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Abstract
Purpose of Review  The main obstacle to an HIV-1 cure is the reservoir of HIV-1 infected cells. While antiretroviral therapy 
(ART) eliminates the HIV-1 virus effectively, it does not target the reservoir. To eliminate infected cells, we need an improved 
understanding of the reservoir maintenance and reactivation mechanisms, including the influence of chromatin.
Recent Findings  The last years’ technological advances enable an in-depth study of the reservoir, uncovering subsets of 
infected cells, proviral integration sites, and single-cell nucleosome histone modifications. These revelations illustrate how 
the immune system and cell proliferation shape reservoirs under long-term ART. These forces create highly individual res-
ervoirs that will require personalized treatment for their eradication.
Summary  A greater understanding of HIV-1 latency mechanisms, focusing on chromatin features, proviral reservoir dynam-
ics, and inter-individual differences, can drive the development of more precise HIV-1 treatment strategies, ultimately 
achieving a globally available HIV-1 cure.
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Introduction

An HIV-1 cure is prevented by the reservoir of infected cells. 
Whereas antiretroviral therapy is highly effective at elimi-
nating the HIV-1 virus, it does not target the reservoir. Most 
people currently living with HIV-1 are under antiretrovi-
ral therapy and virally suppressed [1]. In these individuals, 
free infectious virus is virtually eliminated, but the reservoir 
persists. In the latent reservoir of HIV-1 infected cells, the 
provirus is silent, which makes these cells challenging to 
detect, both for the immune system and for therapeutic inter-
ventions. It is recognized that chromatin structure and com-
position play a crucial role in the formation and maintenance 
of proviral latency, as well as the reactivation capability of 
latently infected cells [2–5].

An understanding of the molecular mechanisms regu-
lating HIV-1 latency from a chromatin and epigenetic 

perspective has the potential of opening avenues for novel 
therapeutic strategies targeting the reservoir of HIV-1 
infected cells. Key aspects include the role of chromatin 
structure in proviral latency establishment, reactivation 
ability, proliferation potential of infected cells, and evasion 
of the immune system. Technical advances in the last years 
have enabled single cell determination of individual provi-
ral sequences together with the integration sites [6–8], in 
combination with cell characteristics and epigenetic char-
acterization of individual proviruses in single cells [9•, 
10•]. Here, we summarize some of the last year’s findings 
regarding HIV-1 latency mechanisms, focusing on chromatin 
features, the dynamics of the proviral reservoir, and inter-
individual differences that may be exploited for personalized 
medicine.

Initial Infection and Establishment of the Reservoir

The acute phase of the HIV-1 infection, signifying the initial 
weeks post-HIV-1 acquisition, is associated with a rapid rise 
in plasma viremia and is critical to the long-term develop-
ment of the infection [11, 12]. During this period, the virus 
inflicts substantial immunological damage and establishes 
a persistent reservoir of infected cells. HIV-1 rapidly targets 
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a diverse pool of CD4 + T cells to establish both produc-
tive and latent infections [13•]. While HIV-1 mainly infects 
activated CD4 + T cells, it can also infect cells that do not 
actively proliferate [14–16]. The set of cells being infected 
develops throughout the acute stages of HIV-1 infection 
(Fiebig I-V), exhibiting differences between cells in blood 
and lymphatic compartments [17••]. Early antiretroviral 
therapy (ART) has a significant effect on the reservoir size 
in Fiebig stage II/III [17••]. As the infection transits from 
the acute to the chronic phase, target cell types diverge [13•, 
18]. Ultimately, the latent HIV-1 reservoir persists mainly in 
a small population of long-lived memory CD4 + T cells and 
macrophages [19–21, 22••].

Initial HIV-1 infection triggers a potent immune response. 
However, the establishment of the viral reservoir precedes 
seroconversion (Fiebig I-II) and the maturation of the adap-
tive immune response. Instead, the innate immune response 
is triggered at these earliest stages of infection [23]. Here, 
dendritic cells recognize viral RNA via Toll-like receptors 
(TLRs), specifically TLR7 and TLR8, that trigger the release 
of proinflammatory cytokines and type I interferons. This in 
turn stimulates CD4 + T cells [24], promoting their infec-
tion and establishment of the reservoir. TLR7 agonists have 
emerged as promising HIV-1 latency reversal agents, with 
efficacy demonstrated in primate studies [25, 26•]. Once the 
adaptive immune response is trained, the initial reservoir is 
already established [13•, 17••].

The infection creates a diverse initial reservoir of cells 
with unique integration sites. Within the reservoir, only a 
few cells have an inducible and intact provirus, capable of 
reseeding the infection. These cells are the crucial targets 
for a potential HIV-1 cure. During the initial Fiebig stages 
when the reservoir emerges, CD4 + T cells responsive to 
the innate immune activation are likely to be infected [27]. 
As the infection progresses, HIV-1 specific CD4 + T cells 
develop to recognize the virus, and these cells are more 
likely to be re-activated upon novel HIV-1 exposure and 
therefore infected. This could be a reason why the reservoirs 
formed at the acute and chronic stages of HIV-1 infection are 
distinct, and thus differentially targeted by ART [17••]. A 
current challenge in the field relates to most studies employ-
ing a universal reactivation that indiscriminately stimulates 
all CD4 + T cells, potentially overshadowing discrete effects 
of different mechanisms of physiological latency reversal.

HIV‑1 Integration Affects Proviral Plasticity

Following the viral entry into the cell and nucleus [28], the 
HIV-1 RNA is reverse transcribed into double-stranded 
DNA. Histones then bind to the linear DNA before integra-
tion to form nucleosomes [29]. Normally, integration into 
the host genome follows rapidly upon nuclear entry [28]. 
HIV-1 integration is favoured in active genes [30], primarily 

at genomic loci with an open accessible structure [31, 32]. 
These regions are associated with histone modifications such 
as H3K36me3 [33], recognized by the HIV-1 integrase and 
its host interactors [34]. Some latency is induced when T 
cells and their active genes transition to a resting state [35]. 
Other mechanisms of latency establishment have also been 
explored. For example, a delay between viral nuclear entry 
and integration leads to the histones acquiring silencing 
marks via interaction with the SMC5/6 complex [36•]. The 
SMC5/6 belongs to the structural maintenance of chromo-
some (SMC) complexes, including condensin and cohesin, 
which topologically fold chromatin. However, the ability of 
the silenced pre-integration HIV-1 complexes to integrate 
into the host genome remains uncertain.

Chromatin activity is confined within chromatin domain 
boundaries. Through position effects, the provirus is 
assumed to take the form of the integration site [37], where 
chromatin marks spread over adjacent regions, until a bound-
ary is reached, such as a CCCTC-binding factor (CTCF) 
binding site. Whereas CTCF boundaries act as insulators 
between chromatin domains, within these domains, smaller 
compartments are delineated by transcription and 3D inter-
actions. These transcriptionally induced local microenviron-
ments may be maintained by the SMC5/6 [38], providing 
a second function for SMC5/6 in controlling HIV-1 tran-
scription. SMC5/6 has a role in resolving transcriptionally 
induced topological stress [39, 40].

Given that HIV-1 integration can occur in both direc-
tions of host gene transcription, topological stress following 
convergent transcription necessitate either silencing of the 
provirus or the host gene. This suggests that despite inte-
gration in active regions, proviruses can still be silenced 
by host mechanisms. Notably, a gradual accumulation of 
silencing marks on proviral chromatin has been observed 
even in in vitro cultures [41•]. This could be attributed to 
an array of factors, such as selective proliferation, toxicity 
of HIV-1 proteins, or other host mechanisms. This plasticity 
complicates the reservoir analysis. Technically, most studies 
infer the chromatin structure from the integration site, but 
it is unclear if the proviruses adopt this inferred epigenetic 
state. There is also the possibility that the epigenetic state 
of the host genome is altered by integration—a significant 
issue that merits further exploration.

To characterize the proviral chromatin in individual cells, 
techniques are currently being developed. Using our recently 
published technique, based on the proximity ligation assay, 
we could identify the chromatin composition of HIV-1 in 
single cells [9•, 42]. This technique may be combined with 
the determination of the transcriptional activity of the pro-
viruses, resulting in viral RNA and proteins (Fig. 1) [9•, 
42]. By linking chromatin composition and transcriptional 
output in single cells, we may identify mechanisms underly-
ing latency maintenance and reversal.
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Latent Cells with Reactivation Ability

When proviral integration occurs in activated loci in stimu-
lated CD4 + T cells, the activity of the provirus typically 
aligns with the status of the cell. However, uncoupling of 
cell state and proviral state is observed [43, 44]. Neverthe-
less, the proviral chromatin in resting cells affects the pro-
viral activity after T cell stimulation (Fig. 2A). Deep viral 
latency is marked by low or no viral transcription even in 

activated cells. Nevertheless, irrespective of cell activa-
tion status, promoter-proximal transcription is frequently 
detected [41•, 45, 46]. These short transcripts are important 
as they correlate with time to rebound after ART interrup-
tion [47, 48•].

Some chromatin compartments are not clearly defined as 
active or silent. Enhancer regions are open regions that are 
transcribed, but the resulting transcripts are not translated. 
HIV-1 integration occurs frequently in these regions [32, 49]. 

Fig. 1   Techniques enabling single cell characterization of the chro-
matin surrounding the HIV-1 provirus. A The provirus is marked by 
an engineered zinc-finger protein (ZFP3) [40] that specifically rec-
ognizes a sequence of the HIV-1 LTR. This protein is introduced in 
cell lines (upper panel). In primary cells, the provirus is marked by 
sense-RNAscope probes (lower panel). The proximity ligation assay 
(PLA) allows detection of histone modifications at the provirus locus 
by an antibody against the ZFP3 protein (cell lines) or RNAscope 
probes (primary cells) together with an antibody against the histone 

modification of interest. When antibodies are in proximity, rolling 
circle amplification results in a spot, visible under microscopy. B 
Micrograph of H3K4me3 and H3K4me1 after activation of J-lat cells. 
Simultaneous detection of HIV-1 activity can be detected by immu-
nofluorescence of proteins expressed under the HIV-1 promoter (here 
GFP) or RNAscope for transcripts. White arrows point towards red 
PLA spots, indicating the proviral chromatin marked by H3K4me3 
(upper) or H3K9me1 (lower). Nuclei are counterstained with DAPI 
(blue). Image adapted from ref [9•]

Fig. 2   Multiple factors 
contribute to dynamics of the 
HIV-1 reservoir. A The proviral 
reactivation potential depends 
largely on the local chromatin 
structure in the resting cell. T 
cell stimulation that activate 
proviruses in promoter-like 
structures lead to spliced and 
otherwise processed RNAs, 
whereas enhancer-like struc-
tures result in bi-directional, 
short, unspliced transcripts, and 
heterochromatin hinders tran-
scription overall. B The initially 
heterogeneous HIV-1 reservoir 
evolves over time due to prolif-
eration, cell death, and immune 
evasion. After long-term ART, 
the reservoir becomes highly 
clonal, with intact proviruses 
mainly found embedded in inert 
heterochromatin
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Such integration offers a strategic hiding spot for the virus, 
enabling maintained activation potential, while avoiding 
immune recognition as no viral proteins are expressed. How-
ever, the viral Tat protein can alter this microenvironment by 
recruiting CBP/P300 and pTEFb to the HIV-1 promoter [50], 
changing the proviral chromatin into a gene-like structure that 
supports mRNA processing and protein production [9•, 41•]. 
A significant feature distinguishing enhancers from genes 
in host sequences is the presence of a splice donor within 
the first nucleosomes of protein coding genes [51]. HIV-1 
encodes this splice donor, but its exposure can be modulated 
by nucleosome repositioning and Tat-recruitment [52, 53]. 
This ability allows HIV-1 to toggle between enhancer-like 
transcription and gene-like transcription [41•]. Although these 
cells are transcribing part of the provirus, they can be regarded 
as latent since they are not translated into functional proteins.

Proliferation of Infected Cells Shapes the HIV‑1 
Reservoir

The fate of an infected cell is influenced by various factors 
including its metabolic state, the chromatin activity at the 
integration site, the cell type, and external factors such as the 
state of the immune defense. Over time, the HIV-1 reservoir 
size is largely preserved under ART, attributed to cellular 
proliferation rather than de novo infections [54]. With pro-
longed time under ART, a selection for latent or immune 
evasive CD4 + T cells arises as other cells are eliminated. 
This selection pressure gradually results in a more clonal 
reservoir [55, 56] (Fig. 2B). Selective proliferation gradu-
ally transforms the initial heterogeneous and dynamic HIV-1 
reservoir into a more homogeneous entity, resulting in sig-
nificant inter-individual differences.

Both homeostatic or antigen-driven proliferation ensure 
maintenance and promote evolution of the HIV-1 reservoir 
[57••]. Homeostatic proliferation typically involves cellular 
division without proviral activation, allowing latent HIV-1 to 
persist [58]. Conversely, antigen-driven proliferation, stimu-
lated by both HIV-1 and other external antigens, triggers the 
activation of CD4 + T cells [59, 60].

The balance of the HIV-1 reservoir following T cell acti-
vation is maintained through the opposing forces of clonal 
expansion and toxicity or activation-induced cell death. 
Cells infected with an activatable provirus, capable of pro-
ducing functional viral proteins, face a relatively high risk 
of elimination. Consequently, under an extended period of 
ART when the reservoir is maintained by proliferation, the 
intact—or mildly defective—and activatable proviral res-
ervoir declines. In contrast, epigenetically repressed intact 
proviruses remain silent and consequently are protected 
from elimination [61••]. This reduces the potential for viral 
rebound in time.

Defective vs. Intact Proviruses in HIV‑1 Reservoir 
Dynamics

The HIV-1 reservoir of intact inducible proviruses capable 
of regenerating rebound viruses after treatment interrup-
tion constitutes a minute fraction of the reservoir. However, 
this fraction is critical to cure the HIV-1 infection, whereas 
other segments of the reservoir can still profoundly impact 
chronic immune activation, carcinogenesis, psychological 
issues, and stigma among other issues [62•].

Reservoir cells with intact proviruses decay faster but 
become more clonal over time [54]. Conversely, cells har-
boring defective proviruses have been reported to decay at a 
slower rate [53, 63–65, 66•]. Yet, the nature and impact of 
these defective proviruses vary widely. For instance, some 
defective proviruses express proteins that are both toxic and 
immunogenic [62•, 67, 68•], whereas proviruses with det-
rimental mutations have lost this ability. Read-through tran-
scription of downstream host genes has been observed [69] 
that also may correlate with proliferation depending on the 
proviral integration site [70]. These various defects contrib-
ute to large variation in reservoir decay kinetics [56]. Defec-
tive proviruses containing intact internal coding sequences 
are under different selective pressure than those that are not 
translation competent, i.e., proviruses missing internal genes 
decay faster than noncoding proviruses. The viral proteins 
Nef and Gag are among the most immunogenic [71], and 
consequentially gag is the viral gene most often missing in 
defective proviruses [63]. Intriguingly, some defective pro-
viruses can produce viral particles, potentially contributing 
to persistent immune activation [60]. If defective viruses 
express Nef to downregulate immune response or to boost 
anti-apoptotic mechanisms, their rate of decline may be 
effectively stalled.

Drawing Parallels to Cancer Dynamics

When considering the HIV-1 reservoir in virally suppressed 
individuals under long-term ART, cancer may serve as an 
analogy. In oncology, only a minority of cells possess the 
capability to divide indefinitely and propagate the disease. 
The majority of cancer cells have limited proliferative 
potential and therefore do not directly contribute to disease 
progression. Likewise, within the HIV-1 reservoir, only the 
small fraction of intact, inducible proviruses can generate 
rebound viruses to reseed the infection should ART be inter-
rupted. The bulk of the reservoir, although larger, harbors 
defective proviruses which are less critical to viral rebound 
and unable to propagate the infection. In cancer treatment, 
the objective is to eradicate every single cell exhibiting 
stem-like properties due to their potential to regenerate the 
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tumor. Similarly, in the pursuit of an HIV-1 cure, the chal-
lenge is to eliminate all cells capable of producing infectious 
viruses that spread or reseed the infection [72].

Immune Evasion Affecting the HIV‑1 Reservoir

The survival of infected cells can be attributed to a multi-
tude of mechanisms, such as immune evasion [73], upregula-
tion of anti-apoptotic genes [74], induction of cell survival 
pathways [70, 75], and the downregulation of anti-prolifer-
ative genes [76]. Host responses can also directly repress 
HIV-1 transcription, further complicating the elimination 
of infected cells [77].

The presence of active viral transcription and protein 
production renders HIV-1-infected cells more prone to rec-
ognition and elimination by the host immune system [78]. 
Interestingly, a small subset of cells can exhibit continuous 
HIV-1 expression, even under ART [46]. At least some of 
these cells are likely to be clones of cytotoxic CD4 + T cells 
[79••]. This cell population expands during HIV-1 infection, 
and cytotoxic CD4 + T cells can release cytolytic granules to 
eliminate CD8 + T cells targeting them [80].

One question that emerges here is whether these perpetu-
ally HIV-1-expressing cells contribute to the phenomenon 
of non-suppressible viremia (NSV). The rare occurrence of 
NSV has made this phenomenon challenging to study. In 
individuals exhibiting NSV, large clones of HIV-1-express-
ing cells have been identified [81•]. However, these clones 
have been associated with defects in the 5′ RNA, resulting 
in defective, non-infectious virions observed as NSV [82••]. 
These RNAs most often lack the strongly immunogenic gag 
[63] and therefore have the possibility to persist even in non-
cytotoxic CD4 + T cells. Residual viremia does not correlate 
with inflammation under ART, and a recent study even con-
cluded that HIV-1 persistence under ART does not drive or 
respond to inflammation or immune activation [65].

Infected Cells with Non‑reactivatable Provirus

Infected cells in which the intact provirus is permanently 
silenced can be viewed as eliminated from the reservoir, 
given their incapacity to generate viruses. “Elite controllers” 
(ECs), a small subset of people living with HIV-1 who main-
tain undetectable levels of plasma viremia in the absence of 
ART, may serve as a model to achieve a functional cure. A 
significant proportion of ECs have the protective HLA-B*57 
allele, which also can be found in non-ECs [83]. ECs tend to 
have a small reservoir size, but this does not automatically 
imply infection control [84]. These factors do not allow iden-
tification of ECs. Recently, it was discovered that the HIV-1 
integration sites in ECs are biased towards transcriptionally 
inert heterochromatin regions [85]. Interestingly, such bias 

towards heterochromatin regions also appears to occur after 
long-term ART that extends beyond 20 years [61••]. Even 
though HIV-1 integration only rarely occurs in silent chro-
matin regions, mutations in the viral integrase protein can 
stimulate heterochromatin targeting [86•]. Cells with provi-
ruses integrated into heterochromatic regions are detected 
already in the acute stages of infection [13•]. While cells 
with proviruses in heterochromatin are expected to be scarce 
initially, their proportion gradually increases over time, 
largely due to their evasion from selection pressure exerted 
by viral protein toxicity or immune recognition [61••].

This raises an intriguing question: could post-treatment 
controllers have their reservoirs evolved so that only hetero-
chromatin-integrated proviruses remain? It is conceivable 
that post-treatment control could arise from the reservoir 
gradually assuming characteristics similar to those of ECs’ 
reservoirs after extended treatment periods.

Reservoir Location

While the core insights about the HIV-1 reservoir are 
primarily derived from studies on peripheral blood and 
CD4 + T cells, the HIV-1 reservoir persists in various tis-
sues, including lymph nodes, gut, spleen, and brain [87, 
88]. However, peripheral blood serves as the main source 
of dispersal, giving it a reflection of the most compartments 
of the reservoir [89••]. Macrophages represent another key 
cell type involved in the long-term maintenance of the HIV-1 
reservoir, either through direct infection, engulfment, or cell 
fusion [22••, 90, 91]. Although the macrophage reservoir 
is distinct from that of CD4 + T cells and generally lower 
in viral content, its potential to facilitate viral spread ren-
ders it a critical component to consider in reservoir studies 
[22••]. The anatomical source of the rebound viruses after 
ART interruption remains elusive but peripheral blood con-
tains traces of most reservoir cells found in tissues [92]. 
This underscores the importance of a comprehensive under-
standing of the reservoir’s distribution across different tissue 
types for successful HIV-1 eradication strategies.

Conclusions

In conclusion, recent insights into the HIV-1 reservoir have 
revealed intricate details of the infected cells, the influence 
of proviral integration sites and the role of single-cell histone 
modifications. This has led to an understanding of how cell 
proliferation together with the immune system sculpts the 
reservoir in the absence of free virus (Fig. 2). An empha-
sis on chromatin features, proviral reservoir dynamics, and 
inter-individual differences offers a comprehensive per-
spective that could significantly enhance HIV-1 treatment 
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precision and effectiveness. To manipulate these molecular 
mechanisms to eradicate the reservoir, a detailed understand-
ing of the single cells capable of instigating new viral pro-
duction is crucial. In single cells, we need to identify the 
mechanisms that keep the provirus latent and reactivatable, 
and the triggers that activate it. Long-term ART has led to a 
high diversity in HIV-1 reservoirs among individuals. These 
unique HIV-1 reservoirs will require specific treatment for 
their eradication, making personalized medicine a necessity 
to achieve a global HIV-1 cure.
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