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Abstract
Purpose of Review Although extensive research has been conducted on microbial resilience, numerous unanswered ques-
tions persist. In this study, we highlight impactful research that elucidates the diverse mechanisms underlying the resilience 
of the gut microbiota against pathogen colonization and its implications on gut health and disease.
Recent Findings The increasing importance of gut microbiota resistance in the context of pathogenic infections has been 
extensively reported. The establishment of a homeostatic microbiome-host interaction, facilitated by intricate mechanisms 
originating from both the microbiota and the host, plays a crucial role in fostering resilience. However, pathogens have 
evolved several evasion strategies that can disrupt healthy microbiota composition, trigger environmental alterations, and 
induce inflammation, thereby potentially exacerbating inflammatory diseases in the gut.
Summary In this review, we aim to highlight the significance of different resilience mechanisms during intestinal infections 
and their potential for modulation to develop new interventions that can effectively ameliorate Inflammatory Bowel Disease 
(IBD). 
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Introduction

The discovery of the gut microbiota dates back to the pre-
1900 era, when a plethora of microorganisms, which are 
abundantly present in the human body, were identified 
[1]. While microbiota and microbiome are terms that are 
often used interchangeably, they exhibit certain differences. 
Microbiota is comprised of living microorganisms that exist 
within a particular environment, such as the gut microbi-
ota. On the other hand, the microbiome encompasses the 

collection of genomes in the environment, including micro-
organisms and metabolites. Consequently, the microbiome 
has a broader scope than the microbiota [2].

The microbiome is a complex ecosystem with diverse and 
variable compositions. The main phyla present in healthy 
humans are Firmicutes and Bacteroidetes, which represent 
90% of the microbiota [3]. The extensive diversity observed 
in microbiomes complicates the task of defining a precise 
criterion for a natural or healthy microbiota. However, in 
the definitions, certain factors, such as increased diversity, 
symbiotic interactions with the host, stability, and resil-
ience, which execute immune and metabolic functions, can 
be considered in the definitions [4]. The human microbiota 
is consistently influenced by the host and multiple external 
factors, including diet, exercise levels, medicine, antibiotics, 
genetics, immunity, and the intestinal barrier, which have the 
potential to perturb this ecosystem [5, 6]. Subsequently, the 
microbial ecosystem may or may not be able to revert to its 
original state; this phenomenon is referred to as resilience. 
The concept of resilience was recently proposed through 
a model that integrated tests and challenges to determine 
whether the microbiota comprises resilience, which was 
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assessed by its capability to resist and recover from stress 
[7].

The development of chronic diseases can plausibly initi-
ate a decline in the capacity of the microbiota to effectively 
resist challenges or promptly and fully recover to a state of 
homeostasis. This can potentially lead to a new state of dys-
biosis [7]. Dysbiosis occurs when there is a critical involve-
ment of the microbiota in the development of diseases [8]. 
Under certain conditions, patients treated with antibiotics 
exhibit a diminished ability to restore the microbiota to its 
baseline levels, which can contribute to the development 
of diseases [9]. Nevertheless, a highly resilient microbiota 
possesses the capacity to regain a healthy state [10]. Hryck-
owian et al. described diet as an intervention that increases 
microbiota diversity and resilience [11]. Thus, the main-
tenance of the microbiota in a resilient state may substan-
tially contribute to homeostasis and health. In this review, 
we focus on resident microbiomes and the importance of 
microbiota resilience in health and disease management.

Inherent Mechanisms of Microbial Resilience

The gut microbiota is a collection of bacteria present in the 
intestinal tract. They exhibit distinct spatial organization 
based on the location, including the lumen, mucus layer, and 
crypts, which determine their interaction levels with each 
other and with the host [12].

Spatial and Nutritional Competition

The disparity in location and microbial density are features 
that are influenced by oxygen levels, nutrient availability, pH, 
and immune factors, and these variables have the potential 
to affect the gut microbial composition and spatial location 
[13]. Bacterial distribution within the lumen is not uniform; 
in the small intestine, for instance, the transit is faster, and 
and the sugar availability favors Proteobacteria and Lacto-
bacillales expansion, which are rapidly dividing facultative 
anaerobes [14]. Considering the spatial structure of the colon 
microbiota, the phyla Firmicutes and Proteobacteria are the 
most predominant in the crypts and mucosa, while Actino-
bacteria and Bacteroides occur at lower levels [15]. Addition-
ally, the microbiota in the small and large intestines rely on 
different nutrients for their developmental functions. In the 
large intestine, bacteria utilize nutrients that have not been 
absorbed in the upper gastrointestinal tract [16]. Furthermore, 
several studies have shown the nutritional competition between 
commensal and pathogenic bacteria, for instance, indigenous 
Escherichia coli has been reported to compete for amino acids 
and other nutrients with enterohemorrhagic E. coli, which 
causes morbidity [17–19]. Studies exploring competition for 

nutrients exhibited by the gut microbiota, as a mechanism to 
combat pathogens, are still relatively recent; however, it is evi-
dent that this competition is related to groups of commensal 
bacteria that are directly related to these pathogens in terms 
of their metabolism. For instance, in the case of mice infected 
with Citrobacter rodentium, the infection can be controlled 
when the mice are colonized with E. coli, which engages in 
nutritional competition [20].

Inhibitory Metabolites

Compounds in the diet are metabolized by digestive 
enzymes in the upper gastrointestinal tract. However, some 
of these metabolites remain intact and are processed and 
metabolized by the gut microbiota [21]. The gut micro-
biota may interact either with the host directly, through 
metabolites provided by the bacteria, or by the transfor-
mation of diet-derived substrates, which are small mol-
ecules representing products of microbial metabolism [22]. 
These metabolites may affect the host (e.g., short-chain 
fatty acids (SCFA) and vitamins), other commensal bac-
teria (e.g., bacteriocins), and pathogens (e.g., lactic acid 
and hydrogen peroxide) [23]. These bacterial products can 
act as growth inhibitors for competitors. Additionally, the 
antibiotic effect exhibited by lactic acid-producing bacteria 
is attributed to the production of lactic acid through glu-
cose fermentation. This process leads to alterations in the 
pH, which in turn acts as a protective mechanism against 
potential pathogen invasions, ultimately leading to oxida-
tive stress and cell death [24]. The production of hydro-
gen peroxide  (H2O2) by lactic acid bacteria, particularly 
within the Lactobacillus clade, is a commonly observed 
phenomenon, especially when exposed to aerobic condi-
tions. This metabolic trait enables them to generate sub-
stantial amounts of  H2O2 [25]. Additionally, the presence 
of both lactic acid and hydrogen peroxide not only influ-
ences the composition of microbial communities but also 
induces heightened elimination of Salmonella typhimurium 
by inducing DNA damage [26]. Similar to lactic acid, bac-
teriocins, which are proteins that induce cell death by alter-
ing membrane potential, exhibit a synergistic effect on the 
microbiome and cause its disruption [27]. These findings 
demonstrate the direct impact of microbiota metabolites on 
microbial resilience, acting as controllers and inhibitors of 
other pathogenic bacteria.

Host‑Associated Mechanisms of Resilience

Besides the inherent colonization resistance displayed by 
microbiota components, there are pivotal interactions with 
the host that can limit the invasion and proliferation of path-
ogens. In this section, we will discuss the role of the physical 
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barrier (e.g., mucous layer and epithelial cells) along with 
the oxygen gradient and components of the immune system, 
in the modulation of microbial resilience in the gut.

Oxygen Gradient

Since bacteria consistently sense the surrounding envi-
ronment, the available oxygen becomes a key signal and 
energy source for their metabolism and fitness. Enteric bac-
terial composition and resilience are specifically related to 
the gut oxygen gradient since their metabolic activity can 
reduce free oxygen in the lumen, leading to the prevalence 
of an anaerobic environment [28]. For instance, the SCFA 
butyrate produced by Clostridia can boost aerobic respi-
ration in epithelial cells by enhancing the beta-oxidation 
pathway and causing the lowering of the oxygen concen-
tration [29]. The oxygen levels increased after Clostridia 
depletion, which can enable S. typhimurium proliferation 
[30]. In addition, it was demonstrated that, depending on the 
oxygen levels, Enterobacteriaceae can contribute to coloni-
zation resilience by competing with S. entereditis [28, 31]. 
Complementary, the resistance is lost when the capacity to 
respire oxygen under micro-aerophilic conditions is geneti-
cally ablated in E. coli [31]. Similarly, Mucispirillum schae-
dler, another microbiota component, competes for nitrate in 
the absence of oxygen, limiting the proliferation of E. coli 
and S. typhimurium which depend on nitrate metabolism to 
succeed during gut inflammation [32]. Hence, the capacity 
of the symbiont microbiota to generate a hypoxic environ-
ment in the intestine largely restricts the virulence potential 
and invasion of pathogenic players.

Mucus Layer

The intestinal barrier consists of an inner and an outer 
layer layers, the epithelial barrier, and the immune cells. 
Goblet cells secrete mucus, which consists of a combina-
tion of highly glycosylated proteins, with mucin 2 (MUC2) 
being the most abundant and crucial component for mucus 
layer organization in the colon [33]. Its importance was 
highlighted when studies demonstrated that mice lacking 
MUC2 spontaneously developed colitis [34], showed a pre-
disposition to inflammation-dependent colorectal cancer 
development [35], and heightened susceptibility to Cit-
robacter rodentium and Listeria monocytogenes [36, 37, 
38•]. These findings provide a plausible explanation for 
the development of inflammatory diseases in the absence 
or dysfunction of the mucus layer, which typically plays 
a crucial role in preventing pathogen-driven inflamma-
tion. Complementarily, microbiota components have been 
reported to play a fundamental role in mucus production. 

For instance, germ-free (GF) mice exhibit a thinner mucus 
layer [39] and the administration of a fiber-free diet to 
gnotobiotic mice hosting a simple microbiota set leads to 
higher C rodentium proliferation and epithelial invasion 
[40•]. The diet also exerts a direct effect on the mucus layer 
thickness. Gnotobiotic mice fed with a Western diet low in 
microbiota-accessible carbohydrates (MACs), fostered the 
growth of mucus-degrading bacteria, including Akkerman-
sia muciniphila and Bacteroides caccae. As a result, these 
bacteria consumed the outer mucus layer, thereby reducing 
the space between the microbiota community and epithelial 
cells. Intrinsically, the host increased the MUC2 expres-
sion, however, it was not sufficient for avoiding pathogen 
invasion [41]. Only with Bifidobacterium longum admin-
istration could the outer mucus layer damage be reversed, 
possibly because of its potential capacity to stimulate 
mucus production [42]. Together, this evidence suggests an 
intrinsic balance between the functional state of the mucus 
layer and the microbiota composition.

The Epithelial Cells

Intestinal epithelial cells (IECs), which include goblet cells, 
as well as enteroendocrine and Paneth cells, possess special-
ized functions aimed at preserving the digestive and barrier 
functions of the epithelium [43]. The enteroendocrine popu-
lation acts as a fundamental network between the central and 
enteric neuroendocrine systems by releasing a wide range 
of hormone regulators. As mentioned above, goblet cells 
secrete mucins, whereas Paneth cells are responsible for anti-
microbial protein (AMPs) production, constituting a physi-
cal and biochemical barrier that prevents microbial contact 
with the epithelial surface [43, 44]. The most relevant and 
recognized AMPs produced by enterocytes are the C-type 
lectin regenerating islet-derived protein IIIγ (RegIIIγ), found 
throughout the small intestine and colon. Moreover, Paneth 
cells have been reported to secrete additional proteins such 
as defensins, lysozyme, and cathelicidins in the crypts of 
the small intestine [43, 45]. By disrupting the conserved 
features of microbial biology, AMPs allow the modulation 
of commensal and pathogenic bacteria in the intestinal tract. 
Microbiota components possess the capacity to regulate the 
production of AMPs, thus exerting an influence on microbial 
abundance [46] and playing a pivotal role in colonization 
resistance. A study demonstrated that microbiota depletion 
by antibiotics administration in mice caused a decrease in 
the RegIIIγ expression, which was restored after stimulation 
with a synthetic ligand for Toll-like receptor 7 (TLR7) [47]. 
This directly impacted the host’s capacity to control vanco-
mycin-resistant enterococci (VRE). Likewise, other studies 
have demonstrated that Nucleotide Binding Oligomeriza-
tion Domain Containing 1 (NOD1) and NOD2 signaling 
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through receptor-interacting serine–threonine-protein kinase 
2 (RIPK2) can limit C. rodentium expansion and coloniza-
tion by stimulation of RegIIIγ production during the early 
stages of infection [48]. In addition, microbiota-derived pep-
tidoglycans stimulate NOD2 and lead to crypt expression, 
which facilitates L. monocytogenes clearance in mice [49]. 
Epithelial cells also act as sentinels through the expression 
of pattern-recognition receptors (PRR), including members 
of the Toll-like receptor (TLR) [50], NOD-like receptor 
(NOD) [51], and Retinoic acid-inducible gene I (RIG-I)-like 
receptor (RLR) [52]. Through signaling cascades that cul-
minate in the production of several mediators, these recep-
tors are pivotal for maintaining homeostasis between the 
host immune system and symbionts, recognizing pathogens, 
and initiating host defense and inflammation. The crosstalk 
between sensing molecules, the immune system, and micro-
biota resilience is discussed in detail in the next section.

Immune System Messengers

The intestinal microbiota also plays an essential role in 
orchestrating host immunity during homeostasis and dis-
ease. Cytokine signaling plays a vital role in host-microbiota 
interactions and serves to restrict pathogen invasion (Fig. 1). 

The primary producers of Interleukin (IL)-22 are lympho-
cytes, such as T helper (Th) 1, Th17, Th22,  CD8+ T cells, γδ 
T cells, natural killer cells (NK), and type 3 innate lymphoid 
(ILC3) cells [53]. This cytokine is expressed in response 
to proinflammatory cytokines, such as IL-1β, IL-6, Tumor 
Necrosis Factor (TNF)-α, and mainly IL-23, produced by 
myeloid cells upon perception of microbial signals [54]. It 
has been reported that IL-22 production by Th17 cells is 
triggered by the presence of segmented filamentous bacteria 
(SFB) and promotes lower susceptibility to C. rodentium 
infection [55]. Additionally, colonization of GF mice with 
human microbiota components promotes IL-22 production, 
enhancing host glycosylation and the consequent growth of 
Phascolarctobacterium species, which in turn compete with 
C. difficile for succinate in the gut [56••]. Several studies 
have reported the role of IL-22 in promoting intestinal bar-
rier function and altering the composition of the gut micro-
biota [55, 57–59], however, it has also been shown that this 
cytokine may favor the proliferation of some pathogens, such 
as S. tryphimurium, over bacterial symbionts [60]. Notably, 
microbes can manipulate the host to achieve a competitive 
advantage within the intestinal microbiome community. 
Bacteroides fragilis can act via TLR2 activation on T helper 
(Th) cells to establish symbiosis with the host, which was 
proved by the fact that the TLR2 deletion in CD4 + T cells 

Fig. 1  Host-associated mechanisms of resilience. Several host fea-
tures facilitate the diversity of mechanisms that cover the micro-
biota’s resilience against pathogen invasions, including the low 
level of oxygen in the mucosa as a result of an interaction between 
commensals and epithelial cells; secretion of mucins by goblet cells 
compounding the mucus layer; secretion of AMPs and defensins by 
Paneth cells; cytokine production by innate immune cells that can 

activate and induce the differentiation of different types of lympho-
cytes, which together with ILCs produce key cytokines that control 
the exacerbated proliferation of microbiome components; secretion of 
IgA by plasma cells, which can also help controlling the expansion 
of prominent species in a balanced microbiota. AMPs: Antimicrobial 
peptides; ILCs: Innate lymphoid cells; IgA: Immunoglobulin A
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drives an antimicrobial response that limits B. fragilis colo-
nization [61]. Gut microbiota also enhances the priming of 
macrophages and IL-1β production to immediately respond 
to S. tryphimurium and P. aeruginosa infections, assist-
ing neutrophil recruitment and further pathogen clearance 
[62]. A recent study showed that a mouse commensal E. 
coli isolate protected mice from C. rodentium infection and 
dextran sulfate sodium (DSS)-induced colitis by expansion 
IL-1B producing CX3CR1 + mononuclear phagocytes and 
IL-22-secreting type 3 innate lymphoid cells (ILC3) [63••]. 
A similar human commensal E. coli isolate also protected 
mice from infection and colitis [63••], revealing a surpris-
ing role for microbiota-mediated IL-1β secretion to endorse 
intestinal barrier repair.

Similarly, butyrate-producing bacteria can limit pathogen 
colonization by regulating tight junction protein expression 
via IL-10 signaling. IL-10 is secreted by several immune 
cells, the major producers of which are dendritic cells, mac-
rophages, T cells, and ILC2 cells [64]. IL-10 can also pro-
mote intestinal Treg differentiation and maintenance, which 
is essential for preventing microbial-derived inflammation 
in the gut by controlling excessive effector T cell responses 
[65]. Studies have shown that diverse groups of symbionts 
can promote the expansion of Tregs from naïve T cells in the 
gut, thereby protecting mice from the inflammation caused 
by pathogenic invasion. For example, B. fragilis [66], Bifido-
bacterium infantis [67], and defined sets of bacteria includ-
ing Firmicutes induce Treg expansion and reinforce intestinal 
barriers through several mechanisms [68]. Various studies 
have demonstrated differences in the microbiota composi-
tion between wild-type (WT) and IL-10-lacking mice. Using 
GF mice, Maharshak et al. [69] showed that IL-10−/− mice 
exhibited a decrease in microbiota complexity over time, how-
ever, this was not observed in wild-type littermates. Hence, 
E. coli is enhanced over time in IL-10−/− mice, converging 
with spontaneous inflammation and the initiation of colitis 
[69]. In summary, these studies highlighted the mechanisms 
employed by microbiota to promote cytokine production by 
immune components to maintain their colonization and resil-
ience while facing pathogen invasion. 

In addition to cytokines, the production of immunoglobu-
lins is influenced by the gut microbiota, which can indi-
rectly affect colonization fitness. Secretory immunoglobulin 
A (SIgA), produced by plasma cells, is the most prevalent 
isotype in the human intestinal lumen and is involved in 
the prevention of infections and maintenance of symbiont 
homeostasis. Fadlallah et al. [70] showed that co-dependent 
associations between commensals are disturbed in patients 
who exhibit deficiency in SIgA, which provides evidence for 
the participation of SIgA in the interactions between micro-
biota components [70]. Similarly, in mice, the binding of 
highly glycosylated SIgA to Bacteroides altered microbial 
metabolism and led to an indirect expansion of Clostridiales, 

culminating in impaired development of DSS colitis [71]. 
SIgA also induces the surveillance of B. fragilis in mono-
colonized mice [72] while promoting mutualistic associa-
tions between the host and possible pathogenic fungal sym-
bionts by targeting and restraining virulent morphotypes. 
These evidence indicate the relevance of SIgA in modulating 
pathogen colonization and fostering ecological relationships 
between microbiota components [73].

Disruption of Microbiota Resilience 
by Pathogens

Despite multiple strategies developed through host-microbi-
ota interactions, colonization resistance can be disrupted by 
pathogens. Through virulence programs, pathogens subvert 
the homeostasis of the healthy microbiota, impair barrier 
function, and trigger inflammation. The importance of path-
ogen virulence in combating microbiota resilience is empha-
sized by the integration of several environmental signals 
that dictate when and where to express virulence genes. For 
instance, the enhanced virulence of C. rodentium is essential 
for intestinal colonization in conventionally reared mice, but 
not in GF mice [20]. In addition, the proliferation of patho-
gens in diseases directly reflects the pathogen-microbiota 
interaction, since alterations in the physiological environ-
ment, such as oxygen levels and metabolic and nutritional 
settings, favor the growth of invading microbes over the 
commensals [74, 75]. The evasion and virulence strategies 
of pathogens and their consequences for health and disease 
are discussed in the next section.

Pathogen Evasion Strategies

As symbiont components, pathogens can successfully col-
onize the host through a virulence setting that modulates 
spatial niche construction and promotes their growth over 
the microbiota. Facultative anaerobic pathogens, includ-
ing S. typhimurium, C. rodentium, and other Enterobacte-
riaceae, can create a physiologically challenging environ-
ment for symbiotic bacteria by modulating oxygen levels 
in the large intestine. As the majority of the microbes in the 
colon are fermenters and highly oxygen-sensitive, virulent 
programs that induce an increase in oxygen levels lead to a 
reduction in these components, facilitating pathogen inva-
sion and growth [76]. For example, expression of the toxin 
type III secretion system (T3SS) by C. rodentium leads to 
crypt hyperplasia in mice, decreasing overall oxygen con-
sumption through changes in epithelial metabolism [77]. 
Consequently, this increased oxygenation of the mucosa 
drives aerobic C. rodentium proliferation in the colon, favor-
ing infection. It was recently reported that T3SS-mediated 
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intimate attachment also enables the oxidation of hydrogen 
peroxide by C. rodentium, which is produced by epithelial 
NADPH oxidase (NOX1) even before crypt hyperplasia 
[78••]. As mentioned previously, one of the inherent strat-
egies of the microbiota to resist pathogen colonization is 
its capacity, together with the epithelium, for rapid nutrient 
consumption. However, some pathogens can circumvent this 
obstacle by evading microbiota resilience and colonizing 
the host. For example, enteropathogenic E. coli (EPEC) can 
obtain nutrients from infected host cells via host nutrient 
extraction (HNE). Through an inner membrane complex, 
EPEC can protrude the structure of membranous nanotubes 
directly into host cells and draw on their nutrients [79]. Con-
versely, other pathogens have evolved the capacity to use 
alternative nutrient sources, such as C. rodentium, which 
can use diet-derived metabolites produced by commensal 
bacteria for initial proliferation and T3SS-driven inflam-
mation [80]. Triggering inflammation is also a widely used 
strategy employed by pathogens [81, 82]. For example, S. 
typhimurium uses the Spi1 T3SS to induce the expression 
of inflammatory signals in the ileum and cecum of mice. 
Through the host’s generation of reactive oxygen and nitro-
gen species, S. typhimurium utilizes the byproducts, such as 
tetrathionate, nitrate, and oxidized sugars for respiration and 
proliferation [83, 84]. Together, this evidence exemplifies 
several specialized strategies to overcome the colonization 
resistance dictated by the microbiota (Fig. 2).

Microbiota Resilience Disruption

In addition to pathogen infection, other external stress fac-
tors such as severe dietary changes, antibiotics, and other 
medications can perturb the balanced ecosystem achieved by 
healthy microbiota. Consequently, the gut microbiome may 
return to its original shape. A resilient microbiota can return 
to its baseline equilibrium employing the various strategies 
discussed earlier, whereas a non-resilient microbiota is 
molded to acquire a new composition (Fig. 2). It is assumed 
that a healthy individual has a resilient microbiota that can 
rapidly return to its steady state after exposure to unavoid-
able environmental stressors [7, 10, 85]. An impaired abil-
ity to resist these challenges facilitates dysbiosis, which 
is associated with several chronic diseases. Specifically, 
in the gut, inflammatory bowel diseases (IBD), including 
Crohn’s disease and ulcerative colitis, are intimately associ-
ated with the disruption of healthy microbiota. Although 
several factors, including genetics, can be associated with 
IBD pathogenesis, the composition of the gut microbiome 
is thought to be an essential determinant of host suscepti-
bility to IBD, since it can contribute to aberrant immune 
responses through multiple mechanisms d [86, 87]. Simi-
larly, the transfer of IBD-associated microbiota into healthy 
mice induces intestinal inflammation [88], while microbiota 
depletion by antibiotic administration enhances intestinal 
inflammation in IBD-susceptible mouse models. However, 

Fig. 2  The commensal micro-
biota colonization resistance is 
constantly challenged by exter-
nal factors such as pathogens, 
which in turn develop strategies 
to modulate environmental 
factors, including oxygen levels 
and nutrient disposition. They 
also trigger inflammation, lead-
ing to physiological changes 
that impair the commensal’s 
growth. However, a healthy 
microbiota can resist and 
recover from these attacks, as 
well as restore its original com-
position. In certain individuals, 
plausibly due to genetic altera-
tions, the microbiota cannot be 
restored and the resilience is 
disrupted, establishing dysbiosis 
and leading to the development 
and worsening of the disease
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the colonization of pathobionts, such as adherent-invasive 
E. coli (AIEC) [89••], Enterococcus faecium [90], entero-
toxigenic Bacteroides ragilis [91], and multi-drug resistant 
Klebsiella pneumoniae (Kp) [92•] is related to IBD worsen-
ing in genetically susceptible individuals. Therefore, inter-
ventions that improve microbiome resilience are indispen-
sable for disease amelioration. Understanding the features 
of resilient microbiota will assist in the conception of inter-
ventions aimed at enhancing resilience. In this way, dietary 
fibers can be a contributing factor in increasing microbiota 
diversity and, consequently, a more resilient one. Mice fed 
a fiber-enriched diet that was challenged with antibiotics 
and C. difficile returned to the pre-challenged composition, 
whereas mice fed a low-fiber diet did not [11], indicating 
that fibers have a direct effect on improving microbiota 
resilience in mice. Hence, the administration of probiotics 
containing species with anti-inflammatory features, such as 
Lactobacillus rhamnosus [93], or those that can improve 
the gut barrier, such as Lactobacillus plantarum [94], has 
been reported to be potential intervention strategies that can 
enhance microbiota resilience. Meanwhile, probiotic and 
dietary interventions that aim to boost certain species need 
to be carefully administered to avoid targeted components 
from becoming more prominent leading to a negative impact 
on the microbiome diversity [7]. Recently, Federici et al. 
[95••] demonstrated that IBD-associated Kp strains aggra-
vate intestinal inflammation in colitis-prone, germ-free, and 
colonized mice, which is reversed using a lytic five-phage 
combination targeting Kp. They also assessed the proof-
of-concept of Kp-targeting phages in an artificial human 
gut and healthy volunteers, demonstrating a feasible oral 
administration therapy that improves microbial resistance to 
pathobionts expansion [95••]. Together, these studies high-
light the importance of colonization-resistant microbiota in 
health and disease and the emergence of combined therapies 
focused on reestablishing resilience.

Conclusion

In this review, we summarize the main strategies used by 
symbiotic bacteria to remain resilient against pathogen 
attacks throughout a host’s life. The inherent ecological and 
physiological characteristics of symbionts has the ability 
to confer a high degree of equilibrium between all micro-
biota components. However, the modulation of the host’s 
features, such as the mucosal barrier and immune system 
has been crucial for a closer host-microbiota relationship 
built through thousands of years of evolution. Its impor-
tance for human health has been highlighted in several stud-
ies showing the mechanisms underlying the disturbance of 
microbial resilience. However, a complete understanding 
of the role of microbiota resilience in health and disease 

remains a contentious subject, as experimental validation of 
models and further investigation in humans are required. In 
summary, as greater insights are acquired regarding micro-
biota resilience, innovative integrated interventions may be 
applied in the treatment of several microbiota-associated 
diseases.
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