a wrinkling
move. The symplectic form induced by πs on the symplectic leaf �q through q =
(x, y, z, t) at the point q is given by

ω�q = − 1

k(x, y, z, t)2(t y + xz)
ωArea(q). (3.11)

here ωArea is the area form on �q induced by the Euclidean metric on B4.

Proof Using the corresponding Poisson structure for a wrinkling move given in
Eq. (3.6) we obtain:

uq = − 1

2(t y + xz)

(
(2xy − sz − 2t z)

∂

∂x
+ (st + 2t2 + 2x2)

∂

∂y
− 2(t y + xz)

∂

∂t

)
.

vq = − 1

(t y + xz)

(
(y2 + z2)

∂

∂x
+ (xy − t z)

∂

∂y
− (t y + xz)

∂

∂z

)

and makes vq an unitary vector. These vectors are tangent to �q at q. Using the local
expression of the Poisson structure in (3.6) we check that Bq(αq) = uq , for

αq = 1

k(x, y, z, t)
(

1

2(y2 + z2)
dx − −2xy + sz + 2t z

4(t y + xz)(y2 + z2)
dt).

Similarly, Bq(βq) = vq , for

βq = dt

2(t y + xz)
.

The proposition is shown as in the previous cases by calculating the symplectic form
explicitly using the above equations. �
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