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Abstract
Purpose of Review  The success and failure of therapeutic antibodies against SARS-CoV-2 offer a lesson on therapeutic 
antibody design and development.
Recent Findings  Therapeutic antibody against SARS-CoV-2 facing challenging antibody escape mutation. A paratope design 
strategy targeting pancoronavirus conserved epitope(s) and combining two antibodies as antibody cocktails or bispecific 
antibodies may overcome antibody escape mutations of the SARS-CoV-2 spike. Instead of designing broadly neutralizing 
antibodies, repurposing antibodies can target viral or host molecules to inhibit the virus and alleviate dysregulation of the 
host immune response.
Summary  Detailed strategies for engineering therapeutic antibodies, including antibody format, are reviewed in this article.
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Introduction

In December 2019, a severe acute respiratory syndrome 
(SARS)-like disease of unknown etiology emerged in indi-
viduals directly exposed to China’s Huanan Wholesale Sea-
food Market [1, 2]. Subsequently, the disease, caused by 
a new coronavirus named Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), spread rapidly and 
became a pandemic known as COVID-19. The World Health 
Organization announced the COVID-19 outbreak as a Public 
Health Emergency of International Concern and has been 
maintaining this status for over 3 years, with over 760 mil-
lion confirmed cases and over 6.9 million deaths worldwide 
(data on July 28, 2023) [3]. Currently, the pandemic is under 
control, mainly due to population immunity, and the disease 
is fading to an endemic [4, 5]. Since the virus is circulated 
in the environment and the population and is unlikely to be 
eradicated, infection remains a public health concern regard-
ing long-term effects on individual health, human and ani-
mal reservoir and transmission, immune-escaping mutation 

of the virus, and morbidity and mortality of the disease in 
susceptible individuals.

Besides the role of population immunity in COVID-19 
protection, therapeutic agents are required, even after the 
pandemic, to prevent and reduce disease severity, especially 
in susceptible individuals. Numerous new and repurposed 
drugs and herbal medicines have been developed and tested 
for COVID-19 [6–8]. Remdesivir, which inhibits viral 
RNA synthesis, and Paxlovid, the Mpro inhibitor, are FDA-
approved drugs to treat COVID-19 [9]. However, drugs are 
limited in specific populations, such as pregnancy, breast-
feeding, and renal impairment [10]. In addition, high viral 
mutation rates and drug selection pressure might introduce 
a drug escape mutation. Therefore, alternative treatments for 
COVID-19 are required.

Passive immunization with convalescent plasma from 
recovered patients becomes first-line therapy during the 
pathogenicity of unrevealed disease. Subsequently, mono-
clonal antibodies against COVID-19 have been developed 
and used as part of the therapeutic options for COVID-19, 
especially in susceptible populations [11–13]. The FDA 
approves some of them, and some are in the development 
pipeline.

Strategies for developing therapeutic antibodies against 
SAR-CoV-2 are to reduce viral load or replication by target-
ing virus proteins that function in the viral life cycle, such as 
attachment or viral replication. Another strategy is to target 
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host molecules to mitigate the host’s hyperimmune response 
and disease severity. Another factor that promotes antibody 
efficiency is the design of the antibody format. Details of 
strategies for engineering therapeutic antibodies, including 
antibody format, are reviewed in this article.

Antibody Targeting the SARS‑CoV‑2 Proteins

SARS-CoV-2, a causative agent of COVID-19, is a betac-
oronavirus subgroup B in the Coronaviridae family. Coro-
navirus is an enveloped, nonsegmented, positive-sense, 
single-stranded RNA virus [14]. The viruses in this family, 
including SARS-CoV-2, have been reported to infect vari-
ous animal species, including humans [14–16]. Along with 
SARS-CoV and MERS-CoV, SARS-CoV-2 is one of the 
three human coronaviruses that cause severe acute respira-
tory syndrome (SARS) [17, 18].

Antibodies against viral infection usually target the pro-
teins essential in the viral replication cycle. Most antibodies 
against SARS-CoV-2 targeted a spike (S) protein to block 
the viral attachment or entry into host cells [19]. Besides 
the spike protein, other proteins that play an essential role 
in viral replication are also therapeutic targets, such as Nsp3 
(papain-like protease), Nsp5 (main protease, Mpro, 3CLpro), 
Nsp9, and Nsp12 (RNA-dependent RNA polymerase, RdRp) 
[20].

Spike (S) Protein

The S protein, composed of two subunits: S1 and S2, forms 
a homotrimer on the virion surface. The S1 subunit of the 
virus contains the N-terminal domain (NTD) and receptor-
binding domain (RBD), which binds to angiotensin-convert-
ing enzyme 2 (ACE2) expressing on the surface of vari-
ous cell types, including alveolar epithelial cells and oral, 
nasal, and nasopharynx epithelial cells [21, 22]. The RBD 
conformation of the spike is interchangeable between the 
upward (open) and down (close) conformations wherein the 
ACE2 binding site is exposed and hidden, respectively [23, 
24]. S1–ACE2 receptor binding induces a spike conforma-
tion change, reveals the S2ʹ site on the S2 subunit, which is 
cleaved by host TMRRSS2, resulting in shedding of the S1 
subunit, and subsequently exposes the fusion loop of the 
S2 subunit to create the fusion pore-mediated viral genome 
releases into the host’s cytoplasm [25, 26].

Therapeutic conventional (full-length) antibodies against 
spike protein constitute a significant group of FDA-approved 
SARS-CoV-2 antibodies [27]. The aim of targeting spike 
protein is to protect the virus from entering the cell by 
directly or indirectly blocking the binding of spike protein 
to the ACE2. NTD and RBD were reported as therapeutic 
antibody targets [28–32], although the primary focus was 

on RBD [27, 28, 32]. The mechanism of antibodies to spike 
protein includes directly interfering with the ACE2 inter-
action by occlusion of the ACE2 binding site [32–35] or 
acting as a receptor mimic to induce premature S2 fusion 
loop exposure [36, 37, 38••]. Antibodies can indirectly 
block RBD-ACE2 interactions by a steric hindrance [28, 
39]. RBD-antibody binding in the upward or down confor-
mation or NTD can cause conformational trapping, prevent-
ing spike conformational change and hindering viral entry 
[28, 39–42]. Antibodies also target NTD by interrupting the 
trimer formation of spike protein [43]. The S2 subunit is 
highly conserved across different betacoronavirus lineages 
[44–46]. The antibodies to S2 are divided into two classes: 
the antibody-targeting fusion peptide and the Sʹ cleavage site 
[45]. Conformational trapping also occurs in the S2 subunit, 
preventing fusion loop exposure [41]. S2 subunit targeting is 
limited by the accessibility of antibodies depending on spike 
dynamics and disclosure of the epitope [45].

The challenge in developing the antibody-targeting spike 
protein is the high mutation of the spike in the SARS-CoV-2 
variants [19]. The emerging SARS-CoV-2 Omicron variant 
contains > 30 mutations in the spike protein, especially in 
the RBD [19]. These mutations caused many available thera-
peutic antibodies obsolete due to loss or massive reduction 
of protection against new mutated variants [19, 46]. Amino 
acid substitutions at positions S477N, T478K, F486V, and 
E484A decrease the activity of the available anti-spike anti-
body by 272–10,000-fold [24]. The receptor binding motif 
(RBM) on the RBD is the most efficient antibody target [30, 
38••, 47]. However, RBM is a mutation hotspot that causes 
loss of antibody activity, especially in Omicron variants 
[48]. Conversely, although the non-RBM part of the RBD 
is conserved, the antibody’s efficiency is less than that of 
targeting the RBM, whereas it tolerated viral escape [30].

Some antibodies endured spike mutations and dem-
onstrated cross-variant protection [32, 38••, 49], which 
applies to therapeutic antibody design. Bebtelovimab (LY-
CoV1404 or 1404), which binds to conserved RBD epitopes, 
demonstrated cross-variant protection, including Omicron 
B.1.1.529 and BA.2 [32]. However, the protectivity of the 
Omicron BQ.1 and BQ.1.1 subvariants is diminished [50]. 
Anti-RBD spike antibody S2H97 interacted with the spike 
protein from subgenus Sarbecoviruses and demonstrated 
broad neutralization across the SARS-CoV-2 variants [38••, 
49]. Antibodies developed against SARS-CoV or MERS-
CoV have been tested for protection against SARS-CoV-2 
[39, 41, 51]. Most of the amino acid residues essential for 
ACE2 binding by SARS-CoV were conserved in SARS-
CoV-2 [52]. Sotrovimab (VIR-7831) is derived from mem-
ory B cells of SARS-CoV survivor bound and neutralized 
SARS-CoV-2 variants [51] and has demonstrated efficacy in 
early waves of Omicron [53, 54]. Other cross-variant protec-
tion antibodies were reported in an antibody that shared the 
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18 binding-epitope residues and electrostatic contacts on the 
RBD-binding interface with ACE2 [33] and an antibody to 
S2 of spike that targeted the highly conserved epitope across 
different betacoronavirus lineages [44]. Combining two 
neutralizing antibodies (antibody cocktails), for example, 
tixagevimab and cilgavimab, bamlanivimab and etesevimab, 
and casirivimab and imdevimab, demonstrated improved 
activity/efficiency against mutation escape variants [11, 27, 
55••]. Therefore, selecting antibodies that bind to the highly 
conserved epitope(s) or protect across different lineages of 
coronaviruses, competing with ACE2 with high similarity, 
and formulating antibody cocktails can develop as strate-
gies to overcome antibody escape mutations of the SARS-
CoV-2 spike. If the critical mutated amino acid responsible 
for therapeutic resistance in the circulated variant [24] is 
defined, for example, R436X of the Omicron, designing 
antibodies targeting the mutant will be another option to 
develop the broadly neutralizing antibody [56]. However, 
reevaluation of antibody efficacy is required whenever a new 
variant emerges [11]. Antibody treatment should be consid-
ered to introduce antibody-selected mutations, as reported 
in high-risk patients treated with sotrovimab [57•, 58]. A 
single-dose sotrovimab treatment induced E340K/A/V/G 
and/or P337L/R mutations of Omicron variants, reducing 
susceptibility to sotrovimab [57•].

Nonstructural Proteins (Nsps)

The viral genome contains 13 open reading frames (ORFs). 
ORF1a and ORF1b are translated into polyprotein precur-
sors, pp1a and pp1ab. The precursor is cleaved by the viral 
protease, i.e., Nsp3 and Nsp5, resulting in 16 Nsps that 
function in viral genome replication and modulation of host 
immune responses [20, 59]. Nsp12 assembles with Nsp7 
and Nsp8 to form a holo-RdRp complex, an essential com-
ponent for viral RNA synthesis [60, 61]. The holo-RdRp 
complex coordinates with other accessory subunits, known 
as replication and transcription complexes (RTC), and pro-
motes the fidelity of RNA synthesis [60, 62]. SARS-CoV-2 
Nsps shared structural homology or conserved amino acids/
motifs with SARS-CoV and/or other betacoronaviruses [20, 
63–66]. This review focuses on Nsps reported as antibody 
targets: nsp3, 5, 9, and 12; other SARS-CoV-2 proteins as 
therapeutic targets were reviewed in [20].

The nsp3 of SARS-CoV-2 is a multidomain protein; 
among them, the PLpro domain contains cysteine proteolytic 
(PLpro), deubiquitinating, and deISGylating activities [20]. 
The protease activity of nsp3 cleaves the pp1a polypeptide to 
separate nsp1, nsp2, and nsp3 [20]. Additionally, nsp3 sup-
presses the antiviral immune response by deubiquitination 
and deISGylation of interferon-stimulating gene 15 (ISG15) 
[64]. The PLpro domain is the main target for antiviral drug 
development. In nanobody format, antibodies targeting nsp3 

demonstrated inhibition of hydrolytic activity to interfere 
with deubiquitination, deISGylation, and polyprotein cleav-
age activities in vitro [64, 67]. However, the ability of these 
nanobodies to inhibit the authentic virus and interfere with 
viral replication remains to be investigated.

Mpro, a chymotrypsin-like protease, is a unique protein 
without human homologs; it is critical in viral replication 
because it cleaves nsp12 from the polyprotein precursor. 
Its activity requires homodimerization of the proteins [68]. 
The Mpro consists of three domains. Domain III functions 
in homodimerization, allowing domains I and II to form a 
substrate-binding pocket with the embedded catalytic site 
[69]. Thus, dimerization inhibition interrupts the enzymatic 
activity of Mpro. There are three transitional stages during 
dimerization formation: extended monomeric, compact, and 
dimeric [69]. Antibody fragments targeting Mpro disrupted 
dimerization by conformationally trapping Mpro in the 
predimeric stages [70] or interacting with residues respon-
sible for homodimerization [70]. Cell-penetrating antibodies 
bound and inhibited the catalytic surface of Mpro and dem-
onstrated the cross-variant protective effect against authentic 
viruses in cell cultures [70].

Nsp9, an accessory protein in the RTC, undergoes dimeri-
zation, RNA binding, and protein recruitment for 5ʹ-mRNA 
capping, which is essential for viral replication [71–73]. 
Nsp9-bound nanobodies have been reported to induce a 
topological change [71] or stabilize Nsp9 in a tetrameric 
form [74], which can interfere with viral replication.

Nsp12, a core component of the RTC [20], is crucial for 
viral replication and is a target of nucleoside analogs already 
approved for treating COVID-19 [8]. An antibody to the 
hepatitis C virus (HCV)-RdRp broadly inhibited viral RNA 
replication in SARS-CoV-2 variants of concern and other 
RNA viruses [75].

Antibody to Host Molecules

Cytokine Storms

Inducing uncontrolled inflammation, known as cytokine 
storms, is a life-threatening complication of COVID-19. 
During infection, the immune system is evoked to fight the 
pathogen. However, over-triggering the immune system 
also results in immunopathology. Hyperinflammation from 
COVID-19 might be triggered by the innate immune cells: 
macrophages, dendritic cells, and neutrophils, which are the 
first responders to infection, viral-induced pyroptosis, and 
decrease in type 1 interferon function or antibody-Fc recep-
tor (FcR) interaction (reviewed in [76, 77]).

Anti-SAR-CoV-2 spike antibodies are involved in 
the activation of other immune cells or immune compo-
nents through the Fc functions of antibodies, resulting in 
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antibody-dependent cellular cytotoxicity, antibody-depend-
ent cellular phagocytosis, complement-dependent cytotox-
icity, and antibody-dependent cellular trogocytosis [78], 
which, if dysregulated, may progress to hyperinflammation 
[79]. Furthermore, the Fc of antibodies at suboptimal neu-
tralizing concentration can introduce an extrinsic (classical) 
antibody-dependent enhancement (ADE) [80], another cause 
of uncontrolled inflammation. The neonatal Fc receptor 
(FcRn) retains immunoglobulin in the bloodstream, result-
ing in prolonged antibody responses. Therefore, antibodies 
targeting FcR and FcRn could be a therapeutic strategy to 
reduce the immunopathology of COVID-19 [81].

Interleukin-6 (IL-6) is a critical cytokine involved in this 
hyperactive immune response. It is a marker for COVID-19 
progression and severity prognosis [82–84]; therefore, it is 
a target for controlling hyperinflammation. Several FDA-
approved antibodies that block IL-6 and IL-6 receptor (IL-
6R) interaction have been repurposed to treat COVID-19. 
Tocilizumab, a humanized anti-IL-6 receptor IgG1, was 
initially used to treat rheumatoid arthritis [85] and is the 
first monoclonal antibody approved for treating COVID-19 
in hospitalized adults with severe COVID-19 [86]. Its effec-
tiveness in improving the treatment outcome of COVID-19 
treatment is controversial [84, 87]. Although no significant 
outcomes of tocilizumab were reported [88, 89], it was 
found to reduce disease severity and hospitalization time 
[84, 90–92]. However, no effect of tocilizumab on reduc-
ing COVID-19 mortality is inconclusive [90, 91, 93, 94]. 
Like tocilizumab, the role of sarilumab, the FDA-approved 
human anti-IL6R IgG1, in treating COVID-19 is controver-
sial [95, 96] and requires further investigation.

Other proinflammatory molecules have been proposed as 
therapeutic targets [97–101]. Secukinumab, a monoclonal 
antibody against IL-17, the upstream IL-1 and IL-6 path-
ways, has been tested in a phase 2 clinical trial. There has 
been no improvement in the outcome of COVID-19 treat-
ment, but a reduction of thromboembolism by secukinumab 
has been reported [98].

Combining the antibody with the inhibitor of the cytokine 
signaling molecule is another strategy to control hyperin-
flammation. A combination of secukinumab with baricitinib, 
a Janus kinase (JAK) 1 and 2 inhibitors, has shown benefits 
of reduction of ICU support and intubation, hospital stay, 
and lower mortality than treatment with baricitinib alone 
[102].

Besides directly targeting cytokines, nasal administration 
of anti-CD3 suppressed T cell function, reduced lung inflam-
mation and serum IL-6, and increased TGFB1 expression 
[103].

Immunomodulation by inhibiting proinflammatory 
cytokines raises concerns about increased susceptibility to 
secondary infection [97, 104]. Treatment results are contro-
versial [105], with either no effect reported on increasing the 

secondary infection [98, 102, 106, 108] or increasing the risk 
of secondary infection [107–109].

The effectiveness of immunomodulatory treatment for the 
recovery of dysregulated immune function in COVID-19 
is multifactorial. The first is the administration time [84, 
110], which may require calibration before dysregulation 
occurs to prevent the development of irreversible organ dys-
function [84, 111]. Individual factors and patient conditions 
also affect treatment outcomes (reviewed in [111]). Further 
research may focus on finding the best use of the treatment 
[110].

CD147

CD147 (EMMPRIN or basigin), a transmembrane glycopro-
tein in the immunoglobulin superfamily [109], has multiple 
binding partners to drive normal physiological functions and 
is involved in cancers and infectious diseases [112–116]. 
CD147 was reported as a receptor for SARS-CoV-2, which 
binds to the viral spike protein and facilitates viral entry 
of the cell lacking ACE2 [117•]. A humanized anti-CD147 
antibody, meplazumab, was approved for phase I clinical tri-
als for prophylaxis treatment for malaria and has been repur-
posed for the treatment of COVID-19 [117•]. Meplazumab 
reached the preclinical trial phase 2/3, effectively improving 
disease severity and mortality while reducing viral load and 
multiple cytokine levels [112, 118]. CD147 is involved in 
the viral entry process and plays a role in the inflammatory 
process [116, 119] and pulmonary fibrosis [120]. Therefore, 
blocking CD147 would help control infection and may miti-
gate the effect of cytokine-induced immunopathology and 
COVID-19 tissue fibrosis.

Engineered Antibody Format

Antibodies against COVID-19 were developed in different 
formats (Fig. 1), primarily as full-length antibodies with or 
without fragment crystallizable (Fc) engineering. Antigen-
binding fragments (nanobody, single-chain antibody (scFv), 
Fab) can avoid Fc-induced ADE. They can be linked with 
other peptide/protein domains to improve the efficacy of 
antibodies or add an advantageous characteristic to the anti-
bodies. Details of the format and designs of the engineered 
antibodies are described below.

Engineered Fc Antibodies

Knowledge of the interaction of the modified Fc has been 
long investigated with the in vitro and in vivo data and has 
already been approved for therapeutic products [121–127]. 
The engineered Fc for therapeutic antibodies for COVID-
19 aims to (1) increase the half-life of the antibody and (2) 
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decrease the immune activation and tissue injury caused by 
antibodies.

The neonatal Fc receptor (FcRn) is the first known recep-
tor for transferring IgG from the mother to the fetus or the 
newborn [128]. Furthermore, FcRn plays a role in main-
taining circulating immunoglobulin levels by binding and 
releasing IgG back into circulation. FcRn has been detected 
in epithelial, endothelial, and hematopoietic cells [129, 130]. 
The binding and release of Fc by FcRn are controlled by 
pH. Cells uptake IgG by pinocytosis, and IgG is entrapped 
into the endosome by FcRn. At low pH of the endosome, Fc 
binds to the FcRn and is sorted into tubules originating from 
the sorting endosomes to return to the plasma membrane 
[129, 131]. The increased pH (pH 7.4) causes a release of Fc 
[129, 131]. Binding to FcRn helps prevent IgG degradation 
and increases the serum half-life of the antibody. Several 
mutations increase the affinity of immunoglobulin molecules 
to FcRn or control the pH-dependent binding, resulting in 
prolonged circulating IgG levels. Additional details on the 
mechanisms and designs of the interaction between Fc and 
FcRn were reviewed in [129].

The functions of Fc are essential for viral clearance, 
reducing weight loss, and preventing the lethality of SARS-
CoV-2 in animal models [79, 132, 133], and the defect in 
Fc function was related to the mortality of the COVID-19 
patient [134]. However, Fc is not the only factor indicating 
the success of therapeutic antibodies for SARS-CoV-2 [136]. 
Antibodies with the Fc mutation, which affects FcR binding, 

demonstrated a therapeutic efficacy against COVID-19 [127, 
137]. Stimulating the immune response by Fc function 
through FcR can induce a profound inflammatory response 
and ADE, leading to cytokine storms. Leucine positions 
234 and 235, located in the CH2 domain of an antibody, 
and proline at position 329 or 331 are critical residues for 
Fc receptors and C1q binding. Mutations at these positions, 
such as LALA-PG (L234A/L235A/P329G) or TM (L234F/
L235E/P331S), decreased the binding affinity of IgG1 to the 
Fc receptor and C1q molecule compared to the original [124, 
125] and diminished the Fc effector function in vitro [125, 
136]. The LALA (L234A/L235A) mutation also lowers the 
risk of Fc-mediated lung injury [27, 127]. Another way to 
reduce risk is to engineer Fc in an IgG4 isotype that cannot 
engage FcR [79, 138, 139].

Human anti-SARS-CoV-2 spike (RBD) antibodies, 
tixagevimab and cilgavimab (AZD7442), and etesevimab 
are examples of Fc-engineered antibodies for COVID-19. 
Tixagevimab and cilgavimab harbored the YTE (M252Y/
S254T/T256E) and TM mutations to increase serum half-life 
(long-acting antibody) and reduce FcR and C1q complement 
binding, respectively [11, 137, 140]. Etesevimab contained 
the LALA mutation [141].

Besides engineered Fc, the half-life of the circulating 
antibody can also be prolonged by engineered variable 
regions of the antibody [142]. An engineered variable 
region with a lower molecular isoelectric point (pI) reduced 
antibody clearance in nonhuman primates [142]. The 

Fig. 1   Designs of SARS-Co-V2 therapeutic antibody format. A Conventional antibody with engineered Fc functions. B Antigen-binding frag-
ments and antibody-fusion protein. C Multivalent/multispecific antibody
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pI-engineered variable regions in combining the Fc muta-
tion, N434A, which increased affinity for FcRn, were found 
in tocilizumab [129, 143], which is repurposed for treating 
COVID-19. Engineered Fc to increase activity to FcγRIIIa 
induced protective CD8 + T cell response against respiratory 
virus [144].

Nanobody (Single‑Domain Antibody (sdAb))

The camelids have a particular type of antibody, i.e., heavy 
chain antibodies, which harbored only the heavy chain 
domain without the light chain counterpart [145, 146]. A 
unique characteristic of the antibody is the long CDR3, 
which helps bind to antigens to compensate for the lack of 
the light chain. The nanobody or single-domain antibody 
(sdAb) is a variable domain of the heavy chain antibody 
that functions in antigen binding. The size is ten times lower 
than conventional antibodies, making the molecules easy to 
express in a prokaryotic system and easy to manipulate and 
modify [36, 37, 39]. The nanobody is stable in harsh envi-
ronments such as acidic, ionic strength, heat, proteolysis, 
and pH [39, 147–150].

Nanobodies against SARS-CoV-2 were developed, 
mainly against the S protein [34, 36, 37, 151, 152]. Long 
CDR3 and the small size of the nanobody may facilitate the 
single-domain antibody to the epitope that is hiding or is 
rarely targeted by conventional human antibodies [34, 36, 
39, 152]. Another benefit of the nanobody is the lack of the 
Fc portion, reducing the risk of Fc-associated ADE [41]. 
However, enhanced virus infectivity by nanobodies was 
reported [151]. Nanobodies bound to enhancing epitopes 
on the RBD might induce conformational changes that pro-
mote interaction with receptors [151]. Nanobodies were also 
developed against nonstructural proteins [37, 67, 75]. The 
long CDR3 of the nanobody supports the accession to the 
cavity or enzymatic groove of the target [67, 69].

Bi‑, Tri‑ and, Multivalent (Multispecific) Antibodies

Combining two or more antigen-binding domains, i.e., Fab, 
scFv, and nanobody of the antibody molecule, to increase 
the antibody’s avidity improved antibodies’ efficacies. Anti-
gen-binding domains were linked together or with different 
molecules, commonly the Fc of IgG, to create the bi-, tri-, 
and multivalent antibody formats. These antibody formats 
also facilitated combinations of antigen-binding domains 
with different specificity to become bi-, tri-, or multispe-
cific antibodies.

Fc‑Supported Bi‑, Trivalent Antibody

The scFv and nanobody have a small molecular weight, 
which helps tissue penetration and facilitates gene 

manipulation and fusion protein linkage but is rapid kidney 
clearance [78]. Linking the scFv or nanobody to Fc helped 
increase the half-life [47, 153] and assisted in the purifica-
tion of the fusion proteins [154]. However, in some antibod-
ies, linking scFv-Fc fusion to IgG affects neutralizing but not 
binding activity [155]. Fc-supported dimerization of mol-
ecules and demonstrated increasing avidity and improved 
efficiency compared to monovalent [34, 39, 41, 153].

The fusion of the antigen-binding domain with Fc also 
supports constructing bispecific and multivalent antibod-
ies. Antigen-binding domains targeting different antigens 
can be combined by Fc dimerization to create the bispecific 
antibody. The bispecific antibody to different epitopes of 
the spike protein increased neutralization potency [156] and 
resistance to mutational escape [36, 59, 60]. Combining a 
neutralizing nanobody and a nonneutralizing Fab to spike 
protein improved antibody efficiency [157]. One or more 
antigen-binding domains can be added to the Fc at the N- 
and/or C-terminal to create a multivalent bispecific antibody 
format [158, 159]. For example, an anti-RBD spike linked 
to an IL-6 trans-signaling inhibitor (antibody to IL-6: IL6R 
complexes) prevents viral entry and cytokine release syn-
drome [76, 82, 154]. Unlike antibody cocktails, bispecific 
antibodies can reduce production costs and administration 
doses [156, 159]. Fc fusion and bispecific antibodies can be 
engineered to produce silent Fc to reduce the risk of ADE 
[35, 157].

Fc also facilitated the construction of multispecific tri-
valent antibodies [160], which improved the antibody’s 
potency and the prevention of viral escape. Interestingly, the 
molecules’ arrangement affected the antibody’s effectiveness 
[160]. Apart from fusion with the Fc of IgG, the decameric 
antibody was constructed by linking the antigen-binding 
domains to the Fc of the IgM, increasing the stability of 
the antibody for aerosolized administration to deliver the 
antibody directly to the lung [161].

Linker and Proteins Supported Multivalent (Multispecific) 
Antibody

The bivalent and trivalent antibody format can be generated 
by linking the molecules with the peptide linker [161–163]. 
The length of the linker can be a structurally guided design 
for the best potency [163]. The trivalent antibody format 
improved the stability of the antibody and is another format 
designed to be applied intranasally to function directly in 
the airway [161, 163].

Linking the antigen-binding domains of the anti-
body with the self-assembly protein or protein scaffold 
is another strategy for forming a multivalent antibody. 
Tetrameric antibodies are created by linking the Fab of 
scFv with or without Fc to the self-assembled human 
p53 tetramerizing domain, the best performance of the 
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tetrameric molecule is the Ig format, which CH3 of the 
full-length antibody is linked to the p53 tetramerizing 
domain, and the hinge region of the antibody molecules 
was preserved [164]. With a similar principle, a multibody 
antibody (multispecific, multiaffinity) was developed using 
apoferritin, which can create a multimerization of 24 pro-
teins [165]. Separately linking the different specificities of 
Fab and the Fc to apoferritin creates the multispecificity 
and multivalency complex that can be purified using pro-
tein A [165]. The multibody overcomes the point mutation 
and improves neutralization, even in nonneutralizing mon-
ovalent antibodies [165]. The attachment of nanobodies to 
lumazine synthase protein scaffold from Aquifex aeolicus, 
using a spy tag/spy catcher, creates a multivalent molecule 
with thermostability [166].

Antibody Fragment‑Fusion Proteins and Other 
Antibody Formats

The antibody molecule usually targets extracellular anti-
gens. In order to enable the function of the antibody within 
cells, scFv against the Nsp5 was linked to the cell-pene-
trating peptide (Cpp) as a superantibody [70]. The supe-
rantibody passed through the plasma membrane to inhibit 
viral replication.

The bivalent antibody linked to an antiviral peptide that 
blocked ACE2 binding was developed. The linker between 
the antibody and the peptide can be cleaved to separate 
the molecules at the site of action [162]. The antibody is 
PEGylation, commonly used to improve biological half-
life and stability [162, 167].

A combination of 131I labeled antibodies for auger radi-
otherapy, electron energy penetrates deeply into the virus 
but not the nearby cells and can be applied for noninvasive 
imaging [168].

Conclusion and Perspective

Antibody therapy is considered an alternative treatment for 
COVID-19. Targeting and binding to multiple sites of the 
viral protein make the antibody-escaped mutation harder 
than the small-molecule drugs. Many therapeutic antibody 
design strategies have been developed to encounter SAR-
COV-2 infection and complications. The challenges in anti-
body design are overcoming viral mutations and finding a 
therapeutic window for the antibody, particularly the immu-
nomodulator [134]. Engineered antibodies with improved 
avidity and/or specificity were shown to be one strategy to 
avoid mutations. Multimeric antibody forms are stable to 
apply intranasally to function directly in the airway, reducing 
the concentration of antibodies and improving their effec-
tiveness [169, 170]. Selection of the pancoronavirus con-
served epitope(s) and using AI or computer-assisted designs 
of antigen–antibody interactions, intermolecular linkage, 
and immune escape mechanism predictions would help 
develop therapeutic antibodies [163, 171–173]. The benefits 
and difficulties of the engineered antibodies are summarized 
in Table 1. Apart from designing the paratope, fast isolation 
and efficient production of therapeutic antibodies are other 
factors that need cohesive development to make a successful 
therapeutic antibody.
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Table 1   Benefits and difficulties of antibodies as well as engineered antibody formats

Antibody format Benefits Difficulties

Intact (full-length) antibody -Fc-facilitated viral clearance
-Stability of the antibody

-Fc-induced ADE
-Antigenicity of nonfully human antibody

Engineered Fc antibody -Reduced the Fc-induced ADE
-Prolonged antibody half-life

-Antigenicity of nonfully human antibody

Antibody fragments: Fab, scFv, and nanobody -High tissue penetration
-Easy for manipulation and engineering

-Short biological half-life
-Antigenicity of nonfully human antibody

-Stable in harsh environment (nanobody)
-Accessibility to difficult accessible region via long 

CDR3 (nanobody)
Multivalent antibody -Improve efficacy

-Improve stability
-Reduce application dose: intranasal administration

-Uniformity of the multivalent molecules
-A chance to disrupt antibody function

Multispecific and antibody cocktail -Overcome the viral escape mutation -Selection of antibody for combination
-A chance to disrupt antibody function
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